
 

CAAD Futures 2011 : Designing Together, ULg, 2011 
© P. Leclercq, A. Heylighen and G. Martin (eds)  
 

801 

Visual Dataflow Modelling : A Comparison of Three 
Systems 

JANSSEN Patrick and CHEN Kian Wee 
National University of Singapore, Singapore 
patrick@janssen.name, chenkianwee@gmail.com 

Abstract. Visual dataflow modelling (VDM) uses visual programming as a 
modelling technique for creating complex procedural design models. This paper 
compares three VDM systems, focusing on the cognitive stress associated with 
particular VDM constructs. The creation of iterative procedures is identified as a 
key area in VDM where cognitive stress tends to be high. Two iteration constructs 
are described, which are refer to as list-based iteration and node-based iteration. 
The research suggests that node-based iteration constructs have important 
advantages over list-based iteration constructs. 

1. Introduction 

Visual programming languages enable users to create computer programs by 
manipulating graphical elements rather than by entering text. When visual 
programming is applied to design, it results in a modelling approach that we refer 
to as visual dataflow modelling (VDM). Recently, VDM is becoming increasingly 
popular within the design community, as it can accelerate the iterative design 
process, thereby allowing larger numbers of design possibilities to be explored 
(for example, see [1, 2, 3]). A number of CAD systems now provide VDM 
interfaces, allowing designers to define form generating procedures without 
having to resort to scripting or programming [4, 5, 6]. These systems typically use 
the "nodes and links" based VDM approach.  

A node can be thought of as a computational function that performs some 
action. The function in each node may require some input data, and may produce 
some output data. Nodes can therefore have inputs and outputs. The output from 
one node can then be wired to the input for another node, thereby creating a link. 
Links therefore represent the flow of data through the network. In some systems, 



P. JANSSEN and K.W. CHEN  
 

 
 
 

802 

nodes have specific points on the edge of the node that represent the inputs and 
outputs. These points are referred to as input ports and output ports. Nodes also 
have certain inputs for which the user can manually enter values using the 
graphical user interface. These types of inputs are referred to as node parameters. 

This paper will compare and contrast three VDM environments :   
• McNeel Grasshopper is a plug-in for the 3d modeller McNeel Rhino3d 

(Rhino). For the following experiments, version 0.8 was used. 
• Bentley GenerativeComponents (GC) was originally developed as a plugin 

for Bentley Microstation. However, recently GC was developed as a stand 
alone product, with Microstation embedded inside GC. For the following 
experiments, version V8i was used. 

• Sidefx Houdini is a stand alone modelling and 3D animation package. 
Houdini includes advanced particle systems and dynamics. For the following 
experiments, version 11 was used.  

1.1. Focus of comparison 

All three systems use a "nodes and links" based VDM approach that is broadly 
similar. However, at a more detailed level, each system differs significantly in 
terms of how various VDM constructs are used. This research focuses on how the 
VDM constructs used in each of the three systems affect the difficulty of the 
modelling task. We refer to this as the cognitive stress associated with each 
construct. The aim of the research is to qualitatively compare and contrast the 
cognitive stress associated with VDM constructs from the perspective of a 
designer who is creating complex parametric models.  

One important restriction that we have imposed is that we will assume that the 
designer only has basic scripting skills. Therefore – as far as possible – we will 
try and avoid using scripting in any of the three systems. However, completely 
avoiding scripting is not actually possible, especially in the case of GC, which 
relies heavily on scripting.  

The three system also differ in many other respects, such as user interface, user 
documentation, speed of execution, and so forth. As far as possible, we will try 
and avoid these issues. 

1.2. Description of systems 

Each of the three systems uses different terminology to describe similar 
components. In order to ensure readability, we have decided to use consistent 
terminology for all three systems. For clarity, the original terminology is still 
highlighted in various places. 



VISUAL DATAFLOW MODELLING : A COMPARISON OF THREE SYSTEMS  
 

 
 
 

803 

For each system, will refer to two distinct views : the geometry view where 
users can see the three-dimensional geometry, and the network view where the 
user can see the dataflow network. When describing networks, we will use the 
terms nodes, links, inputs, and outputs, as described above. 

2. Three VDM systems 

In order to introduce the three VDM systems, we will describe how each system 
was used to build a simple parametric surface. The modelling task in this case 
will consist of three steps :  
• First, two BSpline rail curves will be drawn on the ground plane. 
• Second, a BSpline section curve will be generated between the start points of 

the two rail curves. The peak point of this section curve will be generated by 
finding the mid-point between the two rail start points, and then translating 
this mid point up in the z-direction. 

• Third, a BSpline surface will be generated by sweeping the section curve 
along the two rail curves.  

The three systems will be discussed in reverse chronological order, starting 
with the newest system – Grasshopper, and ending with the oldest system – 
Houdini. 

2.1. Grasshopper 

The Grasshopper network for the parametric surface is shown in Figure 1. In 
Grasshopper, the user works directly in the network view. The Grasshopper 
environment presents the user with libraries of predefined nodes that can be 
dragged into the network view. Users can interactively create the wiring by 
linking the output of one node to the input of another node.  

2.1.1. Creating the lofted surface 

The Grasshopper environment communicates with the underlying Rhino 
modelling program. A user can draw geometric entities in Rhino, and then import 
these entities into the Grasshopper environment. In the example above, the two 
rail curves used to create a lofted surface were first drawn in Rhino and then 
imported into the Grasshopper environment in order to generate the surface.  

In order to create the cross section curve, the start points of the two rail curves 
are first extracted using the End node. A Line node is then used to draw a line that 
joins two start points. The Eval node is then used to find the mid point, and this 
point is then translated up in the z direction using the Move node. The two start 



P. JANSSEN and K.W. CHEN  
 

 
 
 

804 

points of the rail curves and the new translated point are then merged into a list 
using the Merge node. The cross section curve is then created from this list using 
the Curve node. Finally, the lofted surface is created from the two rails curves and 
the cross section curve using the Sweep2 node. 

Fig. 1. A Grasshopper network for generating a parametric surface. 

2.1.2. Grasshopper networks 

Grasshopper provides nodes for creating geometric entities such as curves and 
surfaces. In addition, there are also many nodes for performing non-geometric 
low-level tasks, such as basic arithmetic and list manipulation. 

Data for node inputs can be supplied in two ways. The user can either create a 
link or enter a value. Creating a link means that the user wires the output from 
some other node into the node's input. Entering a value means that the user simply 
selects the input and types in a value for that input. (In Grasshopper, no 
distinction is made between node inputs and node parameters) The latter method 
is only possible for inputs that require primitive data types.  

The types of data that can flow through the links in a Grasshopper networks 
includes geometric entities and primitive data types (such as integer, floats, 
strings, booleans, and numeric ranges). The data is structured as lists and trees. 
Trees are similar to lists of lists (although the underlying representation is actually 
a dictionary data structure). Lists and trees will be discussed in more detail when 
iteration is discussed. 

2.2. Generative Components 

The GC network for the parametric surface is shown in Figure 2. In GC, the user 
can only interact with the network in very limited ways. The network view is used 
mainly as a visual aid, but the user cannot drag new nodes onto the network, or 
create new links from one node to another node. In addition, the nodes in GC do 



VISUAL DATAFLOW MODELLING : A COMPARISON OF THREE SYSTEMS  
 

 
 
 

805 

not have any input ports. The way to create and connect nodes will be discussed 
in more detail below. 

 

Fig. 2.  A GC network for generating a parametric surface. 

2.2.1. Creating the lofted surface 

The GC environment communicates with the embedded Microstation modelling 
program in a way that is similar to Grasshopper/Rhino. A user can draw 
geometric entities in the Microstation environment, and then import these entities 
into the GC environment. This is referred to as promoting a geometric entity. 
However, when a geometric entity such as a curve is imported, the points that 
were used to construct the curve are all imported as well, each as an individual 
node. This results in many point nodes, as can be seen in Figure 2 above. 

In the example above, the node on the left is the base coordinate system, which 
is a default node present in all GC networks. The two rail curves used to create a 
lofted surface are first drawn in Microstation and then imported into the GC 
environment. This results in 11 Point nodes and two BSplineCurve nodes.  

In order to create the cross section curve, a third point needs to be created. A 
Point.CentroidOfSet node is used to find the mid point between the start points of 
the two rail curves. A Point.ByDirectionAndDistance-FromOrigin node is then 
used to translate this mid point up in the z direction. A BsplineCurve.ByPoles 
node is used to create the cross section curve. Finally, the lofted surface is created 



P. JANSSEN and K.W. CHEN  
 

 
 
 

806 

from the two rails curves and the cross section curve using the 
BsplineSurface.FromRailsAndSweptSections  node. 

Note that scripted expressions were used in various places in this network. This 
is the reason why certain nodes are not required in GC. For example, consider the 
GC BSplineCurve.ByPoles node and the Grasshopper Curve node. These nodes 
do essentially the same thing. However, in Grasshopper, the input points have to 
be merged using a Merge node. In GC, this step is not required, since the merging 
of the points is done using a scripted expression. 

2.2.2. GC networks 

Most of the nodes in GC represent geometric entities. There are some non-
geometric nodes, (such as the GraphVariable node which represents a user 
defined numeric value), but these are quite limited in number. The low level 
nodes found in Grasshopper do not exist in GC since such tasks are perform using 
scripted expressions.  

Nodes in GC are categorised into types and sub-types. (In GC, the node type is 
referred to as a Feature Type, and the sub type is referred to as the Update 
Method). The node type typically defines the type of geometric entity that will be 
created. The sub-type then defines the method for creating this geometric entity. 
For example, for the Line node type, one of the sub-types is ByPoints. The dot 
notation is used to refer to the node type and sub-type, for example 
Line.ByPoints. 

Nodes are created by first selecting a node type from a list, and then selecting a 
node sub-type from a sub-list. Once the sub-type is selected, the user is then 
presented with a number of inputs for which values need to be specified. (In GC, 
these inputs are referred to as input properties).  

The user needs to enter values for all the inputs. If the inputs require other 
nodes, then the user can enter the names of nodes that already exists in the 
network. For example the Line.ByPoints node has two inputs : Start Point and 
End Point, both of which accept Point nodes. If the inputs require primitive types 
(such as integers, doubles, strings, or booleans) then the user can enter the actual 
value. (Thus, as with Grasshopper, no distinction is made between node inputs 
and node parameters.) The user can also enter a scripted expression that will 
return an appropriate value. These expressions can also retrieve values from other 
nodes.  

Once all the input values have been entered, the user can then generate the 
node, and (assuming no errors were made), the node together with the appropriate 
links will then appear in the network view. 

The fact that nodes represent geometric entities means that GC sometimes 
requires a reverse logic, as compared with Grasshopper and Houdini. When 
placing a node, the GC user must first decide on the end result that is desired (i.e. 
the node type), and then decide on the method for creating that end result (i.e. the 



VISUAL DATAFLOW MODELLING : A COMPARISON OF THREE SYSTEMS  
 

 
 
 

807 

node sub-type). For example, in the parametric surface example, consider the 
node used to translate the mid-point up in the z direction. In GC, there is no node 
called Move or Translate. Since the end result of moving a point will be another 
point, the user must create a node by first selecting the Point type, and then 
selecting ByDirectionAndDistanceFromOrigin sub-type.  

As with Grasshopper, the types of data that can flow through a GC network 
includes geometric entities and primitive types (such as integer, floats, strings, 
booleans). The data is structured as lists or lists of lists (which in GC are also 
referred to as sets or arrays). GC relies heavily on scripted expressions for 
manipulating this data.  

2.3. Houdini 

The Houdini network for the parametric surface is shown in Figure 3. In Houdini, 
the user can work either in the geometry view or in the network view. The 
Houdini environment presents the user with libraries of predefined nodes that can 
be dragged into the network view. As with Grasshopper, users can then 
interactively create links by connecting the output of one node to the input of 
another node.  

Houdini has a number of different VDM type environments. For modelling, 
two VDM environments exist, organised hierarchically – called the Object 
network, and the Surface Operator (SOP) network. The Object network can 
contain one or more SOP networks. In this paper we will focus on SOP networks, 
since this is where most of the modelling is done. 

2.3.1. Creating the lofted surface 

All modelling in Houdini is performed using a VDM approach. Even if a user 
chooses to draw a curve interactively in the geometry view, nodes are still 
automatically generated in the network view. There is therefore no need to import 
geometry. 

In the example below, the two rail curves used to create a lofted surface are 
drawn interactively in the geometry view. As a result, the two curve nodes are 
automatically generated in the network view. Note that Houdini does not create 
points as individuals nodes as is the case with GC. Instead, the points are stored 
as parameters values within each Curve node. 

In order to create the cross section curve, the data from the two rail curves are 
first merged using the Merge node. The Delete node is then used to delete all the 
geometry except the two start points of the rail curves. In order to find the mid 
point between these two points, a line is created using the Add node, and then the 
midpoint is found using the Carve node. This point is then translated in the z 
direction using the Transform node. The two start points of the rail curves and the 
new translated point are then merged into a list using the Merge node. A polygon 



P. JANSSEN and K.W. CHEN  
 

 
 
 

808 

is created using the Add node, and this polygon is then converted into a BSpline 
cross-section curve using the Convert node. To create the lofted surface, the Rails 
node is first used to copy the cross section curve along the two rails. Finally, the 
surface is the created by lofting the cross-section curves using the Skin node. 

 

Fig. 3. A Houdini network for generating a parametric surface. 

2.3.2. Houdini SOP networks 

In Houdini, a distinction is made between node inputs and node parameters. Each 
node has one or more input ports where geometry can be fed in. Each node also 
has a set parameters that affect what the node does. For example, for the Curve 
nodes above, one of the parameters is the order of the NURBS curve to be 
created.  

Users can enter parameter values through the graphical user interface. 
Alternatively, users can also enter scripted expressions that return an appropriate 
value. The expression can also retrieve a value from another node in the network.  

In Houdini, the inter-node links created by scripted expressions are not visible 
in the network. A Houdini network therefore consists of two separate networks, 
which we will refer to as the geometry network and the parameter network. The 
geometry network is the visible network consisting of links connecting node 
outputs to node inputs. The parameter network is the invisible network, and is 
constructed from scripted expressions. In the example above, no scripted 
expressions were used, so there is no invisible parameter network. 



VISUAL DATAFLOW MODELLING : A COMPARISON OF THREE SYSTEMS  
 

 
 
 

809 

The type of data that can flow through the network is different for the geometry 
network and the parameter network. For the geometry network, only geometric 
data can flow through the network links. Each piece of geometric data is 
associated with attributes that the user can interrogate and have access to. For 
example, a point will have attribute values for it's x, y, and z coordinates. For the 
parameter network, only primitive data types (such as integer, floats, strings, and 
booleans) can flow through the (invisible) network links.  

Note that the geometry network and the parameter network can be interlinked. 
For example, a parameter expression can be written that retrieves a float value 
from an attribute of geometric point in node somewhere else in the network.  

3. A case study 

In order to further explore and test the VDM systems, an exercises was conducted 
where the three systems were used to build a more complex parametric model. 
The VDM constructs used in the three systems were then compared in terms of 
cognitive stress. 

3.1. The modelling task 

The modelling task that was set for the exercise is shown in Figure 4. This task 
consists of four main steps : 
• Step a1 : Starting with two NURBS rail curves, a third NURBS section curve 

is constructed. 
• Step a2 : A NURBS surface is generated by sweeping the section curves 

along the rail curves. 
• Step a3 : The surface is subdivided into a set of four sided polygons. These 

polygons have normal pointing outwards, and may be non-planar in some 
cases. 

• Step a4 : Each polygon is replaced by a roof module constructed from planar 
polygons.  

Steps 1 and 2 are actually the same as the surface modelling task described in 
section 2. Step 4 is a more complex step, and consists of four sub-steps. These 
sub-steps are applied to each polygon produced by step a3.  
• Step b1 : The base polygon is reduced in size by scaling it around its centre 

point, so that a gap is created between each polygon.  
• Step b2 : A top polygon is created by copying the base polygon, and then 

translating it in the normal direction by a translation distance t.  



P. JANSSEN and K.W. CHEN  
 

 
 
 

810 

• Step b3 : The top polygon is reduced in size by scaling it around its centre 
point, by a scale factor of s. The top scaled polygon is then made planar by 
moving the corner points. 

• Step b4 : A set of 13 new planar polygons are created from the corner 
points of the base and top polygons. In order to create these polygons, the 
mid-points of the four edges of the base polygon also need to be calculated.  

 

Fig. 4 : The steps that define the modelling task. Steps a1 to a4 are the main modelling 
steps. Step b1 to b4 define the process of creating a roof module in step a4. 

In order to generate the roof modules for each polygon, certain parameters are 
required. Steps b2 has a translation parameter t, and step b3 has a scale factor 
parameter s. These two parameters are calculated in a way that means that their 
values will be different for each base polygon. This means that each polygon will 
be translated and scaled by a different amount, thereby further differentiating each 
roof module. These two parameters are calculated as follows : 
• Translation parameter t is calculated based on the angle between the base 

polygon's normal vector, and a vector in the x direction (which we assume to 
be due north). The smaller this angle, the larger the translation distance will 
be. The range of 0 to 180 degrees is mapped to the range 0 to 1m.  

• Scale factor parameter s is calculated based on the minimum distance 
between the centre point of the base polygon and a curved line (which we 
assume to represent a road). For distances greater than 20m, a scale factor of 
0.8 is used, for distances between 10m and 20m, a scale factor of 0.5 is used, 
and for distances less than 10m, a scale factor of 0 is used. 



VISUAL DATAFLOW MODELLING : A COMPARISON OF THREE SYSTEMS  
 

 
 
 

811 

3.2. Implementation 

The three systems were all used to implement the modelling task described above, 
and in all three cases the task was completed successfully. Note that the 
modelling steps in some cases deviated slightly from those described above. 
However, the resultant logic of the parametric model was identical for all three 
systems. The approximate number of nodes used in each network was between 80 
and 90 for Grasshopper, between 90 and 100 for GC, and between 70 and 80 for 
Houdini. 

After having completed the modelling tasks, the processes of building the three 
networks were then qualitatively compared in order to try and identify areas of 
high cognitive stress. 

In each modelling step, differences in cognitive stress were apparent, but the 
step that foregrounded these differences to the largest extent was step a4, and in 
particular sub-step b3. These steps required an iterative type of process, and each 
system differed significantly in how this process could be implemented. 

3.2.1. Iteration in Grasshopper 

In Grasshopper, there are no nodes that explicitly perform iteration. Instead, 
iteration is supported by nodes iterating over list and tree data structures. In 
Grasshopper this is referred to as data matching.  

To understand data matching, consider the Eval node used in step a4 for 
finding the centre point of a surface. This node expects to receive two inputs, the 
surface to evaluate and the uv coordinates. If the node receives one surface and a 
(0.5,0.5) coordinate, then the node will generate one centre point. However, if the 
node receives a list of values on one or more of the inputs, then the node assumes 
that the user is trying to iterate in some way. So if a list of 50 surfaces are fed into 
the input, then a list of 50 centre points will be generated. 

The data matching process can become very complex. For example, for the 
sub-step b3, this approach is used to scale the top polygons (which in 
Grasshopper are actually surfaces). First, the list of top polygons is used to 
produce a list of centre points, and this list is used to produce a list of distances 
from the road curve. The list of distances is then used to produce three lists of 
boolean flags indicating whether a particular scale factor should be used. Three 
lists of repeating scale factors are then created. The  boolean lists values are used 
to cull the scale factors list. For example, if the boolean list is [[True], [False], 
[True], [False], ...], and the scale factor list is [[0.8], [0.8], [0.8], [0.8], ...], then 
the resulting culled list will be [[0.8], [], [0.8], [], ...]. (Note that the boolean lists, 
the scale factor lists, and the culled lists can all be represented as trees, thereby 
reducing the number of nodes that are required.) The three culled lists are then 
merged to create one final scale factor list. For example, if the two other scale 
factor lists were [[], [0.5], [], [], …] and [[], [], [], [0], ...], then the resultant list 



P. JANSSEN and K.W. CHEN  
 

 
 
 

812 

would be [[0.8], [0.5], [0.8], [0], ...]. The scale factor list is then used to scale the 
original list of polygons. 

Throughout this process, the user must ensure that the order and structure of 
various lists in the network are consistent with one another. When working in 
Grasshopper, this is by far the area with the highest cognitive stress. 

3.2.2. Iteration in Generative Components 

In GC, iteration works in a similar way to Grasshopper, by iterating over list data 
structures. In GC this is referred to as replication. 

When a node is created in GC, the user will be presented with the inputs for 
that node. Inputs labelled as replicable allow for the use of lists or lists of lists as 
inputs. When a list is used, the node will iterate through this list and replicate its 
output. This means that in GC, a similar approach could be used to the 
Grasshopper approach.  

GC also allows users to create custom nodes (called user defined features), and 
this turns out to be very useful in limiting the cognitive stress of the task. Any 
existing network of nodes can be saved as a custom node. For the custom node, 
the user can set the inputs and outputs, and also set which inputs are replicable. 
Once created, a new node can be used in the same way as any of the built-in 
nodes.  

For the implementation of step a4, two custom nodes are used, one nested 
inside the other. The first custom node is used to generate the whole roof module. 
The second custom node is used to generate the triangulated faces on each side of 
the roof module.  

The inputs for the first custom node are one base polygon and one road curve. 
The outputs are the 13 new polygons. The advantage of this approach is that it 
allows the complexity of the roof module creation steps to be encapsulated inside 
a single node. Cognitively, this is very appealing, since the user can focus on a 
smaller problem first and solve that problem in isolation.  

The process of generating the roof module occurs inside the first custom node. 
For step b3, the implementation is as follows. First, the top polygons is used to 
create a centre point. This point is then projected onto the road curve, resulting in 
a projected point. The centre point and the projected point are then used to create 
a projection line. The top polygon and the projection line are then used to create a 
normal line. In this case, a scripted node has to be used (where the node sub-type 
is ByFunction). The script extracts the length of the projection line, and then maps 
this length to one of the three scale factors using a set of if expressions. The top 
polygon and the normal line are then used to create the scaled polygon. In this 
case, a scripted expression is used to get the scale factor from the length of the 
normal line. 

In GC, the use of custom nodes significantly reduced the cognitive stress 
related to list-based iteration. However, this actually results in a different type of 



VISUAL DATAFLOW MODELLING : A COMPARISON OF THREE SYSTEMS  
 

 
 
 

813 

cognitive stress. Custom nodes exasperate the reverse logic nature of GC that was 
mentioned previously. For example, in this case, the user cannot just start 
working on the main network. Instead, the user needs to analyse the modelling 
task, break it down into a set of custom nodes (which in this case includes one 
custom node being embedded with another custom node), and then build each 
custom node in reverse order, starting with the deepest embedded node. We refer 
to this as a reverse-order modelling method, in contrast to the forward-order 
modelling method used by Grasshopper and Houdini. In general, forcing the user 
to adopt a reverse-order modelling method hinders open ended design 
exploration. 

3.2.3. Iteration in Houdini 

In Houdini, iteration can be achieved in two main ways. First, many nodes have 
the ability to iterate through the entities in the input geometry list. This is similar 
to the type of iteration found in Grasshopper and GC. However, in this case, the 
geometry list is always a one dimensional list (i.e. lists of lists are not possible, 
although entities in the lists can be grouped in other ways). For example, the 
PolyExtrude node will iterate through every polygon fed into its input and 
perform the action specific by the node parameters. 

Second, Houdini also provides explicit iteration nodes, such as the ForEach 
node. This node is actually a container node, so other nodes can be placed inside 
this node. The nodes inside the ForEach node act like the body of the for-each 
loop in a textual programming. Typically, the ForEach node is used to iterate over 
geometric entities fed into its input. The ForEach node therefore combines both 
iteration and encapsulation within a single node. 

For the implementation of step a4, two ForEach node are used, one nested 
inside the other. The first ForEach is used to model the whole module. The 
second ForEach is used to generate the triangulated faces on each side of the 
module.  

The inputs for the first ForEach node are a list of base polygons and a road 
curve. The node will take the base polygons from the first input, and feed them    
– one at the time – into the network defined inside the ForEach node. (The road 
curve from the second input is not iterated over.) Each iteration of the ForEach 
node will output the 13 new polygons. The ForEach node will automatically 
merge together all the output polygons into one large list, which is the final output 
of the ForEach node. 

The process of generating the module occurs inside the first ForEach node. For 
step b3, the implementation is as follows. First, the top polygon is used to create a 
centre point. This point is then used to measure the minimum distance to the road 
curve, and this distance is stored inside the point entity as an attribute. The same 
point is then fed into a node with a stepped ramp function. This function is used 
to map the distance to one of the three scale factors. The resulting scale factor is 



P. JANSSEN and K.W. CHEN  
 

 
 
 

814 

again stored inside the point entity as an attribute. The top polygon is then scaled 
using the scale factor stored in the point. In this case a scripted expression is used 
to extract the the scale attribute from the point. 

The two nested ForEach nodes used in Hoidini match the two custom nodes 
used in GC. However, the overall modelling approach in Houdini is more similar 
to Grasshopper, and as a result Houdini does not suffer from the reverse-order 
modelling method inherent in GC. The user can model using the forward-order 
method, starting with the overall surface. For the roof module, the user can insert 
a ForEach node, and then go inside to work on one module in isolation. For the 
triangulated faces, the user can insert another ForEach node, and then go inside 
that node to work on one side of the roof module in isolation. At any stage, the 
user can also come back out and see what the result looks like when applied to the 
overall surface. 

Also, note that as with GC, Houdini also allows users to create custom nodes 
(which in Houdini are called Digital Assets) and scripted nodes (which is just a 
special type of custom node). However, in this case, neither of these were 
required. In Houdini, custom nodes are mainly used to enable collaboration and 
sharing of nodes between multiple users. Scripted nodes are only really required 
when developing custom nodes with advanced features. 

3.3. Discussion 

For Grasshopper and GC, iteration is achieved by nodes iterating over list data 
structures. Such a data-driven list-based construct can lead to networks with a 
very high level of complexity. This can to a certain extent be overcome if a 
construct for encapsulation is also provided. In the case of Grasshopper, such as 
construct is currently not available, and as a result, Grasshopper networks often 
become very difficult to understand and debug. (It should be noted that the 
developers of the Grasshopper plug-in are currently working on some kind of 
custom node functionality. At the time of writing, how exactly this functionality 
would work was not yet clear). 

For GC, an encapsulation construct is provided that allows users to build 
custom nodes. This construct can significantly reduces the complexity of the list 
based iteration construct. However, on the downside, the GC encapsulation 
construct forces users to use a reverse-order modelling method, where they start 
with the deepest embedded custom nodes. 

In Houdini, the list-based iteration construct is only used with one dimensional 
lists, and as a result the cognitive stress remains low. As well as list-based 
iteration, Houdini also provides an alternative node-based construct that combines 
iteration and encapsulation within one node. With the Houdini ForEach node, the 
process of iteration is defined explicitly by the user, and as a result, it is more 
intuitive and easier to understand than when using a list based iteration construct.  



VISUAL DATAFLOW MODELLING : A COMPARISON OF THREE SYSTEMS  
 

 
 
 

815 

The ForEach node is also more expressive than the alternative list-based 
constructs, and can be used to define many kinds of complex iteration. For 
example, consider the problem of iteratively subdividing a surface 20 times. On 
the first iteration, if the surface area is greater than a certain value x, then it is 
subdivided into four. Each of these sub-surfaces are then also put through the 
same process, so that any of the four sub-surfaces with an area greater than x will 
again be subdivided. The sub-sub-surfaces are again put through the same 
process, an so on. This kind of model can easily be created in Houdini with two 
nested ForEach loops. However, in Grasshopper and GC, this can only be 
achieved by explicitly duplicating the sub-division nodes 20 times. For GC, the 
situation is slightly improved since a custom node could be used, but this node 
would also have to be duplicated 20 times.  

4. Conclusions and future work 

The research has identified iteration as a key area in VDM where cognitive stress 
tends to be high. The comparison of the three systems suggests that node-based 
iteration constructs have four advantages over list-based iteration constructs. 
First, node-based constructs can combine iteration and encapsulation within one 
node. Second, node-based constructs can support both forward-order and reverse-
order modelling methods. Third, node-based constructs are more easily 
understood, since the iterative process is represented explicitly. Fourth, node-
based constructs are more expressive, since they can be used to define 
computational procedures of greater complexity.  

The current research is based on a qualitative assessment of the three VDM 
systems applied to one modelling task. In order to better understand the cognitive 
stress associated with each iteration construct, more users need to be tested on a 
wider variety of modelling tasks. In addition, in order to further explore possible 
iteration constructs, a wider range of VDM systems also need to be studied.  

5. Acknowledgements 

We received useful help from people on various newsgroups. In the Grasshopper 
discussion group, Danny Boyes and Matt Gaydon contributed revised versions of 
the example network and were helpful in answering various questions. On the 
Houdini forum, C. P. Brown (cpb) contributed a revise version of the example 
network, replacing scripts with VOP networks. On the GC forum, Xun Zhou 
made helpful suggestions how the network could be improved. 



P. JANSSEN and K.W. CHEN  
 

 
 
 

816 

References 

1. Hesselgren, L., Charitou, R. & Dritsas, S. (2008). Architectural Structure – 
computational strategies. In Littlefield, D. (ed.). Spacecraft : Developments in 
Architectural Computing, RIBA Publishing, London, pp. 3-12.  

2. El-Ali, J. (2008). The efficiently formed building, in Littlefield, D. (ed.). Spacecraft : 
Developments in Architectural Computing, RIBA Publishing, London, pp. 13-20.  

3. Whitehead, H. & Peters, B. (2008). Geometry, form and complexity. In Littlefield, D. 
(ed.). Spacecraft : Developments in Architectural Computing, RIBA Publishing, 
London, pp. 21-34.  

4. Aish, R. (2005). Introduction to GenerativeComponents, A parametric and associative 
design system for architecture, building engineering and digital fabrication. White 
paper on http://www.bentley.com, accessed 2005. 

5. Aish, R. & Woodbury, R. (2005). Multi-Level Interaction in Parametric Design. In 
Lecture Notes in Computer Science, 2005, Vol. 3638/2005, pp. 151-162. 

6. Woodbury, R. (2010). Elements of Parametric Design, Routledge, NY. 


