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Abstract. Evolutionary developmental design (Evo-Devo-Design) is a design method that 
combines complex developmental techniques with an evolutionary optimisation techniques. 
In order to use such methods, the problem specific developmental and evaluation procedures 
typically need to be define using some kind of textual programming language. This paper 
reports on an alternative approach, in which designers can use Visual Dataflow Modelling 
(VDM) instead of textual programming. This research described how Evo-Devo-Design 
problems can defined using the VDM approach, and how they can subsequently be run using 
a Distributed Execution Environment (called Dexen) on multiple computers in parallel. A 
case study is presented, where the Evo-Devo-Design method is used to evolve designs for a 
house, optimised for daylight, energy consumption, and privacy. 
Keywords. Evolutionary; developmental; design; performance; optimisation.

INTRODUCTION
Evolutionary design is loosely based on the neo-
Darwinian model of evolution through natural se-
lection. A population of individuals is maintained 
and an iterative process applies a number of evo-
lutionary steps that create, transform, and delete 
individuals in the population. Each individual rep-
resents a design variant, and has a genotype rep-
resentation and a phenotype expression: the geno-
type representation encodes information that can 
be used to create a model of the design, while the 
phenotype expression is the actual design model. 
The individuals in the population are evaluated 
relative to one another, and on the basis of these 
evaluations, new individuals are created using ‘ge-
netic operators’ such as crossover and mutation. 
The process is continued through numerous gen-
erations so as to ensure that the population as a 
whole evolves and adapts. 

Evolutionary design differs from other types 
of evolutionary approaches (such a genetic algo-
rithms) in that it includes a complex developmen-
tal step that generates a phenotype by applying 
the genes in the genotype (Frazer 1995, Bentley 
and Kumar 1999, Stanley and Miikkulainen 2003, 
Janssen 2004, Hornby 2005, Kowaliw and Banzhaf 
2011). We therefore refer to this as evolutionary 
developmental design, or Evo-Devo-Design. For 
designers, the developmental step is crucially im-
portant, since it delineates the search space of 
possible designs. The Evo-Devo-Design method is 
able to augment the traditional process of design 
exploration, in which typically only a small number 
of options will be considered. The advantage of 
Evo-Devo-Design is that it is able to automatically 
develop and evaluate large populations of design 
variants. This method has proved to be well suited 
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to design processes that are typically divergent and 
exploratory (Janssen 2004).

One of the key drawbacks of such advanced dig-
ital design methods has been the need for designers 
to write and develop their own customised software 
tools. This has severely limited the general appli-
cability of such methods. This paper describes an 
alternative approach, whereby designers can apply 
Evo-Devo-Design methods without having to write 
any code. The authors have developed a Distribut-
ed EXecution ENvironment (Dexen) for population 
based multi-objective optimisation algorithms. Such 
algorithms include hill climbing, simulated anneal-
ing and evolutionary algorithms [1,7,8]. In this paper, 
we will focus on using Dexen for Evo-Devo-Design.

Following this introduction, section two gives 
an overview of the Dexen architecture. Section 
three focuses on how non-programmers can use 
Dexen for Evo-Devo-Design. Section four reports 
on a case-study experiment using Dexen to evolve 
a house design.

DEXEN SYSTEM ARCHITECTURE
The two main goals of Dexen are speed and flex-
ibility. Speed is an issue since design optimisation 
problems typically require complex simulations 
that can be prohibitively slow. Flexibility is an is-
sue since design optimisation problems typically 
require highly customised evolutionary steps, of-
ten requiring the integration of existing simulation 
programs. In order to achieve these goals, Dexen 
has been designed with two key features. First, 
for speed, Dexen is designed to run on multiple 
computers in parallel. Second, for flexibility, Dexen 
provides an end-user programming model that al-
lowed users to encapsulate the problem specific 
aspects within a few key scripts.  

Dexen is based on a previous multi-objective 
evolutionary developmental design environment 
called EDDE (Janssen 2004, Janssen et al 2005, Jans-
sen 2009). Dexen has been developed with a fun-
damentally different type of architecture to achieve 
improvements in both speed and flexibility.

The process of running a population based 
optimisation problem within Dexen is described 
as a job. The blueprint for the job is referred to as 
a job definition or (in the case of design jobs) the 
design schema (Janssen 2004). The schema de-
fines a set of computational procedures, which are 
referred to as tasks. When a job is run, the tasks 
will be executed by Dexen. Each task will act on 
entities in the population called individuals. An 
individual represents a complete solution to the 
problem being optimised.

For design optimisation jobs, the schema will 
typically include three tasks: development, evalu-
ation, and feedback. Development will generate a 
model of the design. Evaluation will evaluate some 
performance criteria of the model. Finally, feedback 
will use the results from evaluation to generate or 
modify individuals. If the algorithm being used is an 
evolutionary algorithm, then feedback will kill some 
low performance individuals, and generate some 
new individuals using crossover and mutation.

Dexen has been designed for two levels of user, 
which we refer to as general users and specialist us-
ers. General users are assumed to have the required 
programming skills to developed their own schemas 
from scratch. Specialist users may not have the re-
quired programming skills, but will instead be able 
to create schemas by using automated schema gen-
erators. Specialist users may typically have advanced 
knowledge and skills in their domain of interest.

Different schema generators can be created for 
various areas of specialisation. Each schema gen-
erator will target specific software tools. Currently, a 
schema generator has been developed focusing on 
architectural design using the Sidefx Houdini soft-
ware, to be discussed in more detail in section 4.

Dexen components
Dexen consists of four main types of components: 
one server, and multiple clients, masters and slaves. 
Each of these components can run on separate ma-
chines, thereby allowing the computation to be dis-
tributed between multiple machines. 
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•• The server is the core of the system, and all oth-
er components connect to the server. 

•• Each client provides a user interface for an end 
user to start, stop, and monitor the progress of 
jobs. When a user starts a job, they need to use 
the client to upload the schema for that job. 
This schema will include a set of tasks that need 
to be executed. 

•• Each master manages one job, including the 
population of individuals associated with that 
job. A user my start multiple jobs, in which case 
Dexen will create multiple masters. 

•• Slaves execute the user defined tasks associ-
ated with a particular job. Typically, many slaves 
will be running in parallel. Dexen will automati-
cally assign slaves to masters to execute tasks 
without requiring any action from the user.

A Dexen population consists of a set of indi-
viduals, each of which can become a complete 
solution to the problem being optimised. Initially, 
when individuals are first created, they contain only 
the basic parameters (or genes) for a particular so-
lution. As individuals are processed, they may ac-
cumulate additional information, and they thereby 
change their state. 

For example, for an evolutionary schema, an 
individual’s state includes it’s genotype, phenotype, 
and performance scores. The individual starts life 
with only a time of birth and a genotype. The de-
velopment task creates a phenotype. One or more 
evaluation tasks calculate the performance scores. 
Finally, the feedback task kills some existing individ-
uals, and generate some new individuals (who will 
only have a genotype). 

The Dexen population is therefore a heteroge-
neous population that  contains individuals in differ-
ent states. For example, some may only have geno-
types, some may also have phenotypes, and some 
may also have performance scores.

A schema must define two types of tasks: one 
master task and one or more slave tasks. The mas-
ter task will usually be used to configure various 

settings and to initialize the population. Initialization 
typically consists of creating a set of new individuals 
to start the optimization process. Each slave task will 
then process individuals from the population. 

Each slave task performs a specific user defined 
procedure, and as a result it requires individuals in 
a particular state. For example, an evaluation task 
may need an individual that already has a pheno-
type, but that does not yet have an evaluation score. 
Individuals that do not meet these criteria need to 
be rejected. A filtering process therefore has to take 
place in order to discover which individuals in the 
population match which slave task. In order to do 
this, each slave task is assigned a user define bool-
ean function, referred to as the filter function. This 
is used to decide if a particular individual is valid for 
processing by that task. 

EVO-DEVO-DESIGN FOR NON-
PROGRAMMERS
For the general user, writing a schema involves de-
fining the tasks that will be executed by Dexen. The 
user needs to define one master task, and one or 
more slave tasks. The programming model that has 
been defined for these tasks is both simple and pow-
erful. The schema has to be written in Python, and a 
basic understanding of object-orientated program-
ming is required.

However, for users that are non-programmers, 
writing a schema may be difficult. Such users may 
be architects and engineers who are experts in their 
own field, but who may not have the required pro-
gramming skills needed to write the schema code. 
For such users, schema generators can be used in 
order to automate the process of creating schemas. 
Schema generators are implemented as part of the 
client and run on the user’s local computer.

Schema generators target specific software 
applications. The user will be required to de-
fine the problem specific aspects of their sche-
mas in some format that will not require them 
to write code. For example, in a design scenario, 
the user would be required to define the design 
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development and one or more design evaluation 
procedures. The schema generator can then be 
used to generate all the necessary Python code to 
wrap these core procedures.

In order to define the core procedures, a design-
er could use the Visual Dataflow Modelling approach 
(VDM). VDM allows users to program by visually link-
ing together graphical nodes with wires. The nodes 
and wires are arranged by users to create complex 
networks through which data can flow. Each node 
represents a function, and the wires represent the 
data inputs and outputs for the function (Woodbury 
2010, Janssen and Chen 2011).

The Houdini schema generator 
In order to demonstrate this approach, a schema 
generator has been developed for a 3D CAD and ani-
mation software, called SideFX Houdini. 

For development, a Houdini network that gen-
erates a phenotype from a set of genes is required. 
The phenotype will be some kind of model of the 
design variant. For evaluation, the Houdini network 
that generates an evaluation score from a pheno-
type is required. A simulation program may be used 
in order to perform the evaluation. If more than one 
criteria needs to be evaluated, then multiple net-
works can be created. 

The Houdini schema generator provides a set of 
Houdini nodes that the development and evaluation 
network must use. These nodes are used to  define 
the start and end points of each network, and the 
user can then create any type of network between 
these two points. The Python code generated by 
the schema generator will assume that these special 
nodes are present and will read and write data from 
these nodes. For development, a genotype and a 
phenotype node is provided. For evaluation, a phe-
notype and an evaluation score node is provided. 

The user also needs to set some basic param-
eters in a settings file for the schema generator. The 
parameters that can be set include the following:
•• The optimisation algorithm to be used. Options 

include hill climbing, simulated annealing, or 

evolutionary algorithm.
•• The population size, the maximum number of 

births, and the input sizes for all tasks, including 
feedback. 

•• The settings for the feedback task, including the 
ranking and selection algorithms to use for the 
birth and death of individuals.

•• The names of the Houdini files in which the 
development and evaluation networks are de-
fined.

•• The structure of the genotype, including the 
types of genes. (For example, genes can be inte-
gers, floats, or strings.) The length of the geno-
type is assumed to remain constant. 

In order to generate the schema, the user places 
the settings file and the Houdini files in a single fold-
er, and then uses the client to execute the schema 
generator script. This will result in the Python files 
being automatically generated for the schema, and 
being placed in the same folder.

The generator will create the Python code for 
the master task, and each of the slave tasks. For the 
development and evaluation tasks, Python wrap-
pers will be generated for the Houdini files. For the 
feedback task, a simple feedback procedure will 
be generated. In this procedure, the individuals re-
ceived by the feedback task will be ranked, the low 
performance individuals will be killed, and the high 
performance individuals will be used as parents for 
breeding new individuals. 

The user may then upload this schema to the 
server to start running the job. 

 A CASE STUDY
In the case study, a Houdini schema was developed 
for a free-standing house in a residential setting. 
Three performance criteria were defined: minimi-
zation of energy consumption, maximization of 
daylight, and maximization of privacy. A number of 
Houdini files were created, and the Houdini schema 
generator was then used to automatically generate 
the Python code for the schema. 
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Slave tasks
In total, four Houdini files were created, one for each 
slave task: the development task, the energy evalu-
ation task, the daylight evaluation task, and the pri-
vacy evaluation task. Each Houdini file contains a 
network of nodes that define a problem specific pro-
cedure to be executed by Dexen. 

The Houdini development network maps the 
genotype to the phenotype. The network starts with 
a Dexen genotype node and ends with a Dexen phe-
notype node.

The genotype in this case consists of 55 real val-
ued genes, each in the range 0.0 to 1.0. The pheno-
type is a three dimensional model of the house, saved 
in the Houdini format. The model is shown in Fig. 1. 

The house is spread over three floors, and has 
a living room, dining room, a kitchen, and four bed-
rooms. A stair-core gives access to all three floors. 
The living room, dining room, and kitchen are always 
located on the ground floor. In addition, one of these 
spaces on the ground floor will be a double height 
space. The bedrooms are all located on the upper 
floors. Service spaces such as bathrooms and store 
rooms are not included. A typical (randomly gener-
ated) house is shown in Fig 2, and the genotype for 
this example is show in Fig 1.

Conceptually, the developmental process can 
be thought of as a process that transforms an initial 
simple model into a final complex model. The initial 
model consists of 12 equal spaces. On each floor, four 
spaces are  packed together around a centre point 
so that they meet in the middle. The model of the 
house (i.e. the phenotype) is generated as follows:
•• The programmes are assigned to the spaces 

using 9 genes. The programmes are subject to 
various constraints. For example, for the ground 
floor level, the stair-core and living room must 

be adjacent to one another, and the living room 
and dining room must be adjacent to one an-
other. Each programme also has a required area.

•• The size of each space is defined using 9 genes. 
Since the area is already known, the genes only 
need to assign the proportion of the spaces. The 
three stair-core spaces are also constrained to 
all have the same size, so that the stack on top 
of each other. 

•• The windows are inserted using 12 genes. Each 
space can have a window in either of its two 
outward facing walls. The two possible window 
types are strip window or fully glazed. Each 
room must have at least one window, but can-
not have two fully glazed windows.

•• The sun shades are defined using 24 genes. Sun 
shades are only added to walls that have win-
dows. The genes control the depth of each of 
the sun shades. 

•• The orientation of the building is defined using 
one gene. The building is first placed in the cen-
tre of the site, orientated so that  the stair-core is 
facing the road. The gene is then used to rotate 
the building by a certain amount.

In many cases, the genes are mapped to some 
other values. For example, the sun shade genes are 
mapped to a dimension from 0 to 2 meters, and the 
orientation gene is mapped to an angle from -45 to 
45 degrees. In some cases, the genes can also be 
mapped to a set of discrete variables. For example, 
for the window genes, each gene is mapped to one 
of the seven possible choices of window pair choices. 

On level 2, a situation can arise where one of 
the bedrooms is diagonally opposite the stair-core. 
In such a case, the bedroom would become inac-
cessible. As a result, if this situation arises, then the 

Fig 1. An example of a house 
generated using the Houdini 
developmental network.
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spaces are offset in order to create an adjacency be-
tween the stair-core and the diagonal bedroom. This 
situation can be seen in the example shown in Fig. 1.

After the main geometry of the house has been 
generated, all dimensions are then snapped to a 
constructional grid. In this case, this grid was set to 
0.3 meters. This final step ensures that there are no 
awkward dimensions. This also means that the area 
of the rooms will not exactly match the required ar-
eas for each programme. However, since the devia-
tion is small, this is seen as being acceptable. 

Each Houdini evaluation network uses the 
phenotype (generated by the development task) to 
calculate an evaluation score. Each network starts 
with a Dexen phenotype node, and ends with a 
Dexen evaluation score node. In addition, custom 
nodes have been developed to actually perform 
each type of evaluation. These custom evalua-
tion nodes provide the user with a simple method 
of running the required simulations. The custom 
nodes can be inserted into the Houdini network to 
perform the simulation. The input into the custom 
node will be the Houdini geometry, and the output 
will be the simulation results. The custom nodes 
will also have a set of simulation parameters that 
can be set by the user.

For energy and daylighting evaluation, the 
EnergyPlus and Radiance simulation programs are 
used respectively. The custom nodes will read the 
Houdini geometry, generate the text-based input 
file, execute the simulation program, read the text-
based results file, and finally import the results back 
into Houdini. The EnergyPlus node calculates the 
energy required to keep the house within a certain 
temperature range using an ideal load air system. 
The Radiance node calculates the percentage of 
floor area that has a daylight level of higher than 300 
Lux for a standard overcast sky condition. At an early 
design stage, these are seen as good indicators of 
the relative performance of the design with respect 
to energy consumption and daylighting. 

For privacy, a custom node is used that calcu-
lates the privacy level of each window based on the 

relative position and orientation of other windows of 
neighbouring houses. (See Fig. 2.) A value of 100% 
indicates total privacy, while 0% indicates no privacy. 
This calculation is performed inside Houdini, so in 
this case, no external simulation program is required.

 

RESULTS
The schema generator settings file was used to set 
the key parameters for the  job. The optimisation 
algorithm was set to use an evolutionary algorithm, 
and the ranking algorithm was set to use Pareto 
ranking. The population size was set to 100, and the 
maximum number of births was set to 10,000. The 
input sizes for all tasks was set to 1, except for feed-
back, for which the input size was set to 20.

The job was executed on a cluster of 20 stan-
dard desktop PCs and was run overnight. The job 
took approximately 7 hours to complete. 

The Pareto graphs for the results are shown in 
Fig. 3. Since there are three performance criteria, two 
Pareto graphs are shown, one plotting energy against 
privacy and another potting energy against daylight. 
The Pareto front is plotted on both of these two graphs.

The Pareto graphs show how the number of 
individuals generated by the evolutionary process 
gets more dense closer to the Pareto front. The in-
dividuals in the initial population were mostly far 
away from the Pareto front. Through inheritance of 

Fig 2. The house on the site, 
surrounded by five other 
houses.
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favourable genes, the population as a whole gradu-
ally evolved, with individuals in the population 
gradually becoming optimised for the selected per-
formance criteria. 

In total, there are 52 individuals on the Pareto 
front. Of these individuals, most were born at the 
end of the evolutionary process. (Out of the 52 in-
dividuals on the Pareto front, 40 were born during 
the last 1000 births. However, individual 13 actually 
turned out to be one of the best, and survived all 
the way until the end.) These individuals represent 
different trade-offs between energy, daylight, and 

privacy. From this Pareto optimal set, individuals 
that had an energy score of less than 115 KWh, or 
a daylighting score of less than 75%, or a privacy 
score of less than 65% are eliminated. This then 
leaves 25 individuals, from which the designer can 
select a preferred design. One of the best individu-
als is shown in Fig 4.

CONCLUSIONS
Initial experiment using Dexen have shown that the 
use of schema generators lowers the threshold for 
non-programmers to start using advanced optimi-
sation techniques. In fact, it is now possible to run 
complex optimisation algorithms using only graphi-
cal CAD tools. 

Dexen also achieves its two main goals of 
speed and flexibility. In terms of speed, the distrib-
uted master-slave architecture means that Dexen 
can easily be deployed on compute clusters, and 
as a result, large and complex optimisation jobs 
that would otherwise take days to run can now 
be completed overnight. In terms of flexibility, the  
Dexen allows a wide variety of optimisation prob-
lems to be defined. 

Fig 3. Two Pareto graphs 
plotting energy against 
privacy and energy against 
daylight. Each point repre-
sents a design. Larger black 
and white circles represent 
designs on the Pareto front. 
White circles represent  de-
signs where energy < 115 
KWh, daylight > 75%, and 
privacy > 65%.

Fig 4. Four examples of 
evolved design variants for 
a suburban detached house. 
The examples shown were 
randomly selected from a 
population of 100 individu-
als, after approximately 8000 
births. 
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