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Abstract. This paper proposes a digitally enhanced type of performance driven design 
method. In order to demonstrate this method, a design environment is presented that links 
the SideFx Houdini modelling and animation program to the Radiance and EnergyPlus 
simulation programs. This environment allows designers to explore large numbers of 
design variants using a partially automated iterative process of design development, design 
evaluation, and design feedback.
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INTRODUCTION
The idea of using building performance simulations 
to drive design decisions early in the design process 
has been around since the early days of CAD. As 
early as 1972, the ABACUS group at the University 
of Strathclyde built one of the first integrated per-
formance driven design systems, known as GOAL. 
The designer proposes a geometry and a choice of 
construction materials, and GOAL then appraises the 
proposed design in terms of construction cost, an-
nual energy costs, combined costs-in-use, thermal 
energy consumption, lighting energy consumption 
and planning efficiency (Maver 1970, 1972, 1998).

The authors have developed a generalised ver-
sion of the GOAL type of design approach, which we 
refer to as Iterative Virtual Prototyping (IVP). With 
this approach, the designer first defines customised 
digital procedures for both developing and evalu-
ating design variants. With the GOAL system, these 
procedures were hard-coded in the system, whereas 
with the IVP approach, these procedures are defined 
by the designer. The developmental and evaluation 
procedures are highly interrelated, and are together 

referred to as a design schema (Janssen 2004). The 
design schema delineates a family of possible de-
signs that all share a certain design character, but 
that may vary in overall form and configuration.

Once the designer has defined their schema, 
then can then embark upon an open-ended explo-
ration of this family of designs, through a cyclical 
process of development, evaluation, and feedback. 
The developmental step generates design variants 
which differ in their overall form and configuration; 
the evaluation step evaluates the performance of 
these variants; and in the feedback step, the results 
from the evaluation step are analysed and decisions 
are made on how to develop further variants in the 
next development step.

In order for the IVP approach to be feasible, a 
digital environment is required that will allow the 
designer to define their own customised develop-
mental and evaluation procedures. These proce-
dures may be very complex, and since most design-
ers have only very limited programming skills, a vi-
sual approach needs to be used for defining these 
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procedures. Furthermore, the environment should 
allow for efficient and effective exploration of large 
numbers of design variants during the early stages 
of design. It is therefore critical that the environment 
remains agile and flexible by minimising the amount 
of information that is required for both the develop-
mental and the evaluation procedures.

Based on the promising beginnings highlighted 
above, it might be expected that during the inter-
vening four decades, a wide range of digital tools 
would have been developed that successfully inte-
grated design development with design evaluation. 
Unfortunately, this is not the case. Today, there exist 
a massive disconnect between tools for design de-
velopment and tools for design evaluation (Kolarevic 
and Malkawi 2005). The problem is the inability of 
diverse software applications to smoothly manage 
and exchange digital project data, which is referred 
to as the interoperability problem (Eastman 2008). 
The solution is well known, and is referred to as 
Building Information Modelling (BIM).

However, typical BIM solutions are not appro-
priate within the context of the proposed IVP design 
approach, for two reasons. Firstly, from a practical 
perspective, current BIM solutions are still incapable 
of supporting the smooth exchange of digital data, 
even between a small number of well known CAD 
and simulation applications.  Secondly, from a con-
ceptual perspective, current BIM solutions tend to 
maximise the amount of project data rather than 
minimize it, resulting in environments that are cum-
bersome and rigid. In the latter stages of the deign 
process, this strategy may be necessary, since a di-
verse set of stakeholders need to share and correlate 
large amounts of data. However, in the early stages 
of the design process, agility and flexibility are para-
mount. It is therefore important to use a minimal BIM 
approach rather than a maximal BIM approach.

This paper reports on a digital environment 
for IVP that successfully overcomes the two above 
mentioned hurdles. First, in order to allow de-
signers to define their own customised develop-
mental and evaluation procedures, the proposed 

environment uses Visual Dataflow Modelling (VDM) 
tools. Second, in order to allow designers to work in 
a flexible and agile manner, the the building infor-
mation data that is being manipulated is reduced 
to the absolute minimum.

A DIGITAL DESIGN ENVIRONMENT FOR IVP
VDM is a procedural approach to creating design 
models (Woodbury 2010, Janssen and Chen 2011). 
It allows designers to efficiently explore alternative 
forms without having to manually build each differ-
ent version of the design model for each scenario. 
Such systems are used by architects and engineers 
to automate design generation and accelerate the 
design process. Houdini is a software system that 
uses the procedural dataflow approach not just for 
modelling, but for for all tasks including animation, 
rendering, and compositing.

Modellig in Houdini
Modelling in Houdini consists of creating dataflow 
procedures. The dataflow network is created using 
nodes and links, where nodes can be thought of as 
functions that perform actions, and links connect 
the output of one function to the input of another 
function. The user visually drags nodes onto the net-
work view from a library of available nodes. The user 
can then connect inputs and outputs of the nodes, 
thereby defining links.

Nodes have parameters that affect how the 
node behaves. For example, the Sphere node has 
parameters that define the centre point and radius 
of the sphere to be generated. The user may either 
enter the parameter value directly, or may enter a 
scripted expression that retrieves the parameter val-
ue from some other node in the network. This results 
in a second type of network, which we refer to as the 
parameter network.

The geometric data that nodes process has at-
tributes associated with it. Attributes include things 
like x,y,z positions, normal vectors, colour values, etc. 
Users can view attribute data in Houdini as a spread-
sheet of data. Each node in the network will create, 
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add to, and/or filter this data. The attribute data can 
be though of as flowing through the geometry net-
work, being passed from one node to the next

Custom nodes
Houdini provides nodes for performing a wide vari-
ety of modelling tasks. However, users can also cre-
ate their own custom nodes, (referred to as Digital 
Assets). These nodes can perform any type of task of 
arbitrary complexity, and they can have any number 
of custom parameters.

Custom nodes can be added to the Houdini 
environment, and used in the same way as the built 
in nodes. This allows for a high level of encapsula-
tion and reuse. Custom nodes can be created to 
link Houdini to simulation programs. Such a custom 
node would first have to generate the required text 
based input files, then execute the program, and fi-
nally read the text based output files.

Custom nodes for Radiance and EnergyPlus 
have been developed. Users first create a model in 
Houdini using the standard built-in nodes, and then 
feed this model into the custom simulation node. 
This node then runs the simulation, and the results 
from the simulation are then imported back into 
Houdini and displayed to the user. The nodes have 
various parameters for setting up and controlling 
the simulations.

Custom attributes
In order to generate the input files, the simulation 
node reads the Houdini model being fed into it, and 
converts this model into the appropriate format for 
the simulation program. This is in essence an in-
teroperability problem – the simulation node trans-
lates from the Houdini model format to the simula-
tion model format. In order to do this, the simulation 
nodes need to extract the data from the Houdini 
model, and then restructure and reformat this data 
according to the requirements of each simulation 
program. However, this is a complex task and the 
Houdini model on its own does not provide suffi-
cient information.

Entities in the Houdini model therefore need to 
be tagged with additional information. This is a fea-
ture that is built into the core of Houdini’s approach to 
modelling, and consists of creating custom attributes. 
Some attributes, such as the x, y and z positions of 
points, are automatically generated by Houdini. How-
ever, users can also add their own custom attributes.

Houdini provides a set of nodes for creating, delet-
ing, and manipulating attributes. These nodes can be 
used to create custom attributes for any geometric en-
tity in the model. The data types of such attributes can 
be strings, integers, floats, and vectors. For example, for 
the surfaces in the Houdini model, the user may create 
a custom attribute called ‘material’. Each surface in the 
model can then be assigned a material name.

LINKING WITH RADIANCE
Radiance is actually a collection of many separate 
programs that perform different tasks. The main in-
put file for Radiance is the RAD file (and has a .rad 
extension). Given a RAD file, the first step is to con-
vert this into a different file format called an octree, 
using a program called oconv. Using this octree 
file as input, three types of simulations can be per-
formed using three different programs: rtrace, rpict, 
and rvu. With rtrace, the user inserts sensor points in 
the model and then uses the simulation to measure 
illuminance or irradiance at these points. With rpict, 
the user can generate false colour images from a 
particular view point in the model. With rvu, the user 
is presented with a graphical interface that will allow 
false colour images to be generated interactively, by 
changing the camera position and orientation. The 
Radiance node will allow the user to execute these 
programs through a simple graphical user interface.

The RAD file typically defines a list of materials 
and a list of geometric primitives. Each material has 
a name, a type, and some data that defines the prop-
erties of the material. Each primitive has a name, a 
type, a material name, and a set of data that defines 
the shape of the primitive. Primitive types for geo-
metric entities include polygons, spheres, cones, cyl-
inders, and meshes.
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Radiance node
The Radiance node can be used to run Radiance sim-
ulations from within Houdini. The node has two in-
puts: one for the model geometry and one for sensor 
grids. The model geometry includes all the polygons 
to be included in the simulation.

The geometry fed into the first input on of the 
Radiance node needs to be constructed from poly-
gons. The node will translate each Houdini polygon 
to a RAD primitive of type polygon. The polygons in 
the Houdini model are expected to have custom at-
tributes to define the material. (Additional custom 
nodes are provided to help users define these attri-
butes.) The node will extract the values of these at-
tributes when generating the RAD file.

The user needs to construct the Houdini model 
in a way that is compatible with Radiance. Three key 
modelling rules therefore need to be followed. First, 
all polygons must be planar (although they can be 
any shape and can have any number of vertices). 
Second, polygon normals must point inwards for 
interior simulations, and must point outwards for 
exterior simulations. Third, polygons cannot have 
holes. This means that, in order to represent a hole 
in a surface, the surface needs to be modelled as a 
polygon that wraps around the hole.

The second input of the Radiance node is for 
inputting sensor grids. This is optional and is only 
required if an rtrace simulation is going to be per-
formed. When the rtrace simulation is run, the simu-
lation results will be copied to the sensor points as 
attributes. This then means that the results from an 
rtrace simulation can be graphically displayed inside 
Houdini, using coloured surfaces.

LINKING WITH ENERGYPLUS
EnergyPlus is an energy analysis and thermal load 
simulation program. Based on a user’s description of 
a building, EnergyPlus can calculate the heating and 
cooling loads necessary to maintain thermal control 
setpoint conditions. EnergyPlus consists of a single 
executable that can perform many different func-
tions. The main input file for EnergyPlus is the IDF 

file (and has a .idf extension). When EnergyPlus is ex-
ecuted, it reads the IDF file and the weather file that 
contains the weather data for the simulation.

The IDF file is significantly more complex than 
the RAD file. Firstly, the IDF file needs to specify a 
large number of settings for running the simula-
tion, such as simulation parameters, location in-
formation, schedules, HVAC system details, output 
reports, and so forth. Second, when describing the 
geometry, EnergyPlus needs information about 
how various elements such as floors, walls and 
windows are related to one another. In order to de-
fine these relationships, a key concept is the zone, 
which is an air volume at a uniform temperature 
plus all the surfaces bounding or inside of that air 
volume. EnergyPlus calculates the energy required 
to maintain each zone at a specified temperature 
for each hour of the day.

The IDF file consists of a list of objects. Each 
object has a type, such as Zone, followed by a set 
of fields that describe the properties of that object. 
Some of the fields may reference other objects in the 
same IDF file. Through such references, a hierarchi-
cal relationship is defined between zones, building 
surfaces, fenestration surfaces, and shading zone 
objects. Each building surface object has a field that 
references a zone object, and each fenestration sur-
face object and shading zone object has a field that 
references a building surface object.

EnergyPlus node
The EnergyPlus node can be used to run a limited 
range of EnergyPlus simulations from within Houdi-
ni. The node does not aim to expose all EnergyPlus 
functionality, but instead focuses on the types of 
simulations required at early concept design stages. 
The node has two inputs: one for zone geometry, 
and one for shading geometry. The zone geom-
etry includes all the polygons that are associated 
with zones. The shading geometry is optional, and 
includes all polygons used to define surrounding 
buildings or other structures that shade the zones 
being simulated.
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As with the Radiance node, the geometry fed 
into the first input of the EnergyPlus node needs 
to be constructed from polygons. The node will 
translate each Houdini polygon to an IDF object. 
The polygons in the Houdini model will need to 
have certain custom attributes that define the sur-
face type and the construction. (Additional custom 
nodes are provided to help users define these attri-
butes.) The three possible object types are a building 
surface object, a building fenestration object, and a 
zone shading object (for shading elements attached 
of the building). The node will extract the values of 
these attributes when generating the IDF file.

The user needs to construct the Houdini model 
in a way that is compatible with EnergyPlus. In this 
case, four key modelling rules therefore need to be 
followed. First, all polygons must be planar and must 
have a maximum of four points. Second, polygon 
normals must point always point outwards, towards 
the exterior of the zone. Third, walls, floors, or ceil-
ings that divide adjacent zones must be modelled 
as two coplanar surfaces, one for each zone. Fourth, 
when inserting a fenestration into a surface, the sur-
face should not have a hole cut into it.  Fifth, win-
dows with four points must be orthogonal.

Note that a polygon representing a building 
surface must have a consistent type and construc-
tion. In a conventional CAD mode, a designer may 
create a single wall surface that in some areas is an 
exterior wall, and in other areas is an interior wall. For 
EnergyPlus, this would be invalid. The surface would 
need to be split up into smaller surfaces, so that each 
surface is either all interior or all exterior.

DEMONSTRATION
In order to demonstrate the IVP approach, a scenario 
has been set up, whereby Houdini is used to generate 
and evaluate design variants for a highly simplified 
building type, set in a fictitious location in Singapore. 
The Radiance and EnergyPlus nodes are used to run 
simulations for both daylighting and energy.

The design is for a three storey free-standing 
structure. Each storey consists of a single room, 15m 
x 15m in plan, and 3m high. The three rooms are 
stacked on top of one other, and are each offset from 
the room below. This offset exposes certain roof ar-
eas of the room below, and these exposed areas are 
then glazed in order to allow daylight to enter the 
room. For the third room, similar glazed areas are 
added, even though there is no room above it. This is 
achieved by adding a fourth virtual room, used only 
for generating windows in the room below. Fig 1a, 
1b, and 1c shows three parametric variants of of this 
building, each with different offsets. Seven param-
eters are required to control the offset and the rota-
tion of the overall building.

In order to provide some kind of context, a 
simple environment has been created, consisting of 
a set of urban blocks. Each urban block has a differ-
ent height, thereby creating varied shading affects 
from different orientations. (See Fig 1d.) Within this 
site, the building can be orientated in any direction.

The Houdini network
Varying any of the seven parameters can have a sig-
nificant impact on the performance of the design, in 
terms of both daylighting and energy consumption. 

Fig. 1. 
(a) (b) (c) Three design vari-
ants. (d) The design in the site 
context.
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In order to effectively explore the impact of parameter 
changes, an IVP Houdini network has been created 
that links design generation to design evaluation. The 
network includes a set of sub-networks for generating 
all the model polygons, for running the simulations, 
and for displaying the results. Each sub-network has 
a set of nodes inside. The network is shown in Fig. 2.

At the top of the network, a node is created to 
store the seven parameters for generating the design 
variants. These parameters are connected to various 
nodes in other parts of the network via parameter 
expressions. Changing any of these parameters will 
trigger a new design variant to be generated, which 
will trigger the Radiance and EnergyPlus simulations 
to be executed. Once the simulations are complete, 
the results will immediately be displayed within 
Houdini, thereby giving fast feedback to the de-
signer. In this demonstration, it takes approximately 
half a minute for the network to be re-executed after 
parameter changes have been made.

For generating the geometry, three sub-net-
works have been created. The generate_model sub-
network creates the main design model, the gener-
ate_sensors sub-network creates sensor grids within 
each of the three rooms, and the generate_context 
sub-network creates the neighbouring urban blocks.

As well as adding attributes, the geometry also 
needs to be further manipulated so as to ensure that 
the modelling rules for each simulation program 
are not broken. These additional manipulations are 

performed inside the radiance_model and energy-
plus_model sub-networks. For Radiance, holes for 
windows have to be cut into the roof polygons us-
ing boolean operators. In addition, polygon normals 
have to point inwards, towards the interior of the 
space. For EnergyPlus, each polygon has to be split 
into sub-polygons, again using boolean operators. In 
this case, polygon normals have to point outwards 
towards the exterior of the space.

For running the simulations, three sub-net-
works have been created. The radiance_rpict sub-
network runs the Radiance simulation that produces 
rendered and false-colour images for various view-
points inside the rooms. (See Fig. 3a and 3b.) The 
images give an understanding of how light enters 
the room through the window slots in the ceiling. 
The radiance_rtrace sub-network runs the Radiance 
simulation that calculates daylight levels at the sen-
sor grids within each of the three rooms. The simula-
tions were run using an overcast sky. The data that is 
generated can be used to asses the design’s overall 
performance in terms of daylighting. The energyplus 
sub-network runs the EnergyPlus simulation that 
calculates the total energy transfer for the building, 
and the total insolation for each surface. Three zones 
are created, and each zone is assigned an HVAC ideal 
load air system. The cooling and heating set point 
temperatures have been set at 25 degrees and 18 
degrees respectively. The data that is generated can 
be used to asses the design’s overall performance in 
terms of energy consumption.

Fig 2 (left)
Network for generating and 
evaluating design variants. 
The nodes shown in this 
network are container nodes 
that each contain another 
network to perform a specific 
task. (left)

Fig 3 (right) 
Simulation results for one 
design variant. (a) Rendering 
of interior space created 
using Radiance (rpict). (b) 
False colour image of interior 
space created using Radiance 
(rpict). (c) Energy transfer 
through each model surface 
calculated using EnergyPlus. 
(d) Daylight levels calculated 
using Radiance (rtrace). 
(right)
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For displaying results within Houdini, two sub-
networks have been created. In the display_daylight 
sub-network, the results generated by Radiance 
rtrace are transferred back to the points in the sen-
sor grid, and are stored as attribute values. These val-
ues are then visualised by colouring the sensor grid. 
(See Fig. 3d.) In the display_energy sub-network, 
the results generated by EnergyPlus are transferred 
back to the polygons in the design model and are 
again stored as attribute values. The insolation data 
is visualised by colouring the polygons, and the total 
energy transfer is displayed as text. (See Fig. 3c.)

Finally, the write_results_to_file sub-network 
has been created for writing simulation results to a 
csv file. This sub-network can be used together with 
Houdini’s animation tools in order to automatically 
simulate a whole sequence of design variants. This is 
referred to as parameter sweeping.

Parameter sweeping
Parameter sweeping involves developing a set of de-
sign variants by incrementing one parameter while 
keeping all other parameters constant. The variants 
are then all evaluated in order to understand how 
performance varies as the chosen parameter is ‘swept’ 
from its minimum value to its maximum value.

In the case study, parameter sweeping can be 
demonstrated using the rotation parameter. For 
the offset parameters, fixed values first need to be 
set. The animation can then be run for a total of 72 
frames, and at each frame, the rotation parameter 
is incremented by 5 degrees. The modified param-
eter triggers the generation of a new design variant, 

which in turn triggers the Radiance and EnergyPlus 
simulations. The results from the simulations are 
then appended to the results csv file. At the end of 
the animation, the csv file will contain the results 
for all design variants. Two graphs can then be plot-
ted. (See Fig. 4.) The first graph plots the orientation  
parameter against the average daylight level, and 
the second graph plots the orientation parameter 
against the total energy transfer.

CONCLUSIONS
The research has demonstrated the feasibility of us-
ing VDM to support an IVP design approach. The pro-
posed design environment overcomes the two key 
hurdles identified at the start of this paper. First, the 
use of VDM tools such as Houdini allow users to cre-
ate sophisticated design development and design 
evaluation procedures. Second, the use of custom 
nodes allows interoperability issues with simulation 
software such as Radiance and EnergyPlus to be suc-
cessfully overcome.

Future research will focus on developing cus-
tom nodes for a wider range of simulation programs. 
In particular, we are interested in structural simula-
tions and airflow simulations.

REFERENCES
Kolarevic, B and Malkawi, A 2005, Operative Per-

formativity (panel discussion), in Performative 
architecture: beyond instrumentality, New York : 
Spon Press, 2005, pp.239-246.

Eastman, C, Teicholz, P Sacks, R, and Liston, K 2008, 
BIM Handbook Published, Wiley  2008

Coenders, JL 2007, Interfacing between paramet-
ric associative and structural software, in Pro-
ceedings of the 4th International Conference on 
Structural and Construction Engineering,. Xie M, 
Patnaikuni I (eds.) Melbourne, Australia, 26-28 
September .

Garber, R. (ed.) 2009, Closing the Gap: Information 
Models in Contemporary Design Practice, Vol-
ume 79, Issue 2 of Architectural Design, John 
Wiley & Sons

Fig 4. 
Graphs showing how Total 
Energy Transfer and Average 
Illuminance change as the 
orientation parameter is 
incremented from 0 to 360 
degrees.



260 eCAADe 29 - Design Tool Development

Hensel, M and Menges, A 2009, Patterns in Perfor-
mance-Orientated Design, in Architectural De-
sign, Vol 79, No 6 (November/December 2009), 
pp. 88 to 93.

Janssen, PHT 2004, A design method and a computa-
tional architecture for generating and evolving 
building designs. Doctoral dissertation, School 
of Design Hong Kong Polytechnic University 
(October 2004).

Janssen, PHT and Chen, KW 2011, Visual Dataflow 
Modelling: A Comparison of Three Systems, in 
Proceedings of the CAAD Futures ‘11, (to be pub-
lished).

Lagios, K, Niemasz, J, and Reinhart, CF 2010, Ani-
mated Building Performance Simulation (ABPS) 
– Linking Rhinoceros/Grasshopper with Radi-
ance/Daysim, in Proceedings of SimBuild 2010.

Maver, TW 1970, Appraisal in the Building Design 
Process, in Moore G T ed, Emerging Methods in 
Environmental Design and Planning, MIT Press, 
1970.

Maver, TW 1972, PACE: An Interactive Package for 
Building Design Appraisal, in Proceedings of 
On-Line 72, Brunel, 1972

Maver, TW 1998, Prospects for CAAD: An optimistic 
perspective, in II Seminario Iberoamericano de 
Grafico Digital [SIGRADI], Mar del Plata, Argen-
tina, pp. 6-13.

Woodbury, R 2010, Elements of Parametric Design, 
Routledge, NY. 


