
205Generation, Exploration and Optimisation - Volume 2 - Computation and Performance - eCAADe 31 |

Evo-Devo in the Sky
Patrick Janssen
National University of Singapore, Singapore
patrick@janssen.name

Abstract. Designers interested in applying evo-devo-design methods for performance
based multi-objective design exploration have typically faced two main hurdles: it’s too
hard and too slow. An evo-devo-design method is proposed that effectively overcomes the
hurdles of skill and speed by leveraging two key technologies: computational workflows
and cloud computing. In order to tackle the skills hurdle, Workflow Systems are used that
allow users to define computational workflows using visual programming techniques.
In order to tackle the speed hurdle, cloud computing infrastructures are used in order
to allow the evolutionary process to be parallelized. We refer to the proposed method as
Evo-Devo In The Sky (EDITS). This paper gives an overview of both the EDITS method
and the implementation of a software environment supporting the EDITS method. Finally,
a case-study is presented of the application of the EDITS method.
Keywords. Evolutionary algorithms; multi-objective optimisation; workflow system;
cloud computing; parametric modelling.

INTRODUCTION
Evolutionary design is loosely based on the neo-Dar-
winian model of evolution through natural selection
(Frazer, 1995). A population of individuals is main-
tained and an iterative process applies a number of
evolutionary procedures that create, transform, and
delete individuals in the population.

Evo-devo-design differs from other types of evo-
lutionary approaches with regards to the complexity
of both the developmental procedure and the eval-
uation procedures. The developmental procedure
generates design variants using the genes in the
genotype (Kumar and Bentley, 1999). The evaluation
procedures evaluate design variants with respect to
certain performance metrics. These procedures will
typically rely on existing stand-alone programs, in-
cluding Visual Dataflow Modelling (VDM) systems
and simulation programs (Janssen and Chen, 2011;
Janssen et al., 2011). In many cases, these systems

may be computationally expensive and slow to ex-
ecute.

Designers interested in applying evo-devo-
design methods for performance based multi-ob-
jective design exploration have typically faced two
main hurdles: skill and speed (i.e. “it’s too hard and
too slow!”). From a skills perspective, the require-
ment for advanced interoperability engineering and
software programming skills is often too demand-
ing for designers. From the speed perspective, the
requirement for processing large numbers of design
variants can lead to excessively long execution times
(often taking weeks to complete).

Previous research has demonstrated how these
hurdles can be overcome using a VDM procedural
modelling software called Sidefx Houdini (Janssen
and Chen, 2011). Firstly, a number of simulation
programs were embedded within this VDM system,

206 | eCAADe 31 - Computation and Performance - Volume 2 - Generation, Exploration and Optimisation

thereby allowing designers to define development
and evaluation procedures without requiring any
programming. Secondly, the evolutionary algorithm
was executed using a distributed environment,
thereby allowing the computational execution to be
parallelized.

Although the research demonstrated how the
challenges of skill and speed could be overcome,
the solution was specific to the software tools being
used, in particular Sidefx Houdini. Furthermore, for
most designers, the proposed approach remained
problematic due to the fact that they do not have
access to computing grids. This paper will propose a
generalized method for evo-devo-design that over-
comes these limitations. The method uses two key
technologies: computational workflows and cloud
computing. In order to tackle the skill hurdle, com-
putational workflow management systems are used,
called Scientific Workflow Systems (Altıntaş, 2011;
Deelman et al., 2008). In order to tackle the speed
hurdle, readily available cloud computing infrastruc-
ture is used. We refer to the proposed method as
Evo-Devo In The Sky (EDITS).

The next section will focus on the proposed ED-
ITS method, followed by a section describing the
implementation of a prototype EDITS environment.
The final section will briefly present a demonstra-
tion of how the method and environment can be
applied.

EDITS METHOD
An EDITS design method is proposed that over-
comes the hurdles of skill and speed in a generalized
way that is not linked to specific proprietary soft-
ware applications.

The EDITS method enables users to run a pop-
ulation-based evo-devo design exploration process.
This requires four computational tasks to be gener-
ated that will automatically be executed when the
evolutionary process is run: initialisation, growth,
feedback, and termination. The initialisation and ter-
mination tasks are executed at the start and end of
the evolutionary process respectively, and perform
various ‘housekeeping’ procedures. In addition, the

initialisation task also creates the initial population
of design variants.

The growth and feedback tasks are used to pro-
cess design variants in the population. The growth
task will take in just a single individual with a geno-
type and will generate a phenotype and a set of per-
formance scores for that individual. (In the proposed
method, the processes of development and evalua-
tion are thus defined as a single growth workflow.)
The feedback task will take in a pool of fully-eval-
uated individuals and based on a ranking of those
individuals will kill some and will select some for
generating new children. With just these two tasks,
a huge variety of evolutionary algorithms can eas-
ily be specified. For example, if the pool size for the
feedback is equal to the population size, then a gen-
erational evolutionary algorithm will result, while if
pool size is much smaller than the population size, a
steady-state evolutionary algorithm will result.

The first hurdle that EDITS must address is the
skills hurdle. The initialisation, feedback, and termi-
nation tasks are highly standardized and can there-
fore be generated automatically based on a set of
user-defined parameters. The growth task on the
other hand is highly problem-specific and there-
fore needs to be defined by the user. In order to
overcome the skill hurdle, the EDITS method uses
a Workflow System for defining these tasks. Work-
flow Systems allow users to create computational
procedures using a visual dataflow programming.
Users are presented with a canvas for diagramming
workflows as nodes and wires, where tools are rep-
resented as a nodes, and data links as wires.

Furthermore, this approach can also be used
to flexibly link together existing design tools such
as CAD and simulation programs. Interoperabil-
ity issues can be overcome by using data mappers,
whereby the output data from one tool may be
linked to the input data of another tool via a set of
data transform, aggregation, and compensation
procedures. This approach therefore allows paramet-
ric modelling tools to be linked to simulation tools
through an external coupling, which affords the user
greater flexibility in tool choice and linking options.

207Generation, Exploration and Optimisation - Volume 2 - Computation and Performance - eCAADe 31 |

The second hurdle to be overcome is the speed
hurdle. The evolutionary process consists of a con-
tinuous process of extracting individuals from the
population, processing them with the growth and
feedback tasks, and inserting the updated and new
individuals back into the population. Since the tasks
are independent from one another, they can easily
be parallelized. Cloud computing infrastructures al-
low users to have access to computing grids on an
on-demand basis at a low cost and can therefore be
used to enable such parallelization. In the proposed
EDITS method, cloud computing is used for distrib-
uting the execution of both the growth and feed-
back tasks.

EDITS ENVIRONMENT
In order to demonstrate the EDITS method, a pro-
totype EDITS environment has been implemented.
Three key type of software are used: a distributed
execution environment called Dexen, a workflow
system called VisTrails, and a set of design tools,
such as CAD and simulation programs.
•	 Dexen is a highly generic Distributed Execution

Environment for running complex computa-
tional jobs on grid computing infrastructures,
previously developed by the author (Janssen et
al., 2011). Dexen uses a data-driven execution
model, where tasks are automatically execut-
ed whenever the right type of data becomes
available. Dexen consists of three main com-
ponents: the Dexen Client provides a graphi-
cal user interface for managing jobs and tasks;
the Dexen Server manages the population and
orchestrates the execution of jobs; and Dexen
Workers execute the tasks.

•	 VisTrails is an open-source workflow system
that allows users to visually define computa-
tional workflows (Callahan et al., 2006). VisTrails
uses a dataflow execution model that is well-
suited to the types of procedures that need to
be defined. It also provides good support for
integrating existing programs. VisTrails can be
used in one of two modes: in interactive mode,
VisTrails provides a graphical user interface for

building workflows; in batch mode, VisTrails
can be used to execute previously defined
workflows without requiring any user interac-
tion.

•	 A set of design tools, including CAD tools (such
as Houdini or Blender) and simulation tools
(such as Radiance, EnergyPlus, and Calculix).
(Other popular commercial CAD tools could
also be integrated with this environment. How-
ever, due to inflexible licensing policies, it is
currently difficult to deploy such tools in the
cloud.) The CAD tools can typically run either
in interactive mode or in batch mode while the
simulation programs run only in batch mode,
with all interaction being restricted to text
based input and output files.

The EDITS environment is delivered as a cloud
based service. Cloud computing can deliver services
to the user at a number of different levels, ranging
from delivering computing infrastructure to deliv-
ering fully functional software (Rimal et al., 2009).
These levels are typically divided into three catego-
ries: Infrastructure as a Service (IaaS), Platform as
a Service (PaaS) and Software as a Service (SaaS).
These levels can also build on one another.

The EDITS environment is divided into three lay-
ers, corresponding to IaaS, PaaS and SaaS, as shown
in Figure 1. For the base IaaS layer, the EDITS envi-
ronment uses Amazon EC2, which is a commercial
web service that allows users to rent virtual ma-
chines on which they run their own software. Ama-
zon provides a web-application where users can
manage their virtual machines, including starting
and stopping machines. The SaaS and PaaS layers
will be described in more detail below.

The SaaS layer
The SaaS layer consists of a number of graphical
tools for running EDITS jobs. Overall, there are four
main steps for the user: 1) starting the server, 2) cre-
ating the growth task, 3) executing the evolutionary
job, and 4) reviewing progress of the job.

Step 1 involves using the Amazon EC2 web ap-
plication to start an EDITS server. This simply con-

208 | eCAADe 31 - Computation and Performance - Volume 2 - Generation, Exploration and Optimisation

sists of logging onto the Amazon EC2 website with
a standard browser, and then starting an Amazon in-
stance. The operating system and software installed
on a virtual machine is packaged as an Amazon Ma-
chine Image (AMI), and for EDITS a customized AMI
has been created. This AMI is saved on the Amazon
server, so it can simply be selected by the user from
a list of options. The same server can be used for
running multiple jobs.

In step 2, the user defines the growth task by
creating a workflow with the VisTrails workflow sys-
tem using a set of specially developed EDITS nodes.
Figure 2 shows an example of such a workflow, con-
sisting of a development procedure followed by
three parallel evaluation procedures. The develop-
ment procedure uses SideFX Houdini to generate
the phenotype. The evaluation procedures use the
Radiance, Calculix, and EnergyPlus simulation pro-
grams to generate performance scores. These proce-
dures will be explained in more detail in the section
describing the demonstration.

Step 3 involves executing the EDITS job. For the
user, it is good if this execution could be orches-
trated from within the same VisTrails environment.
However, since the EDITS job may take several hours
to execute, it is preferable to interact with it in an
asynchronous manner. The user should be able to

start the EDITS job in the cloud and then reconnect
with the running EDITS job intermittently in order to
download the latest results. A plugin has therefore
been implemented for VisTrails that adds an EDITS
menu to the menu bar for starting EDITS jobs. When
a new job is started, the user can select the growth
workflow, and can specify a number of parameters,
including population size, mutation and crossover
probabilities, selection pool size and the ranking al-
gorithm. Once these parameters are set, a number
of Python scripts required to run the job are auto-
matically generated and uploaded to the server to-
gether with the growth workflow. The job will then
start running automatically.

In step 4, the user connects to the EDITS jobs to
review progress and analyse the data that is gener-
ated. Dexen has its own client application with a
graphical user interface that allows users to get an
overview of all the jobs that are running and to in-
terrogate the execution of individual tasks in detail,
providing information on execution time, crashes,
error messages, and so forth. Data related to in-
dividual design variants can also be downloaded.
However, downloading and viewing design variants
one at the time can be tedious and error prone. In
order to streamline this process, a set of VisTrails ED-
ITS nodes have been created for downloading data

Figure 1

The three layers of the EDITS

environment.

209Generation, Exploration and Optimisation - Volume 2 - Computation and Performance - eCAADe 31 |

and design variants directly from the server running
in the cloud. These nodes can for example be used
to create a workflow that first downloads the per-
formance scores of all design variants and then se-
lects a subset of these design variants for display to
the user. VisTrails provides a visual spreadsheet that
can be used to simultaneously display 3D models of
multiple design variants (Figure 5).

The PaaS Layer
The PaaS layer builds on top of the Amazon EC2 IaaS
layer, by defining an AMI for the EDITS Platform. A

customised AMI was created for EDITS with all nec-
essary software preinstalled and all settings precon-
figured. The EDITS AMI includes the base operating
system, together with Dexen, VisTrails, and a set of
commonly used CAD and simulation programs.

The software used for orchestrating distributed
execution of the EDITS job is Dexen. When the EDITS
server is started on EC2, Dexen will be automatically
started and all the other required software will be
configured and available. The two main tasks that
need to be executed are the growth and feedback
tasks. Dexen maintains the population of individu-

Figure 2

The EDITS growth workflow in

the VisTrails environment.

210 | eCAADe 31 - Computation and Performance - Volume 2 - Generation, Exploration and Optimisation

als in a centralized database and will automatically
schedule the execution of growth and feedback
tasks. For the growth task, individuals are processed
one at a time. For the feedback task, individuals are
processed in pools of individuals, selected randomly
from all fully evaluated individuals in the population.
Each time either a growth or feedback task needs to
be executed, Dexen will extract the individuals from
the database, and send them to an available Dexen
worker for processing. Once the worker has com-
pleted the task, the updated and/or new individuals
will be retrieved and reinserted back into the popu-
lation database.

The Python scripts for the initialisation, growth,
feedback, and termination tasks are automatically
generated by EDITS. The growth task is the most
complex due to the various layers that are involved.
The task has a nested ‘Russian Doll’ structure, con-
sisting of a cascade of invocations three layers deep,
as shown in Figure 3. The outer layer consists of the
Python script. When this script is executed, it will
invoke VisTrails Batch Mode in order to execute the
workflow. Since this workflow may contain numer-
ous nodes that link to other design tools such as

CAD and simulation programs, VisTrails will then in-
voke these design tools. For the end-user, the com-
plexity of the growth task is hidden, since they are
only required to create VisTrails workflow.

EDITS DEMONSTRATION
As a demonstration of the EDITS approach, the de-
sign for a complex residential apartment building is
evolved. The case study experiment is based on the
design of the Interlace by OMA. The design consists
of thirty-one apartment blocks, each six stories tall.
The blocks are stacked in an interlocking brick pat-
tern, with voids between the blocks. Each stack of
blocks is rotated around a set of vertical axes, there-
by creating a complex interlocking configuration.

Each block is approximately 70 meters long by
16.5 meters wide, with two vertical axes of rotation
spaces 45 meters apart. The axes of rotation coin-
cide with the location of the vertical cores of the
building, thereby allowing for a single vertical core
to connect blocks at different levels. The blocks are
almost totally glazed, with large windows on all four
facades. In addition, blocks also have a series of bal-
conies, both projecting out from the facade and in-

Figure 3

The software layers involved in

executing the growth task. The

workflow, highlighted in grey,

is the only layer that needs

input from the end-user.

211Generation, Exploration and Optimisation - Volume 2 - Computation and Performance - eCAADe 31 |

set into the facade. The initial configuration, shown
in Figure 4, is based on the original design by OMA.
The blocks are arranged into 22 stacks of varying
height, and the stacks are then rotated into a hex-
agonal pattern constrained within the site bounda-
ries. At the highest point, the blocks are stacked four
high.

For the case study, new configurations of these
31 blocks were sought that optimise certain perfor-
mance measures. For the new configurations, the
size and number of blocks will remain the same, but
the way that they are stacked and rotated can differ.
A VisTrails growth workflow was defined that per-
formed both development and three evaluations.
The workflow shown in Figure 2 was developed for
this demonstration.

Growth workflow: design development
For the procedural modelling of phenotypes, SideFX
Houdini was used. For the genotype to phenotype
mapping, an encoding technique was developed
called decision chain encoding (Janssen and Kaushik,
2013). At each decision point in the modelling pro-
cess, a set of rules is used to generate, filter, and se-
lect valid options for the next stage of the modelling
process. The generate step uses the rules to create a
set of options. The filter step discards invalid options
that contravene constraints. The select step chooses
one of the valid options. In order to minimise the
complexity of the modelling process, options are

generated in skeletal form with a minimum amount
of detail. The full detailed model is then generated
only at the end, once the decision chain has finished
completing.

In the decision chain encoding process, the
placement of each of the 31 blocks is defined as
a decision point. The process places one block at
the time, starting with the first block on the empty
site. At each decision point, a set of rules is used to
generate, filter, and select possible positions for the
next block. Each genotype has 32 genes, and all are
real values in the range {0,1}. In the generation step,
possible positions for the next block will be created
using a few simple rules. First, locations are identi-
fied, and second orientations for each location are
identified. The locations are always defined relative
to the existing blocks already placed, and could be
either on top of or underneath those blocks. The ori-
entations are then generated in 15° increments in a
180° sweep perpendicular to either end of the exist-
ing block. In the filtering step, constraints relating to
proximity between blocks and proximity to the site
boundary are applied, thereby ensuring that only
the valid positions remain. In the selection step, the
decision gene in the genotype chooses one of the
valid block positions.

The resulting phenotypes consist of simple po-
lygonal models. Three separate files are generated,
one for each of the simulations. These models rep-
resent different sub-sets of information relating to

Figure 4

The initial configuration based

on the original design, consist-

ing of 31 blocks in 22 stacks of

varying heights.

212 | eCAADe 31 - Computation and Performance - Volume 2 - Generation, Exploration and Optimisation

the same design variant. These sub-sets of infor-
mation are selected in order to match the data re-
quirements of the simulation programs. In order to
facilitate the data mapping, custom attributes are
defined for geometric elements in the model. For
example, polygons may have attributes that de-
fine key characteristics, such as block (e.g. block1,
block2), type (e.g. wall, floor, ceiling), and parent (e.g.
the parent of the shade is the window; the parent of
the window is the wall). These attributes are used by
the mapping nodes in order to generate appropri-
ate input files for the simulations. The geometry to-
gether with the attributes are saved as JSON files (i.e.
simple text files).

Growth workflow: design evaluations
For the multi-objective evaluation, three perfor-
mance criteria were defined: maximisation of day-
light, minimisation of structural strain, and minimi-
sation of cooling load. These performance criteria
have been selected in order to explore possible con-
flicts. For example, if the blocks are clustered close
together the cooling load will decrease due to inter-
block shading but the daylight levels will also re-
duce. If the blocks are stacked higher, then they are
likely to get better daylight but they may become
less structurally stable. The three performance crite-
ria are calculated as follows:
•	 Maximisation of daylight: An evaluation is de-

fined that executes Radiance in order to cal-
culate daylight levels on all windows under a
cloudy overcast sky. The amount of light enter-
ing each window is then adjusted according to
the visual transmittance of the glazing system
for that window. The performance criterion is
defined as the maximization of the total num-
ber of windows where the light entering the
window is above a certain threshold level for
reasonable visual comfort.

•	 Minimisation of structural strain: An evalua-
tion is defined that executes Calculix in order
to calculate the global structural behaviour
using Finite Element Analysis (FEA) under vari-

ous loading conditions. In order to reduce the
computational complexity, the building con-
figuration is modelled in a simplified way, by
grouping individual structural elements into
larger wholes called super-elements (Guyan,
1965). The performance criterion is defined as
the minimisation of the maximum strain within
the structure.

•	 Minimisation of cooling load: An evaluation is
defined that executes EnergyPlus in order to
calculate the cooling load required in order to
maintain interior temperatures below a cer-
tain threshold for a typical schedule. In order
to reduce the computational complexity, an
ideal-load air system together with a simplified
zoning model is used, and the simulation is run
for a periods of one week at the solstices and
equinoxes. The performance criterion is de-
fined as the minimisation of the average daily
cooling load.

In Figure 2, the three workflow branches defin-
ing the evaluation procedures are shown. Each eval-
uation procedure includes two mapper nodes: an
input mapper for generating the required input files,
and an output mapper for generating the final per-
formance score. These mapper nodes are currently
implemented as Python scripts, but part of this re-
search is the development of a graphical application
for defining mapper nodes. See Janssen at al. (2013)
for more details.

The input mappers transform the JSON files
from the developmental procedure to the appropri-
ate input files for the simulations. As well as the ge-
ometry information from these JSON files, the map-
pers also require other material information. The
output mappers transform the raw simulation data
into performance scores: for the Radiance data, the
mapper calculates the number of windows below
the daylight threshold; for Calculix, the mapper cal-
culates the maximum strain in the structure; and, for
EnergyPlus, the mapper calculates the average daily
cooling load. These three evaluation scores are then
provided as the final output of the growth task.

213Generation, Exploration and Optimisation - Volume 2 - Computation and Performance - eCAADe 31 |

Results
When running the job, the population size was set
to 200 and a simple asynchronous steady-state evo-
lutionary algorithm was used. Each generation, 50
individuals were randomly selected from the popu-
lation and ranked using multi-objective Pareto rank-
ing. The two design variants with the lowest rank
were killed, and the two design variants with the
highest rank (rank 1) were used as parents for repro-
duction. Standard crossover and mutation operators
for real-valued genotypes were used, with a muta-
tion probability being set to 0.01. Reproduction be-
tween pairs of parents results in two new children,
thereby ensuring that the population size remains
constant.

The evolutionary algorithm was run for a total
of 10,000 births, taking approximately 8 hours to
execute. The final non-dominated Pareto set for the
whole population contained a range of design vari-
ants with differing performance tradeoffs.

A workflow was created in order to retrieve and
display designs from the Pareto front. A selection of
design variants are shown in Figure 5.

CONCLUSIONS
For designers, the EDITS approach allows two key
hurdles of skills and speed to be overcome. First, it
overcomes the skills hurdle by allowing designer to
define growth tasks as workflows using visual pro-
gramming techniques. Second, it overcomes the
speed hurdle by using cloud computing infrastruc-
tures to parallelize the evolutionary process. The
demonstration case-study shows how the EDITS ap-
proach can be applied to a complex design scenario.

Future research will focus on the development
of VisTrails data analytics nodes. This would allow
users to create workflows to perform various types
of analysis on the data generated by the evolution-
ary process, including hypervolume and clustering
analysis.

REFERENCES
Altıntaş, İ 2011, Collaborative Provenance for Workflow-driv-

en Science and Engineering, PhD Thesis, University of
Amsterdam.

Callahan, S, Freire, J, Santos, E, Scheidegger, C, Silva, C and
Vo, H 2006, ‘Vistrails: Visualization Meets Data Man-

Figure 5

A set of design variants shown

in the visual spreadsheet tool

within VisTrails.

214 | eCAADe 31 - Computation and Performance - Volume 2 - Generation, Exploration and Optimisation

agement’, Proceedings of the SIGMOD, Chicago, pp.
745–747.

Deelman, E, Gannon, D, Shields, M and Taylor, I 2008, ‘Work-
flows and e-Science: An Overview of Workflow System
Features and Capabilities’, Future Generation Computer
Systems, pp. 528–540.

Frazer, JH 1995, An Evolutionary Architecture, AA Publica-
tions, London, UK.

Guyan, RJ 1965, ‘Reduction of Stiffness and Mass Matrices’,
AIAA Journal, 3(2), pp. 380–380.

Janssen, PHT, Basol, C and Chen, KW 2011, ‘Evolutionary De-
velopmental Design for Non-Programmers’, Proceed-
ings of the eCAADe Conference, Ljubljana, Slovenia, pp.
886–894.

Janssen, PHT, Chen, KW and Basol, C 2011, ‘Iterative Virtual
Prototyping: Performance Based Design Exploration’,
Proceedings of the eCAADe Conference, Ljubljana, Slove-
nia, pp. 253–260.

Janssen, PHT and Chen, KW 2011, ‘Visual Dataflow Model-
ling: A Comparison of Three Systems’, Proceedings of the
CAAD Futures Conference, Liege, Belgium, pp. 801–816.

Janssen, PHT and Kaushik, V 2012, ‘Iterative Refinement
Through Simulation: Exploring Trade-off s Between
Speed and Accuracy’, Proceedings of the 30th eCAADe
Conference, pp. 555–563.

Janssen, PHT and Kaushik, V 2013, ‘Decision Chain Encod-
ing: Evolutionary Design Optimization with Complex
Constraints’, Proceedings of the 2nd EvoMUSART Confer-
ence, pp. 157–167.

Janssen, PHT, Stouffs, R, Chaszar, A, Boeykens S and Toth
B, ‘Data Transformations in Custom Digital Workflows:
Property Graphs as a Data Model for User‐Defined
Mappings’, Intelligent Computing in Engineering Confer-
ence - ICE2012, pp. 1–10.

Kumar, S and Bentley, PJ 1999, ‘The ABCs of Evolutionary
Design: Investigating the Evolvability of Embryog-
enies for Morphogenesis’, Proceedings of the GECCO, pp.
164–170.

Rimal, BP, Eunmi, C and Lumb, I 2009, ‘A Taxonomy and Sur-
vey of Cloud Computing Systems’, Proceedings of the
INC, IMS and IDC Joint Conference, pp. 25–27.

