
Y. Ikeda, C. M. Herr, D. Holzer, S. Kaijima, M. J. Kim. M, A, Schnabel (eds.), Emerging Experiences of
the Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of
the Association of Computer-Aided Architectural Design Research in Asia CAADRIA 2015, 000–000. ©
2015, The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong
Kong

TYPES OF PARAMETRIC MODELLING

PATRICK JANSSEN1 and RUDI STOUFFS2
1,2 National University of Singapore, Singapore
2 Delft University of Technology, Delft, The Netherlands
1 patrick@janssen.name 2 stouffs@nus.edu.sg

Abstract. Parametric modelling is a term widely used to describe a
range of modelling approaches. This paper proposes a taxonomy that
distinguishes types of parametric modelling in the way they support it-
eration. A generalized parametric model is described and used as an
analytical device to investigate how different parametric modelling
methods provide for iteration over list structures.

Keywords. Parametric modelling, iteration, taxonomy.

1. Introduction

Parametric modelling is a term widely used to describe a range of modelling
approaches. There have been previous attempts at classifying parametric mod-
elling methods. Barrios Hernandez (2006) distinguishes parametric variations
from parametric combinations (and parametric hybrid models). From a sys-
tems point of view, this distinction is uninformative as almost all currently
available systems exhibit a hybrid approach in order to provide specific fea-
tures and capabilities of interest to the users. Monedero (2000) distinguishes
variants programming, history-based (constraint) modelling, variational ge-
ometry, rule-based variants, and parametric feature-based design. Both vari-
ants programming and rule-based variants use a programming approach, the
former imperative programming, the latter a form of logical programming.
Variational geometry emphasizes the use of a constraint solver; parametric
feature-based emphasizes the consideration of a concept of features. Most par-
ametric systems used in architecture would be classified as history-based
modelling.

Instead, we adopt a taxonomy that distinguishes types of parametric mod-
elling, based on the way they support iteration. This taxonomy offers a clear

Y. Ikeda, C. M. Herr, D. Holzer, S. Kaijima, M. J. Kim. M, A, Schnabel (eds.), Emerging Experience in
Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the
Association for Computer-Aided Architectural Design Research in Asia CAADRIA 2015, 157–166. © 2015,
The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong

2 P. JANSSEN AND R. STOUFFS

and unambiguous way to classify different parametric modelling methods as
well as the systems that implement these methods, without lumping most
methods within the same category. The paper first describes a generalized par-
ametric model to be used as an analytical device to investigate different para-
metric modelling methods. In general, a parametric model consists of a col-
lection of modelling operations that are linked into a network that can be
topologically sorted, that is, the order of execution of the modeling operations
can be defined prior to execution. Therefore, we adopt a Directed Acyclic
Graph (DAG) as a generalized representation of a parametric model. Next, we
consider a taxonomy of parametric modelling methods based on different it-
eration methods within a graph, resulting in four types: object modelling, as-
sociative modelling, dataflow modelling, and procedural modelling. The final
discussion relates parametric modelling to generative modelling using imper-
ative programming.

2. Generalized Parametric Model

We propose a Generalized Parametric Model (GPM), represented by a Di-
rected Acyclic Graph (DAG), as a means to analyse and compare different
parametric modelling methods. The GPM is used as an analytical device and
there is no suggestion that the systems being discussed were actually imple-
mented using such a DAG. Modelling methods that cannot be mapped into the
proposed GPM are categorised as not being parametric modelling methods.
This broader category will be addressed in the final discussion.

A GPM graph consists of a set of nodes connected with directed edges.
Nodes are distinguished as operation nodes and data nodes. The former repre-
sent general computational operations, both geometric and non-geometric.
The latter represent the input and output data for the operations, either geo-
metric, non-geometric or a combination thereof. Edges connect operation
nodes with data nodes and represent the flow of data from and to the opera-
tions. An example of a GPM graph is shown in Figure 1.

Operation Nodes

Operation nodes are typically implemented using an imperative programming
language and, as such, can execute any complex procedure. The functionality
of an operation node is constrained by the functions that can be invoked in the
underlying modelling engine. Modelling engines may focus on different mod-
elling techniques, for example, spline-based modelling, polygon-based mod-
elling, and solid modelling. Some systems also include as operations advanced
solvers that take problem descriptions as inputs and use iterative procedures
to attempt to calculate a solution. Examples of solvers include particle solvers,

158

 TYPES OF PARAMETRIC MODELLING 3

rigid body solvers, constraint solvers, and optimization solvers. This paper
does not take into consideration these differences in modelling engines and
instead focuses on the topology of the DAGs that can be defined.

Each operation node can have multiple inputs and outputs. The inputs may
include a set of parameters required for the operation, e.g., an ‘extrude’ oper-
ation may require a list of polygons as input data, as well as a direction vector
and the extrusion distance.

Figure 1: An example of a GPM graph.

Data Nodes

A data node may serve both as an output of one operation and as an input of
another operation. The representational data structure used for data nodes may
vary depending on the system. Three commonly used data structures are flat
lists, nested lists (or multi-dimensional arrays), and topological data structures
(such as hierarchical data (tree) structures). In some systems, the user may
have no control over the data structure while in other systems users may be
provided with operations and tools that enable them to construct customized
data structures.

Edges

Edges represent the flow of data, connecting operation nodes with data nodes,
and vice versa. The (directed) edges going into an operation represent the data
sets consumed by this operation; the edge going out of an operation represents
the data set produced by this operation. A data node with more than one edge
leaving from it represents a data cloning operation; the respective inputs will
be exact copies of each other.

159

4 P. JANSSEN AND R. STOUFFS

Execution

The execution of a GPM graph is assumed to be performed in a synchronous
manner (Lee and Messerschmitt, 1987), with the order of execution defined
by applying a topological sort algorithm to the graph. For any set of nodes,
many valid orderings are possible, e.g., in Figure 1, the numbering of the op-
eration nodes indicates one possible ordering. Each time the graph is executed,
the output data sets are reproduced. Changing the input data will trigger the
re-execution of the graph, thereby generating new output data. In most sys-
tems, only operation nodes downstream of the changed data will be re-exe-
cuted.

Iteration

Due to the acyclic nature of the GPM graph, loops cannot be defined. How-
ever, this does not rule out iteration over lists of entities. Three broad types of
iteration are defined: single-operation iteration, implicit multi-operation iter-
ation, and explicit multi-operation iteration (Figure 2).

The simplest type of iteration is an iteration that applies the same operation
simultaneously over multiple geometric entities. For example, if the input of
an ‘extrude’ operation consists of a list of polygons, then the node may iterate
over the list and extrude each polygon in turn. If the operation takes additional
parameters, these parameters would all have a single input value. This type of
iteration is referred to as single-operation iteration.

The iteration becomes more complex if additional parameters may also be
assigned multiple input values. For example, if the extrusion distances are also
provided as a list, then the operation may iterate over both lists, performing
some more complex type of data matching. This type of iteration is referred
to as implicit multi-operation iteration. In general, it allows for the use of cus-
tom data structures consisting of nested lists in combination with data match-
ing algorithms that appropriately interpret these nested lists (Figure 2, top).
The user must ensure that the data is structured in an appropriate manner in
order to achieve the desired iterative behaviour.

Explicit multi-operation iteration explicitly represents the iterative process
using additional nodes with specialized semantics that modify the control
flow. In current modelling systems, this is implemented in two ways: using
data sinks or using recursion. With data sinks, two nodes with specialized se-
mantics are required: a ‘for each’ operation node iterates over a list and ex-
tracts one data item from the list at a time; a ‘sink’ data node collects the re-
sults from the application of one or more operations to each data item (Figure

160

 TYPES OF PARAMETRIC MODELLING 5

2, middle). When all items in the list have been processed, the ‘for each’ node
will trigger the ‘sink’ node, allowing downstream operation nodes to be exe-
cuted. This approach also allows ‘for each’ nodes to be nested. For example,
one ‘for each’ node may iterate over a list of polygons, and a second may then
iterate over the list of points in each polygon.

Figure 2: Three different approaches for multi-operation iteration.

161

6 P. JANSSEN AND R. STOUFFS

Explicit multi-operation iteration using recursion requires just one node
with specialized semantics: a node that represents the current subgraph, called
‘this’ node. When data is input into ‘this’ node, it is equivalent to re-executing
the whole subgraph with new data. A recursive iterator splits an input list into
a head and a tail using a ‘split’ operator (Figure 2, bottom). The head consists
of a single data item, to which one or more operations are applied. The tail is
a list containing the remaining data items, which is input into ‘this’ node. Fi-
nally, the output from the multiple operations is prepended to the result from
‘this’ node. Note that a ‘switch’ operation is required in order to deal with the
case when the tail is an empty list.

3. A taxonomy of parametric modelling methods

A taxonomy is proposed that divides parametric modelling into four broad
categories, labelled as ‘object modelling’, ‘associative modelling’, ‘dataflow
modelling’, and ‘procedural modelling’. The distinguishing factor for these
modelling methods is how they support iteration. Object modelling does not
support iteration and the graph is only implicitly defined. Associative model-
ling is defined as supporting single-operation iteration, dataflow modelling as
supporting implicit multi-operation iteration, and procedural modelling as
supporting explicit multi-operation iteration.

Current parametric modelling systems support these three types of iteration
to varying extents. Systems that allow the user to directly construct and ma-
nipulate the dependency graph are the most powerful. Such graph-based sys-
tems include Bentley’s GenerativeComponents and Rhino Grasshopper. Both
of these systems support implicit multi-operation iteration using nested list
data structures. Operations then iterate on the data in the nested lists using
various data matching algorithms. Graph-based systems that additionally sup-
port explicit multi-operation iteration include Sidefx Houdini and Autodesk
Dynamo. Both these systems support explicit multi-operation iteration. Hou-
dini supports iteration using data sinks. Dynamo supports iteration using re-
cursion.

Scene-based systems and feature-based system allow the user to manipu-
late the dependency graph via various intermediary representations. These
types of systems support single-operation iteration, but not multi-operation
iteration. Scene-based systems have mainly been developed to support the an-
imation and movie industries. Examples include Autodesk Maya and Auto-
desk 3DS Max. Feature-based systems have mainly been developed to support
mechanical engineering. Examples include Dassault Solidworks, Dassault
Catia, and Autodesk Inventor.

162

 TYPES OF PARAMETRIC MODELLING 7

More basic types of systems do not support iteration. Trimble SketchUp’s
‘dynamic components’ exemplifies this object modelling approach. Dynamic
components are groups of geometries with parameters (and inputs) defined.
Operations can be added to repeat a part of a component, to add behaviour to
a part or to define a spatial relationship between parts.

3.2. ASSOCIATIVE MODELLING

Graph-based systems are more closely aligned with the proposed GPM and
the mapping from these systems to the GPM is relatively straightforward.
However, for scene-based and feature-based systems, this is not the case. This
section will focus on how the associative representations used in these types
of systems can be mapped to GPM graphs.

3.2.1. Scene-Based Systems

Scene-based systems enable users to create scenes populated with objects. Ob-
jects are defined using sequences of modelling operations, referred to vari-
ously as ‘modifier stacks’ and ‘dependency graphs’. Figure 3 shows an exam-
ple of a scene-based model on the left, and the equivalent GPM graph on the
right.

When using scene-based systems, the two main modelling tasks are creat-
ing individual objects and creating the object scene hierarchy. The latter con-
sists of a hierarchical tree of geometric objects that are located in space using
associated transformations, including translation, rotation, and scaling. Ob-
jects inherit the transformations of their parents.

Each individual object is created using a sequence of modelling operations
that are independent from the scene hierarchy. These sequences of modelling
operations may also be linked to one another, thereby creating a dependency
graph. The order of object creation in the dependency graph may differ com-
pletely from the order of the objects in the scene hierarchy

Upon mapping the dependency graph into a corresponding GPM graph
(Figure 3), the associated transformations from the scene hierarchy are added
as operation nodes. The transformation parameters are mapped into data nodes
providing inputs to these operations, in such a way as to replicate the object
relationships defined in the scene hierarchy.

3.2.2 Feature-Based Systems

Feature-based systems enable users to create parametric models consisting of
assemblies of parts. The parts are defined using feature trees, where each fea-
ture represents a modelling operation. Figure 4 shows an example of a feature-
based model on the left, and the equivalent GPM graph on the right.

163

8 P. JANSSEN AND R. STOUFFS

When using feature-based systems, the two main tasks are creating indi-
vidual parts and creating assemblies of the parts. In an assembly, parts are
located by defining relationships with other parts, where relationships consist
of constraints and joints. A 3D solver is then used in order to search for con-
figurations that satisfy these relationships.

Figure 3: An example model from a (general) scene-based system and the corresponding

GPM graph.

Each individual part is created using a sequence of modelling operations,
or features. Typically, three types of features can be defined: sketched fea-
tures, placed features, and work features. Sketched features are operations that
generate geometry from 2D or 3D drawings, called ‘sketches’. These sketches
are either linked to one of the planes in the origin coordinate system or are
linked to a plane in the geometric model. Sketches can include various con-
straints, and a solver is used in order to modify the drawing to satisfy the con-
straints. Placed features are operations that modify the existing geometry in

164

 TYPES OF PARAMETRIC MODELLING 9

some way. Lastly, work features are operations that create construction geom-
etry that is not included in the final output for the part.

Figure 4: An example model from a (general) feature-based system and the corresponding

GPM graph.

Parts can also be linked to one another by creating ‘derived parts’. A de-
rived part is a part that derives some of its geometry from the geometry in
another part. This interlinking of parts allows the equivalent of a dependency

165

10 P. JANSSEN AND R. STOUFFS

graph to be created. However, the feature-based systems do not typically pro-
vide an explicit representation of this dependency graph; instead, the depend-
ency graph needs to be inferred from the various part trees.

Mapping the assembly tree and the part trees into a corresponding GPM
graph (Figure 4) requires the various part trees to be combined into a single
graph. For each sketched feature, a data node and solver is inserted into the
graph. The assembly tree is then mapped into a set of relationships and a 3D
solver in the graph. The relationships define a set of constraints and joints
between the geometric objects. The solver is then used to position the objects
is such a way so that the relationships are all satisfied.

4. Discussion

We have adopted DAG to represent a Generalized Parametric Model (GPM),
as a means to analyse and compare different parametric modelling methods.
However, there is at least one type of parametric modelling that we have omit-
ted in our taxonomy, parametric modelling through imperative programming.
One reason is that imperative programming cannot be mapped into a GPM
graph, simply because imperative programming supports loops and thus can-
not be represented through an acyclic graph. Another reason is the fact that
imperative programming is inherently parametric (Gürsel Dino, 2012, p. 210)
and, as such, casting imperative programming as a parametric modelling
method is rather uninformative. Nevertheless, if we were to include it in our
taxonomy, an additional category called ‘generative modelling’ could be de-
fined at the same level as parametric modelling.

5. Conclusion

We have adopted a taxonomy based on how parametric modelling methods
support iteration, as it offers a clear and unambiguous way to classify different
parametric modelling methods as well as the systems that implement these
methods, without lumping most methods within the same category.

References
Barrios Hernandez, C. R. (2006), Thinking parametric design: introducing parametric Gaudi,

Design Studies, 27(3), 309–324.
Gürsel Dino, İ.. (2012), Creative design exploration by parametric generative systems in archi-

tecture, METU JFA, 29(1), 207–224.
Lee, E. A. and Messerschmitt, D. G. (1987), Synchronous data flow, Proceedings of the IEEE,

75(9), 1235–1245.
Monedero, J. (2000), Parametric design: a review and some experiences, Automation in Con-

struction, 9, 369–377.

166

