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Custom digital workflows aim to allow diverse, non-integrated design and 
analysis applications to be custom linked in digital workflows, created by a 
variety of users, including those who are not expert programmers. With the 
intention of introducing this in practice, education and research, this paper 
focuses on critical aspects of overcoming interoperability hurdles, illustrat-
ing the use of property graphs for mapping data between AEC software 
tools that are not connected by common data formats and/or other interop-
erability measures. A brief exemplar design scenario is presented to illus-
trate the concepts and methods proposed, and conclusions are then drawn 
regarding the feasibility of this approach and directions for further re-
search. 

Introduction 

The persistent lack of integration in building design, analysis and construc-
tion calls for new approaches to information exchange. We argue that bot-
tom-up, user-controlled and process-oriented approaches to linking design 
and analysis tools, as envisaged by pioneers of CAD [1,2], are indispensa-
ble as they provide degrees of flexibility not supported by current top-
down, standards-based and model-oriented approaches.  

We propose a platform to support a design method where designers can 
compose and execute automated workflows that link computational design 
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tools into complex process networks [3,4]. By allowing designers to effec-
tively link a wide variety of existing design analysis and simulation tools, 
such custom digital workflows support the exploration of complex trade-
offs between multiple conflicting performance criteria. For such explora-
tions, these trade-offs often present a further set of questions rather than a 
final set of answers, so the method is envisaged as a cyclical process of 
adaptive workflow creation followed by iterative design exploration. 

The adaptive-iterative design method requires a platform for designers 
to effectively and efficiently create and execute workflows. The remainder 
of this paper first gives a general overview of the proposed platform and 
then focuses on critical aspects of overcoming interoperability hurdles, 
specifically the creation of mapping procedures that map data between 
tools with incompatible data representations. We explore the feasibility of 
a data mapping approach that allows end-users to define their own custom-
ized mappers, applying it to an example scenario focusing on a digital de-
sign-analysis workflow linking parametric design tools to performance 
analysis tools.  

The research method consists of building a test workflow comprising a 
geometric design model and analysis tools to evaluate lighting and thermal 
performance, and applying customized data mappings between these ap-
plications via property graphs. The data collected from this experiment in-
cludes observations of the types of data mappings required, the complexity 
of the mappings, and the modifiability of the mappings when editing of the 
workflow is needed. We conclude that linking design tools via customized 
data mappers is a feasible approach that can complement other existing 
mapping approaches, and we discuss future research directions. 

Adaptive-iterative design platform 

In order to support the adaptive-iterative design method, a platform for 
creating and executing workflows is proposed. This platform is based on 
existing scientific workflow systems that enable the composition and exe-
cution of complex task sequences on distributed computing resources [5].  

Scientific workflow systems exhibit a common reference architecture 
that consists of a graphical user interface (GUI) for authoring workflows, 
along with a workflow engine that handles invocation of the applications 
required to run the solution [6,7]. Nearly all workflow systems are visual 
programming tools in that they allow processes to be described graphically 
as networks of nodes and wires that can be configured and reconfigured by 
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users as required [8]. Nodes perform some useful function; wires support 
the flow of data, linking an output of one node to an input of another node. 

Each workflow system acts to accelerate and streamline the workflow 
process, but each system also varies greatly in specific capabilities [9]. We 
aim to identify the functionality needed to develop a flexible, open and in-
tuitive system for design-analysis integration, building on the capabilities 
exhibited by scientific workflow systems, and further capitalizing on re-
cent advances in cloud computing. 

Actor model 

The proposed platform is a type of scientific workflow system using an ac-
tor model of computation [10]. Nodes are actors, and the data that flows 
between nodes is encapsulated in distinct data sets, referred to as data ob-
jects. The actor model allows for a clear separation between actor commu-
nication (dataflow) and overall workflow coordination (orchestration). 

We consider three types of actors: process actors, data actors and con-
trol actors. Process actors define procedures that perform some type of 
simulation, analysis, or data transformation. They have a number of input 
and output ports for receiving and transmitting data objects, as well as me-
ta-parameters that can be set by the user to guide task execution. Data ac-
tors define data sources and data sinks within the workflow, including the 
data inputs and data output for the workflow as a whole. Control actors 
provide functionality related to workflow initiation, execution and comple-
tion. We focus here on the role of process actors in workflows, and the de-
velopment of an approach to support custom data mapping procedures. 

Process actors can be further classified into tool actors and mapping ac-
tors. Tool actors define procedures that wrap existing applications to make 
their functionality and data accessible to the workflow; while mapping ac-
tors define procedures that transform data sets in order to map the output 
from one tool actor to the input for another.  

Figure 1 shows a conceptual diagram of an example network in which a 
parametric CAD system actor is connected to three evaluation actors: 
Revit for cost estimating; EnergyPlus for heating/cooling load simulation; 
and Radiance for daylighting simulation. The CAD system actor encapsu-
lates a procedure that starts the CAD system, loads a specified input model 
and a set of parameter values, and then generates two output models. One 
of the models is a generated as an IFC file, which is directly consumed by 
the Revit actor (using the Geometry Gym Revit IFC plugin [11]), while the 
other model is generated as a text file. This latter model then undergoes 
two separate transformations that map it into both EnergyPlus and Radi-
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ance compatible formats. The simulation actors then read in this trans-
formed data, run their respective simulations, and generate output data 
consisting of simulation results. 

 

 
Fig1. Example network of actors. A parametric CAD system is linked to Revit, 
Radiance and EnergyPlus via various mappers (M). End users contribute white 
components, while actor developers build grey components and wrap black com-
ponents representing existing tools. 

The output results may be merged and displayed to the user within a 
graphical dashboard in an integrated way in order to support decision mak-
ing. Furthermore, such a dashboard may also allow users to manipulate the 
input parameters for the workflow. Each time such inputs are changed, the 
execution of the network will be triggered, resulting in a new set of results. 
It is envisaged that more advanced data analytics tools could be developed 
in which multiple sets of results from the adaptive-iterative process could 
be analyzed and compared. 

Platform architecture 

In order to support both the collaborative creation of workflows and their 
parallel execution, the proposed platform can be implemented as a web 
application deployed on a cloud or grid based infrastructure. Workflows 
(such as the one shown in Figure 1) can be interactively developed by us-
ers within the web browser interface. When the user runs a workflow, it is 
uploaded to a workflow server as a workflow job consisting of a set of 
computational tasks, where it is executed in a distributed manner.  
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For scalability, both the procedures and the associated data objects are 
stored in an online distributed key-value database. Key-value databases are 
highly optimized for speed and scalability when storing and retrieving 
many documents. Although such documents may use a standardized for-
mat (e.g. JSON), they are typically used as containers for storing other da-
ta, with no restrictions on data models and data schemas. For example, a 
document may contain any number of serialized objects, text files or bina-
ry blobs. Both data objects and actor procedures are stored in documents in 
the key-value database. No restrictions are imposed on the types of data 
objects and actor procedures that can be stored. 

Data models for data mappers 

Data mappings aim to overcome interoperability problems between tools 
that cannot be linked using existing approaches. We examine two common 
approaches for creating such mappers, and propose a complementary ap-
proach. 

The various approaches to overcoming interoperability problems rely 
on three distinct levels of data representation: the data model, the data 
schema, and the data file. A data model organizes data using generic con-
structs that are domain independent. Due to this generic nature, the range 
of data that can be described is very broad. It offers a way of defining a da-
ta structure that is very flexible but relies on human interpretation of se-
mantic meaning. For example, Tsichritzis and Lochovsky [12] distinguish 
seven types: relational, network, hierarchical, entity-relationship, binary, 
semantic network, and infological. Data models will often be coupled with 
highly generic languages for querying and manipulating data, variously 
called data query languages and data manipulation languages. 

A data schema represents domain-specific information using semantic 
constructs related to a particular domain. Due to the highly specific nature 
of the constructs, the type of information that can be described tends to be 
relatively narrow. However, this manner of representing information sup-
ports automated interpretation of semantic meaning. The data schema is 
often built on top of a data model, by formally defining constraints that de-
scribe a set of allowable semantic entities and semantic relationships spe-
cific to a particular domain. This data schema is defined using a special-
ized language, variously called a data definition language, a data 
description language, or a data modeling language. Note that the data 
schema itself is distinct from the language used for describing the schema. 
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A data file uses syntactic constructs to describe how data is stored, ei-
ther in a file or any other form of persistent storage. Going from the data 
file to the data schema is referred to as parsing, while the reverse is known 
as serializing. For any given data schema, there may be many different 
types of data files. 

For example, consider the Industry Foundation Classes (IFC) represen-
tation for the exchange of Building Information Modeling data in the AEC 
industry [13]. In this case, the data model is an entity-relationship model, 
the data schema is an IFC schema defined in the EXPRESS modeling lan-
guage, and the two main data files use a STEP or XML based file format. 
Note the use of XML for one of the file formats does not mean that an 
XML-based data model is being used for data manipulation. The data file 
is only used as a convenient way of storing the data. 

Tool interoperability 

To link two tools with incompatible data representations, a formalized data 
mapping needs to take place [14]. The mapping is defined as a one-way 
transformation process, where the data representation of the source tool is 
mapped to the data representation of the target tool. In existing scientific 
workflow systems, this mapping process is called ‘shimming’ [15]. 

In most cases, the incompatibility exists at all levels: at the data model 
level, the data schema level, and the data file level. One approach in over-
coming this type of incompatibility is to create direct file translators for 
each pair of tools to be linked. An alternative approach is to create indirect 
file translators that read and write to an intermediate representation. Within 
the AEC industry, these are the two main interoperability approaches being 
pursued, which we call direct file translation and indirect file translation. 

The direct file translation approach has two key weaknesses. First, 
since separate data file translators need to be created for each pair of tools, 
the number of translators required increases rapidly as the number of tools 
increases. Second, the required generality of the translator means that no 
assumptions can be made regarding the sets of data to be processed, so 
these translators are complex to develop and maintain (as file formats are 
continuously updated and changes are often undocumented), and tend to be 
plagued by bugs and limitations. 

With the indirect file translation approach, a range of different levels 
exist depending on the type of data schema. At the low-level end of the 
spectrum, data schemas may be limited to describing only geometric enti-
ties and relationships, while at the more high-level end of the spectrum, 
schemas may also describe complex real-world entities and relationships. 
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The AEC industry has been using low-level geometric translators for many 
decades, based on file formats such as DXF, IGES and SAT. Such low-
level geometry based file translation approaches are clearly limited, since 
they do not allow for the transfer of non-geometric semantic data. 

At the more high-level end of the spectrum, the AEC research commu-
nity has, since the 1970s, been working on ontological schemas that com-
bine geometric information with higher level semantic constructs that de-
scribe entities and relationships in the AEC domain. Until recently, this 
approach was often conceptualized as a single centralized model contain-
ing all project data and shared by all project participants. However, this is 
now increasingly seen as being impractical for a variety of reasons, and as 
a result such high-level ontologies are now being promoted as a ‘smart’ 
form of file translation [16]. The latest incarnation of these efforts is the 
STEP-based IFC standard for BIM data storage and exchange. 

Open interoperability 

A number of platforms are being developed that enable users to apply both 
direct and indirect file translators, focusing in particular on BIM and IFC. 
For example, the SimModel aims to allow BIM and energy simulation 
tools to be linked via a new XML based model aligned with IFC [17]; D-
BIM workbench aims to allow a variety of tools for analyzing differing 
performance aspects to be tightly integrated with BIM tools [18]. 

However, there are many sets of tools for which such translators have 
either not yet been developed or are no longer up-to-date. We therefore 
propose a more flexible and open type of platform that also supports link-
ing tools for which direct and indirect file translators are not available. 
Such tools are linked using an approach that allows users to define their 
own customized data mappers tailored to the data exchange scenarios they 
require. Figure 2 shows the three approaches to linking tools. Note that this 
figure omits other approaches that do not require the neutral file format 
approach, e.g., agent-based interoperability [19]. The proposed platform 
will allow users to create automated workflows that mix-and-match all 
three tool-linking approaches, applying the most expedient approach for 
each pair of tools. For example, in cases where IFC-based mappers are al-
ready available, the user may prefer to simply apply such mappers, while 
in cases where no translators are available, customized data mappers can 
be developed. 

End users will need to be provided with various tools and technologies 
in order to support them in this endeavor of developing mappers. This re-
search focuses on communities of users with limited programming skills, 
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with the goal to develop a mapping approach that allows such non-
programmers to easily create and share custom mappings in a collaborative 
manner. Since users are focused on one specific data exchange scenario, 
these mappers can potentially be restricted to only a subset of the data 
schemas of the design tools being linked, thereby resulting in mappers that 
are orders of magnitude smaller and simpler when compared to general-
purpose file translators. 

 
Fig 2. Interoperability approaches. Linking individual tools via file translation 
(left); via a shared data schema (middle); or via a shared mapping process (right). 

To achieve this goal, the mapping approach must be both flexible and 
user-friendly. It must be flexible so that users can apply the same mapping 
strategies to a wide range of data exchange scenarios. It must also be user-
friendly so that it supports users with limited programming skills in the 
process of creating and debugging mappers. 

The complexity of creating such mapping is to a significant extent re-
lated to the levels of data incompatibility between the source tool and tar-
get tool. So far, the assumption has been that for most tools, data incom-
patibility will exist at all three levels: data model, data schema, and data 
file. This creates many difficulties for end-users attempting to create map-
pers. In particular, the user is required to deal with two different data mod-
els, each of which will have its own languages for data query, data ma-
nipulation, and schema definition. However, a simpler data exchange 
scenario can be imagined, where the input and output data for the mapping 
both use the same data model. In such a case, the user would be able to de-
velop a mapping within one coherent data representation framework, in-
cluding the option of using a single model based language for querying 
and manipulating data. In addition, given a single data model, it then be-
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comes feasible to provide visual tools for developing such mappers, as will 
be discussed in more detail in the next section. 

The simpler data exchange scenario with a common data model is 
clearly more desirable. The proposed approach is therefore to transform 
data exchange scenarios with incompatible data models into the simpler 
type of data exchange scenario where both input and output data sets have 
a common data model. With this approach, input data sets are created that 
closely reflect the data in the source data file, and output data sets are cre-
ated that closely reflect the data in the target data file. The mapping task is 
then reduced to the simpler task of mapping from input data sets to output 
data sets using a common data model. Figure 3 shows the relationship be-
tween the mapping procedure and the source and target data files. 

 

 
Fig 3. The mapping of a source data file to a target data file involves three stages 
of data transformation: parsing, mapping, and serializing. 

These input and output data sets may have data schemas, either infor-
mally defined in help documentation or formally defined using a schema 
definition language. In the latter case, the schema may be used to support 
visual mapping tools. In most cases, these schemas will be ‘reduced’ 
schemas in that they will only cover a sub-set of the data that might be rep-
resented in the source and target data files. For example, while the source 
and target tools may each have large and complex schema, a user may de-
cide that for the task at hand, they will only be using a small sub-set of the 
entities and relationships defined in those schemas. As a result, these 
schemas may typically be small and highly focused on the task at hand. 

The input and output data sets can be generated in various ways. One 
approach is to use a parser to convert the source data file into the input da-
ta set and a serializer to convert the output data set into the target data file. 
In both reading and writing the data files, the data is converted with the 
minimum amount of change, and neither the parser nor the serializer per-
forms any actual data mapping. As long as a generic and flexible mapping 
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data model is selected, the conversions between data file and data model 
should be relatively straightforward. In some cases, it may even be possi-
ble to automatically generate parsers and serializers. We focus here on the 
data mapping procedure, which requires more in-depth interpretation. 

User defined data mappings 

Given a pair of automated parsing and serializing procedures, the task for 
the user is then to define the data mapping. This mapping procedure needs 
to be able to process any data set that adheres to the input data schema, and 
produce a data set that adheres to the output data schema. For creating 
such mapping procedures, a number of techniques can be identified, differ-
ing in complexity and power. For the simplest type of mappings, which we 
refer to as declarative equivalency mapping, user-friendly visual tools al-
ready exist, while for more complex types of mappings, which we refer to 
as scripted mappings, the user is forced to write code. In this research, we 
propose a powerful intermediate approach using flexible and highly gener-
ic visual programming tools. This intermediate level we refer to as proce-
dural query mapping. 

With declarative equivalency mappings, the input and output data 
schemas are formally defined, and the user defines a list of semantically 
equivalent entities between these schemas. Based on this user-defined in-
formation, a mapping procedure can then be automatically generated that 
will transform the input data set to the output data set. In some cases, it 
may be possible to define such mappings using visual tools [20]. One key 
problem with this approach is that only fairly simple mappings can be cre-
ated using direct semantic mappings. More complex mappings may require 
a number of input entities to be processed in some way in order to be able 
to generate another set of target entities. 

With procedural query mappings, the user creates data mapping rules 
using visual programming languages specialized for particular types of da-
ta models. These specialized languages include data query languages and 
data manipulation languages. The former are used for retrieving data from 
a data set, and the latter for inserting and deleting data in a data set. In 
many cases, the same language can be used for both querying and manipu-
lation. A popular example is the Structured Query Language (SQL), which 
is used for both retrieving and manipulating data in relational databases. 
Other generic languages for retrieving and manipulating data include 
XQuery / XPath for data stored in XML data models, SPARQL for data 
stored in Resource Description Framework (RDF) data models, and jaql 
for data stored in JSON data models. Although such languages are special-
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ized for certain data models, the languages themselves are semantically 
still highly generic. 

With scripted mappings, the user develops mapping scripts using a pro-
gramming language. Such scripted mapping may be appropriate in cases 
where complex mappings need to be defined. Consider the example in 
Figure 1. The output from the CAD system cannot be easily mapped to ei-
ther the input for EnergyPlus or input for Radiance. Instead, an additional 
step is required that performs Boolean operations on the polygons. For En-
ergyPlus, surface polygons need to be sliced where there are changes in 
boundary conditions (as each surface can only have one boundary condi-
tion attribute), and then infer what these boundary conditions are, i.e. in-
ternal, external or ground contact. For Radiance, surface polygons need to 
have holes cut where there are windows. These additional steps may have 
to be performed by a scripted mapper, the PolygonSlicer (Figure 1). 

For creating user-defined mappings within workflows, either declara-
tive equivalency mappings or procedural query mappings approach are 
seen as being more appropriate, since these approaches do not require ad-
vanced programming skills. However, if more complex types of mappings 
are required, then scripted mappers can be created. Ideally, such scripted 
mappers should be developed to apply to a wide variety of situations and 
contexts, so as to be easily reusable. 

For declarative equivalency mappings, a number of tools already exist, 
and for scripted mappers, query and manipulation languages abound. 
However, visual tools for procedural query mapping are rare. In addition, 
this approach is seen as being particularly crucial, since it is not subject to 
the limitations of the simpler declarative equivalency mapping approach, 
while at the same time it does not require the more advanced programming 
skills for the more complex scripted mapping approach. This research 
therefore specifically focuses on the development of a set of visual tools 
for developing procedural query mappings. 

Data models for mapping 

It is envisaged that these various tools, parsers, serializers, and mappers 
could be developed and shared through an online user community. Users 
could download diverse sets of actors developed by different groups from 
a shared online repository, and then string these together into customized 
workflows (e.g., Figure 1). This process would ideally emerge in a bottom-
up manner with minimal restrictions being placed on developers of actors. 
It is therefore important that no specific data model is imposed, but instead 
that actor developers and other users are able to choose preferred data 
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models. For a particular pair of tool actors, various parser-serializer pairs 
may be developed allowing users to choose to generate mappings based on 
alternative data models. For example, one parser-serializer pair might use a 
hierarchical XML data model, allowing users to create mappings with their 
preferred declarative equivalency mapping tool, while another might use a 
relational data model, allowing users to create a mapping by writing SQL 
scripts. Ideally, a diverse ecosystem of actors would emerge. 

For procedural query mapping, various data models and query lan-
guages were considered from the point of view of applicability and ease of 
use. Below, an example scenario is described in which the property graph 
data model was used as the mapping data model. A property graph is a di-
rected graph data structure where edges are assigned a direction and a type, 
and both vertices and edges can have attributes called properties. This al-
lows property graphs to represent complex data structures with many types 
of relationships between vertices. In graph theoretic language, a property 
graph is known as a directed, attributed, multi-relational graph. The query 
language used for querying and manipulating data in the property graphs is 
called Gremlin [21]. 

Example scenario 

In order to demonstrate the feasibility of the proposed approach, we have 
implemented part of the example scenario shown in Figure 1 using Kepler 
[22], an open-source workflow system based on an actor-oriented software 
framework called Ptolemy II [23]. Kepler workflows can be nested, allow-
ing complex workflows to be composed from simpler components, and en-
abling workflow designers to build reusable, modular sub-workflows that 
can be saved and used for many different applications. 

Kepler is used to create a workflow connecting various tools, including 
SideFX Houdini as a parametric CAD system to generate a building model 
and EnergyPlus and Radiance as energy analysis simulation program and 
lighting analysis program, respectively, to evaluate building performance. 
Any other (parametric) CAD software and simulation tools could also be 
considered for this purpose.  

A simplified design is used for testing the workflow, consisting of only 
two spaces stacked on top of each other, each with a window in one wall. 
The Kepler workflow is shown in Figure 4; here the actors created wrap 
the Houdini application, the EnergyPlus program, and the two Radiance 
programs (using Python as the programming language). In total there are 
14 polygons, and each polygon is assigned a set of attributes that are used 
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for generating the property graphs. The model is shown in Figure 5, to-
gether with key attributes defined for each polygon. 

 

 
Fig 4. The Kepler workflow. See Figure 8 for the contents of the Mapper3 actor. 

 
Fig 5. CAD model of 14 polygons, each with 3 attributes (‘uid’, ‘type’ & ‘group’). 

Workflow mappers 

For all the mappers, property graphs are used as the mapping data model. 
For Houdini, EnergyPlus, and Radiance, parsers and serializers are created 
for stepping between the native file formats and the property graphs. 

The workflow contains two scripted mappers and five composite map-
pers containing sub-networks of mapping actors. The two scripted mappers 
are actually two instances of the PolygonSlicer mapper, the scripted map-
per performing the polygon slicing using Boolean operations. This has 
been implemented in a generalized way to be used for various slicing op-
erations by users who do not have the necessary programming skills to im-
plement such a mapper. In this case, Radiance and EnergyPlus require the 
polygons to be sliced in different ways. The PolygonSlicer mapper has a 
set of parameters that allows users to define the polygons to be sliced, and 
the Boolean operation to be performed. It also allows users to specify cer-
tain other constraints, such as the maximum number of points per polygon. 
Finally, it also identifies adjacency relationships between polygons, for ex-
ample if two polygons are a mirror image of one another. The input and 
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output files for this mapper use a standard JSON property graph file for-
mat, and the parser and serializer using the existing GraphSON library. 

The five composite mappers each contain sub-networks that perform a 
procedural query type of mapping operation. These sub-networks are de-
fined using Kepler mapping actors that provide a set of basic functions for 
mapping graph vertices and graph edges. Users are able to build complex 
customized mapping networks by wiring together these basic mapping ac-
tors. Each mapping actor has various parameters that allow the mapping 
function to be customized. When these actors are executed, Gremlin map-
ping scripts are automatically generated based on these parameter settings. 

Three highly generic mapping actors are defined that can be used to 
create a wide variety of mappings. The Merge actor is used for merging 
input graphs into a single output graph; the Spawn actor is used for adding 
new vertices to the input graph; and the Iterate actor is used for iteration 
over vertices and edges in the input graph while at the same time generat-
ing vertices and edges in the output graph. This last actor is powerful and 
very flexible, as it allows for copying, modifying, or deleting vertices and 
edges from the input to the output. A parameter called ‘select’ allows users 
to specify a Gremlin selection filter on the input graph. For each entity (i.e. 
vertex or edge) in the filtered input graph, a particular action is triggered, 
which could be the creation or modification of vertices or edges. 

A mapping example 

In order to understand the mapping process, the mapping from Houdini to 
EnergyPlus will be described in more detail. The first step is for the user to 
create the parametric model of the design together with a set of parameter 
values. The Houdini wrapper will trigger Houdini to generate a model in-
stance and will save it as a geometry data file (using Houdini’s .geo for-
mat, though other formats could be used too, e.g., .obj). 

Two mappers are then applied. The first mapper maps the output from 
Houdini to the input of the PolygonSlicer, and the second mapper maps the 
output of the PolygonSlicer to the input of EnergyPlus. For the first map-
per, a parser is provided for stepping from the Houdini geometry file to the 
property graph, and a serializer is provided for stepping from the property 
graph to the JSON graph file. For the second mapper, a parser is provided 
for stepping from the JSON graph file to the property graph, and a serializ-
er is provided for stepping from the property graph to an EnergyPlus input 
file (using EnergyPlus’ .idf format). As already mentioned above, these 
parsers and serializers just mirror between the data file and the data model, 
and as a result they can be implemented in a way that is highly generic. 



 Custom Digital Workflows 15 

Although implementing these parsers and serializers will require someone 
with programming skills, it needs to be done only once, after which end-
users can simply select the required parsers and serializers from a library. 
Implementing the parser and serializer for the JSON graph files is trivial 
since a library already exists. For Houdini and EnergyPlus, the ASCII data 
files have a clear and simple structure, resulting in a straightforward im-
plementation for the parser and serializer. 

Given a library of parsers and serializers, the task for the end-user is 
then reduced to the transformation of the input property graph into the out-
put property graph using the three Kepler mapping actors. In anticipation 
of this mapping process, the user can define additional attributes in the ge-
ometry model that can be used during the mapping. In this scenario, the 
user knows that in order to map to EnergyPlus, surfaces will need to be as-
signed different types and will also need to be grouped into zones. In this 
case, the polygons in the parametric model are each assigned three attrib-
utes: a ‘uid’ attribute is used to define a unique name for each polygon, a 
‘type’ attribute is used to define the type for each polygon, and a ‘group’ 
attribute is used to define the group to which the surface belongs, with 
groups corresponding to zones (see Figure 5). When the parser reads the 
geometry data file, it will convert these attributes into properties, so that a 
polygon with attributes in the geometry file will become a graph vertex 
with properties in the property graph. 

The user then needs to create the graph mappers using the graph map-
ping nodes. Figure 6 shows the overall structure of these input and output 
property graphs, and Figure 7 shows the properties associated with three of 
the vertices in each property graph. The PolygonSlicer and the EnergyPlus 
actors both have input graph schemas that specify the required structure of 
the graph and the required properties of the vertices. The task for the user 
is therefore to create mappings that generate graphs that adhere to these 
schema constraints. 

In the first mapping, where the output of Houdini is mapped to the in-
put of the PolygonSlicer, two new vertices are added for the two groups, 
and edges are added from the new group vertices to the polygon vertices. 
These vertices and edges are created using an Iterate actor. The Poly-
gonSlicer then transforms its input graph by dividing the surfaces for the 
ceiling of the lower zone (‘c2’) and the floor of the upper zone (‘f7’) so as 
to ensure that each surface has a homogeneous boundary condition. The 
PolygonSlicer also detects the relationships between the floors and ceil-
ings, between the floors and the ground, and between windows and walls. 
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Fig 6. Simplified diagrammatic representation of the property graphs for. (Point 
data is not shown in order to reduce the complexity of the diagrams. Before the 
PolygonSlicer there are 24 points, while afterwards there are 28 points.) 

 
Fig 7. An example of the property data for a few of the vertices in the property 
graphs. Typically, the property graphs will undergo a process of information ex-
pansion, where data is gradually added to the model as needed. 

In the second mapping, where the output of the PolygonSlicer is 
mapped to the input of the EnergyPlus simulator, additional properties are 
added to the existing vertices in the input graph, and a number of addition-
al vertices are also added to define a set of other objects required in the 
EnergyPlus input file. The Kepler network for this mapper is shown in 
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Figure 8. The Spawn actor is used to create the additional vertices, and It-
erate actors are used to copy and modify existing vertices. The groups are 
mapped to EnergyPlus zones, and the polygons to EnergyPlus surfaces. In 
the process of mapping, the Iterate actor also transforms the edges that ex-
isted in the input graph into properties in the output graph. The output 
graph becomes a simple list of vertices under the ‘idf’ root vertex. For ex-
ample, in the input graph the window is connected to the wall with an 
edge, while in the output graph the window is no longer connected but in-
stead has a property that specifies the wall name. 

 

 
Fig 8. The Kepler mapper that maps the output of the PolygonSlicer actor to the 
input of the EnergyPlus actor. See the ‘Mapper3’ actor in Figure 5. 

Table 1 The parameter names and values for the Iter_V_Ceilings actor. Gremlin 
code is shown in italics, and makes use of two predefined local variables: ‘g’ re-
fers to the input graph, and ‘x’ refers to the entity being iterated over (which in 
this case is a vertex). 

Parameter  Parameter value 
Select g.V.has(‘Entity’,’polygon’).has(‘Type’,‘ceiling’) 

.as(‘result’).out(‘boundary_is’) 

.has(‘Entity’,‘polygon’).back(‘result’) 

Vertex  
properties 

Object                 :  ‘BuildingSurface:Detailed’ 
Name                   :  x.Name 
Surface_Type           :  ‘CEILING’ 
Construction_Name      :  ‘light ceiling’ 
Zone                   :  x.in(‘group_contains’).Name 
Outside_Boundary_Cond  :  ‘SURFACE’ 
Outside_Boundary_Cond_Object  : 
                          x.out(‘boundary_is’).Name 
Sun_Exposure           :  ‘NOSUN’ 
Wind_Exposure          :  ‘NOWIND’ 
Points                 :  x.Points 

 
For each different surface type, a separate Iterate actor is defined. For 

example, consider the ‘Iter_V_Ceilings’ actor in Figure 8. This node gen-
erates the ceilings of the two zones. Table 1 shows the two main parame-
ters for the actor. The ‘Select’ parameter filters the input graph so that the 
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remaining vertices all have an ‘Entity’ property with a value of ‘polygon’ 
and a ‘Type’ property with a value of ‘ceiling’, and in addition have an 
outgoing ‘boundary_is’ edge that points to another polygon (i.e., the floor 
above). The ‘Vertex properties’ parameter then defines a set of name-value 
property pairs. For each polygon in the filtered input graph, the iterator ac-
tor will generate a vertex in the output graph with the specified properties. 

Note that when the user is specifying the property values, they can in-
sert Gremlin commands to extract these values from the input graph, thus 
ensuring that the values can be dynamically generated. Figure 6 shows 
changes for a number of vertices in the property graph as data is mapped 
and transformed. When the ‘Iter_V_Ceilings’ actor iterates over the ‘c2.2’ 
polygon in the input graph, it generates the ‘c2.2’ EnergyPlus surface. 

Adaptive-iterative exploration 

Once a workflow has been developed, it can be used to iteratively explore 
design variants. The example workflow can be used without modification 
to evaluate any design variants that consist of a set of stacked zones. If 
other spatial configurations of zones need to be evaluated not limited to 
stacking, then the workflow may need to be adjusted in minor ways. For 
example, if zones are configurations so that they are adjacent to one anoth-
er, then the ‘Iter_V_Walls’ actor in Figure 8 would be modified to allow 
common boundary walls between zones. 

Conclusions 

In order to support a bottom-up, user-controlled and process-oriented ap-
proach to linking design and analysis tools, a data mapping approach is re-
quired that allows designers to create and share custom mappings. To 
achieve this goal, the data mapping approach should be both flexible in 
that it can be applied to a wide variety of tools, and user-friendly in that it 
supports non-programmers in the process of easily creating and debugging 
mappers. The use of common data models simplifies the process for end-
users to develop customized mappings. The example scenario demonstrat-
ed how designers with minimal scripting skills would be able to set up 
complex digital workflows that enable the fluid and interactive exploration 
of design possibilities in response to custom performance metrics. 

The next stage of this research will explore the scalability of the user-
defined graph mapping approach when working with larger data sets and 
more complex data schemas (such as the IFC schema). In the current 
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demonstration, the data sets and data schemas are small, and as a result the 
graph mappers are relatively simple. However, if data sets grow and the 
number of entity and relationship types is very large, then the graph map-
pers could potentially become more difficult to construct. In order to deal 
with this increased complexity, we foresee that the user will require addi-
tional data management and schema management tools. The data man-
agement tools could enable users to visualize, interrogate and debug prop-
erty graph data during the mapping process [24]. Schema management 
tools could let actor developers define formal graph schemas for input and 
output data for their actors. This could then let end-users identify and iso-
late subsets of large schemas relevant to their particular design scenario. 
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