
Design Tool Development - eCAADe 29 253

Iterative Virtual Prototyping:

Performance Based Design Exploration

Patrick Janssen1, Kian Wee Chen2, Cihat Basol3

1,2,3National University of Singapore
1patrick@janssen.name, 2chenkianwee@gmail.com, 3cihatbasol@gmail.com

Abstract. This paper proposes a digitally enhanced type of performance driven design
method. In order to demonstrate this method, a design environment is presented that links
the SideFx Houdini modelling and animation program to the Radiance and EnergyPlus
simulation programs. This environment allows designers to explore large numbers of
design variants using a partially automated iterative process of design development, design
evaluation, and design feedback.
Keywords. Performance; iterative; prototyping; Radiance; EnergyPlus.

INTRODUCTION
The idea of using building performance simulations
to drive design decisions early in the design process
has been around since the early days of CAD. As
early as 1972, the ABACUS group at the University
of Strathclyde built one of the first integrated per-
formance driven design systems, known as GOAL.
The designer proposes a geometry and a choice of
construction materials, and GOAL then appraises the
proposed design in terms of construction cost, an-
nual energy costs, combined costs-in-use, thermal
energy consumption, lighting energy consumption
and planning efficiency (Maver 1970, 1972, 1998).

The authors have developed a generalised ver-
sion of the GOAL type of design approach, which we
refer to as Iterative Virtual Prototyping (IVP). With
this approach, the designer first defines customised
digital procedures for both developing and evalu-
ating design variants. With the GOAL system, these
procedures were hard-coded in the system, whereas
with the IVP approach, these procedures are defined
by the designer. The developmental and evaluation
procedures are highly interrelated, and are together

referred to as a design schema (Janssen 2004). The
design schema delineates a family of possible de-
signs that all share a certain design character, but
that may vary in overall form and configuration.

Once the designer has defined their schema,
then can then embark upon an open-ended explo-
ration of this family of designs, through a cyclical
process of development, evaluation, and feedback.
The developmental step generates design variants
which differ in their overall form and configuration;
the evaluation step evaluates the performance of
these variants; and in the feedback step, the results
from the evaluation step are analysed and decisions
are made on how to develop further variants in the
next development step.

In order for the IVP approach to be feasible, a
digital environment is required that will allow the
designer to define their own customised develop-
mental and evaluation procedures. These proce-
dures may be very complex, and since most design-
ers have only very limited programming skills, a vi-
sual approach needs to be used for defining these

254 eCAADe 29 - Design Tool Development

procedures. Furthermore, the environment should
allow for efficient and effective exploration of large
numbers of design variants during the early stages
of design. It is therefore critical that the environment
remains agile and flexible by minimising the amount
of information that is required for both the develop-
mental and the evaluation procedures.

Based on the promising beginnings highlighted
above, it might be expected that during the inter-
vening four decades, a wide range of digital tools
would have been developed that successfully inte-
grated design development with design evaluation.
Unfortunately, this is not the case. Today, there exist
a massive disconnect between tools for design de-
velopment and tools for design evaluation (Kolarevic
and Malkawi 2005). The problem is the inability of
diverse software applications to smoothly manage
and exchange digital project data, which is referred
to as the interoperability problem (Eastman 2008).
The solution is well known, and is referred to as
Building Information Modelling (BIM).

However, typical BIM solutions are not appro-
priate within the context of the proposed IVP design
approach, for two reasons. Firstly, from a practical
perspective, current BIM solutions are still incapable
of supporting the smooth exchange of digital data,
even between a small number of well known CAD
and simulation applications. Secondly, from a con-
ceptual perspective, current BIM solutions tend to
maximise the amount of project data rather than
minimize it, resulting in environments that are cum-
bersome and rigid. In the latter stages of the deign
process, this strategy may be necessary, since a di-
verse set of stakeholders need to share and correlate
large amounts of data. However, in the early stages
of the design process, agility and flexibility are para-
mount. It is therefore important to use a minimal BIM
approach rather than a maximal BIM approach.

This paper reports on a digital environment
for IVP that successfully overcomes the two above
mentioned hurdles. First, in order to allow de-
signers to define their own customised develop-
mental and evaluation procedures, the proposed

environment uses Visual Dataflow Modelling (VDM)
tools. Second, in order to allow designers to work in
a flexible and agile manner, the the building infor-
mation data that is being manipulated is reduced
to the absolute minimum.

A DIGITAL DESIGN ENVIRONMENT FOR IVP
VDM is a procedural approach to creating design
models (Woodbury 2010, Janssen and Chen 2011).
It allows designers to efficiently explore alternative
forms without having to manually build each differ-
ent version of the design model for each scenario.
Such systems are used by architects and engineers
to automate design generation and accelerate the
design process. Houdini is a software system that
uses the procedural dataflow approach not just for
modelling, but for for all tasks including animation,
rendering, and compositing.

Modellig in Houdini
Modelling in Houdini consists of creating dataflow
procedures. The dataflow network is created using
nodes and links, where nodes can be thought of as
functions that perform actions, and links connect
the output of one function to the input of another
function. The user visually drags nodes onto the net-
work view from a library of available nodes. The user
can then connect inputs and outputs of the nodes,
thereby defining links.

Nodes have parameters that affect how the
node behaves. For example, the Sphere node has
parameters that define the centre point and radius
of the sphere to be generated. The user may either
enter the parameter value directly, or may enter a
scripted expression that retrieves the parameter val-
ue from some other node in the network. This results
in a second type of network, which we refer to as the
parameter network.

The geometric data that nodes process has at-
tributes associated with it. Attributes include things
like x,y,z positions, normal vectors, colour values, etc.
Users can view attribute data in Houdini as a spread-
sheet of data. Each node in the network will create,

Design Tool Development - eCAADe 29 255

add to, and/or filter this data. The attribute data can
be though of as flowing through the geometry net-
work, being passed from one node to the next

Custom nodes
Houdini provides nodes for performing a wide vari-
ety of modelling tasks. However, users can also cre-
ate their own custom nodes, (referred to as Digital
Assets). These nodes can perform any type of task of
arbitrary complexity, and they can have any number
of custom parameters.

Custom nodes can be added to the Houdini
environment, and used in the same way as the built
in nodes. This allows for a high level of encapsula-
tion and reuse. Custom nodes can be created to
link Houdini to simulation programs. Such a custom
node would first have to generate the required text
based input files, then execute the program, and fi-
nally read the text based output files.

Custom nodes for Radiance and EnergyPlus
have been developed. Users first create a model in
Houdini using the standard built-in nodes, and then
feed this model into the custom simulation node.
This node then runs the simulation, and the results
from the simulation are then imported back into
Houdini and displayed to the user. The nodes have
various parameters for setting up and controlling
the simulations.

Custom attributes
In order to generate the input files, the simulation
node reads the Houdini model being fed into it, and
converts this model into the appropriate format for
the simulation program. This is in essence an in-
teroperability problem – the simulation node trans-
lates from the Houdini model format to the simula-
tion model format. In order to do this, the simulation
nodes need to extract the data from the Houdini
model, and then restructure and reformat this data
according to the requirements of each simulation
program. However, this is a complex task and the
Houdini model on its own does not provide suffi-
cient information.

Entities in the Houdini model therefore need to
be tagged with additional information. This is a fea-
ture that is built into the core of Houdini’s approach to
modelling, and consists of creating custom attributes.
Some attributes, such as the x, y and z positions of
points, are automatically generated by Houdini. How-
ever, users can also add their own custom attributes.

Houdini provides a set of nodes for creating, delet-
ing, and manipulating attributes. These nodes can be
used to create custom attributes for any geometric en-
tity in the model. The data types of such attributes can
be strings, integers, floats, and vectors. For example, for
the surfaces in the Houdini model, the user may create
a custom attribute called ‘material’. Each surface in the
model can then be assigned a material name.

LINKING WITH RADIANCE
Radiance is actually a collection of many separate
programs that perform different tasks. The main in-
put file for Radiance is the RAD file (and has a .rad
extension). Given a RAD file, the first step is to con-
vert this into a different file format called an octree,
using a program called oconv. Using this octree
file as input, three types of simulations can be per-
formed using three different programs: rtrace, rpict,
and rvu. With rtrace, the user inserts sensor points in
the model and then uses the simulation to measure
illuminance or irradiance at these points. With rpict,
the user can generate false colour images from a
particular view point in the model. With rvu, the user
is presented with a graphical interface that will allow
false colour images to be generated interactively, by
changing the camera position and orientation. The
Radiance node will allow the user to execute these
programs through a simple graphical user interface.

The RAD file typically defines a list of materials
and a list of geometric primitives. Each material has
a name, a type, and some data that defines the prop-
erties of the material. Each primitive has a name, a
type, a material name, and a set of data that defines
the shape of the primitive. Primitive types for geo-
metric entities include polygons, spheres, cones, cyl-
inders, and meshes.

256 eCAADe 29 - Design Tool Development

Radiance node
The Radiance node can be used to run Radiance sim-
ulations from within Houdini. The node has two in-
puts: one for the model geometry and one for sensor
grids. The model geometry includes all the polygons
to be included in the simulation.

The geometry fed into the first input on of the
Radiance node needs to be constructed from poly-
gons. The node will translate each Houdini polygon
to a RAD primitive of type polygon. The polygons in
the Houdini model are expected to have custom at-
tributes to define the material. (Additional custom
nodes are provided to help users define these attri-
butes.) The node will extract the values of these at-
tributes when generating the RAD file.

The user needs to construct the Houdini model
in a way that is compatible with Radiance. Three key
modelling rules therefore need to be followed. First,
all polygons must be planar (although they can be
any shape and can have any number of vertices).
Second, polygon normals must point inwards for
interior simulations, and must point outwards for
exterior simulations. Third, polygons cannot have
holes. This means that, in order to represent a hole
in a surface, the surface needs to be modelled as a
polygon that wraps around the hole.

The second input of the Radiance node is for
inputting sensor grids. This is optional and is only
required if an rtrace simulation is going to be per-
formed. When the rtrace simulation is run, the simu-
lation results will be copied to the sensor points as
attributes. This then means that the results from an
rtrace simulation can be graphically displayed inside
Houdini, using coloured surfaces.

LINKING WITH ENERGYPLUS
EnergyPlus is an energy analysis and thermal load
simulation program. Based on a user’s description of
a building, EnergyPlus can calculate the heating and
cooling loads necessary to maintain thermal control
setpoint conditions. EnergyPlus consists of a single
executable that can perform many different func-
tions. The main input file for EnergyPlus is the IDF

file (and has a .idf extension). When EnergyPlus is ex-
ecuted, it reads the IDF file and the weather file that
contains the weather data for the simulation.

The IDF file is significantly more complex than
the RAD file. Firstly, the IDF file needs to specify a
large number of settings for running the simula-
tion, such as simulation parameters, location in-
formation, schedules, HVAC system details, output
reports, and so forth. Second, when describing the
geometry, EnergyPlus needs information about
how various elements such as floors, walls and
windows are related to one another. In order to de-
fine these relationships, a key concept is the zone,
which is an air volume at a uniform temperature
plus all the surfaces bounding or inside of that air
volume. EnergyPlus calculates the energy required
to maintain each zone at a specified temperature
for each hour of the day.

The IDF file consists of a list of objects. Each
object has a type, such as Zone, followed by a set
of fields that describe the properties of that object.
Some of the fields may reference other objects in the
same IDF file. Through such references, a hierarchi-
cal relationship is defined between zones, building
surfaces, fenestration surfaces, and shading zone
objects. Each building surface object has a field that
references a zone object, and each fenestration sur-
face object and shading zone object has a field that
references a building surface object.

EnergyPlus node
The EnergyPlus node can be used to run a limited
range of EnergyPlus simulations from within Houdi-
ni. The node does not aim to expose all EnergyPlus
functionality, but instead focuses on the types of
simulations required at early concept design stages.
The node has two inputs: one for zone geometry,
and one for shading geometry. The zone geom-
etry includes all the polygons that are associated
with zones. The shading geometry is optional, and
includes all polygons used to define surrounding
buildings or other structures that shade the zones
being simulated.

Design Tool Development - eCAADe 29 257

As with the Radiance node, the geometry fed
into the first input of the EnergyPlus node needs
to be constructed from polygons. The node will
translate each Houdini polygon to an IDF object.
The polygons in the Houdini model will need to
have certain custom attributes that define the sur-
face type and the construction. (Additional custom
nodes are provided to help users define these attri-
butes.) The three possible object types are a building
surface object, a building fenestration object, and a
zone shading object (for shading elements attached
of the building). The node will extract the values of
these attributes when generating the IDF file.

The user needs to construct the Houdini model
in a way that is compatible with EnergyPlus. In this
case, four key modelling rules therefore need to be
followed. First, all polygons must be planar and must
have a maximum of four points. Second, polygon
normals must point always point outwards, towards
the exterior of the zone. Third, walls, floors, or ceil-
ings that divide adjacent zones must be modelled
as two coplanar surfaces, one for each zone. Fourth,
when inserting a fenestration into a surface, the sur-
face should not have a hole cut into it. Fifth, win-
dows with four points must be orthogonal.

Note that a polygon representing a building
surface must have a consistent type and construc-
tion. In a conventional CAD mode, a designer may
create a single wall surface that in some areas is an
exterior wall, and in other areas is an interior wall. For
EnergyPlus, this would be invalid. The surface would
need to be split up into smaller surfaces, so that each
surface is either all interior or all exterior.

DEMONSTRATION
In order to demonstrate the IVP approach, a scenario
has been set up, whereby Houdini is used to generate
and evaluate design variants for a highly simplified
building type, set in a fictitious location in Singapore.
The Radiance and EnergyPlus nodes are used to run
simulations for both daylighting and energy.

The design is for a three storey free-standing
structure. Each storey consists of a single room, 15m
x 15m in plan, and 3m high. The three rooms are
stacked on top of one other, and are each offset from
the room below. This offset exposes certain roof ar-
eas of the room below, and these exposed areas are
then glazed in order to allow daylight to enter the
room. For the third room, similar glazed areas are
added, even though there is no room above it. This is
achieved by adding a fourth virtual room, used only
for generating windows in the room below. Fig 1a,
1b, and 1c shows three parametric variants of of this
building, each with different offsets. Seven param-
eters are required to control the offset and the rota-
tion of the overall building.

In order to provide some kind of context, a
simple environment has been created, consisting of
a set of urban blocks. Each urban block has a differ-
ent height, thereby creating varied shading affects
from different orientations. (See Fig 1d.) Within this
site, the building can be orientated in any direction.

The Houdini network
Varying any of the seven parameters can have a sig-
nificant impact on the performance of the design, in
terms of both daylighting and energy consumption.

Fig. 1.
(a) (b) (c) Three design vari-
ants. (d) The design in the site
context.

258 eCAADe 29 - Design Tool Development

In order to effectively explore the impact of parameter
changes, an IVP Houdini network has been created
that links design generation to design evaluation. The
network includes a set of sub-networks for generating
all the model polygons, for running the simulations,
and for displaying the results. Each sub-network has
a set of nodes inside. The network is shown in Fig. 2.

At the top of the network, a node is created to
store the seven parameters for generating the design
variants. These parameters are connected to various
nodes in other parts of the network via parameter
expressions. Changing any of these parameters will
trigger a new design variant to be generated, which
will trigger the Radiance and EnergyPlus simulations
to be executed. Once the simulations are complete,
the results will immediately be displayed within
Houdini, thereby giving fast feedback to the de-
signer. In this demonstration, it takes approximately
half a minute for the network to be re-executed after
parameter changes have been made.

For generating the geometry, three sub-net-
works have been created. The generate_model sub-
network creates the main design model, the gener-
ate_sensors sub-network creates sensor grids within
each of the three rooms, and the generate_context
sub-network creates the neighbouring urban blocks.

As well as adding attributes, the geometry also
needs to be further manipulated so as to ensure that
the modelling rules for each simulation program
are not broken. These additional manipulations are

performed inside the radiance_model and energy-
plus_model sub-networks. For Radiance, holes for
windows have to be cut into the roof polygons us-
ing boolean operators. In addition, polygon normals
have to point inwards, towards the interior of the
space. For EnergyPlus, each polygon has to be split
into sub-polygons, again using boolean operators. In
this case, polygon normals have to point outwards
towards the exterior of the space.

For running the simulations, three sub-net-
works have been created. The radiance_rpict sub-
network runs the Radiance simulation that produces
rendered and false-colour images for various view-
points inside the rooms. (See Fig. 3a and 3b.) The
images give an understanding of how light enters
the room through the window slots in the ceiling.
The radiance_rtrace sub-network runs the Radiance
simulation that calculates daylight levels at the sen-
sor grids within each of the three rooms. The simula-
tions were run using an overcast sky. The data that is
generated can be used to asses the design’s overall
performance in terms of daylighting. The energyplus
sub-network runs the EnergyPlus simulation that
calculates the total energy transfer for the building,
and the total insolation for each surface. Three zones
are created, and each zone is assigned an HVAC ideal
load air system. The cooling and heating set point
temperatures have been set at 25 degrees and 18
degrees respectively. The data that is generated can
be used to asses the design’s overall performance in
terms of energy consumption.

Fig 2 (left)
Network for generating and
evaluating design variants.
The nodes shown in this
network are container nodes
that each contain another
network to perform a specific
task. (left)

Fig 3 (right)
Simulation results for one
design variant. (a) Rendering
of interior space created
using Radiance (rpict). (b)
False colour image of interior
space created using Radiance
(rpict). (c) Energy transfer
through each model surface
calculated using EnergyPlus.
(d) Daylight levels calculated
using Radiance (rtrace).
(right)

Design Tool Development - eCAADe 29 259

For displaying results within Houdini, two sub-
networks have been created. In the display_daylight
sub-network, the results generated by Radiance
rtrace are transferred back to the points in the sen-
sor grid, and are stored as attribute values. These val-
ues are then visualised by colouring the sensor grid.
(See Fig. 3d.) In the display_energy sub-network,
the results generated by EnergyPlus are transferred
back to the polygons in the design model and are
again stored as attribute values. The insolation data
is visualised by colouring the polygons, and the total
energy transfer is displayed as text. (See Fig. 3c.)

Finally, the write_results_to_file sub-network
has been created for writing simulation results to a
csv file. This sub-network can be used together with
Houdini’s animation tools in order to automatically
simulate a whole sequence of design variants. This is
referred to as parameter sweeping.

Parameter sweeping
Parameter sweeping involves developing a set of de-
sign variants by incrementing one parameter while
keeping all other parameters constant. The variants
are then all evaluated in order to understand how
performance varies as the chosen parameter is ‘swept’
from its minimum value to its maximum value.

In the case study, parameter sweeping can be
demonstrated using the rotation parameter. For
the offset parameters, fixed values first need to be
set. The animation can then be run for a total of 72
frames, and at each frame, the rotation parameter
is incremented by 5 degrees. The modified param-
eter triggers the generation of a new design variant,

which in turn triggers the Radiance and EnergyPlus
simulations. The results from the simulations are
then appended to the results csv file. At the end of
the animation, the csv file will contain the results
for all design variants. Two graphs can then be plot-
ted. (See Fig. 4.) The first graph plots the orientation
parameter against the average daylight level, and
the second graph plots the orientation parameter
against the total energy transfer.

CONCLUSIONS
The research has demonstrated the feasibility of us-
ing VDM to support an IVP design approach. The pro-
posed design environment overcomes the two key
hurdles identified at the start of this paper. First, the
use of VDM tools such as Houdini allow users to cre-
ate sophisticated design development and design
evaluation procedures. Second, the use of custom
nodes allows interoperability issues with simulation
software such as Radiance and EnergyPlus to be suc-
cessfully overcome.

Future research will focus on developing cus-
tom nodes for a wider range of simulation programs.
In particular, we are interested in structural simula-
tions and airflow simulations.

REFERENCES
Kolarevic, B and Malkawi, A 2005, Operative Per-

formativity (panel discussion), in Performative
architecture: beyond instrumentality, New York :
Spon Press, 2005, pp.239-246.

Eastman, C, Teicholz, P Sacks, R, and Liston, K 2008,
BIM Handbook Published, Wiley 2008

Coenders, JL 2007, Interfacing between paramet-
ric associative and structural software, in Pro-
ceedings of the 4th International Conference on
Structural and Construction Engineering,. Xie M,
Patnaikuni I (eds.) Melbourne, Australia, 26-28
September .

Garber, R. (ed.) 2009, Closing the Gap: Information
Models in Contemporary Design Practice, Vol-
ume 79, Issue 2 of Architectural Design, John
Wiley & Sons

Fig 4.
Graphs showing how Total
Energy Transfer and Average
Illuminance change as the
orientation parameter is
incremented from 0 to 360
degrees.

260 eCAADe 29 - Design Tool Development

Hensel, M and Menges, A 2009, Patterns in Perfor-
mance-Orientated Design, in Architectural De-
sign, Vol 79, No 6 (November/December 2009),
pp. 88 to 93.

Janssen, PHT 2004, A design method and a computa-
tional architecture for generating and evolving
building designs. Doctoral dissertation, School
of Design Hong Kong Polytechnic University
(October 2004).

Janssen, PHT and Chen, KW 2011, Visual Dataflow
Modelling: A Comparison of Three Systems, in
Proceedings of the CAAD Futures ‘11, (to be pub-
lished).

Lagios, K, Niemasz, J, and Reinhart, CF 2010, Ani-
mated Building Performance Simulation (ABPS)
– Linking Rhinoceros/Grasshopper with Radi-
ance/Daysim, in Proceedings of SimBuild 2010.

Maver, TW 1970, Appraisal in the Building Design
Process, in Moore G T ed, Emerging Methods in
Environmental Design and Planning, MIT Press,
1970.

Maver, TW 1972, PACE: An Interactive Package for
Building Design Appraisal, in Proceedings of
On-Line 72, Brunel, 1972

Maver, TW 1998, Prospects for CAAD: An optimistic
perspective, in II Seminario Iberoamericano de
Grafico Digital [SIGRADI], Mar del Plata, Argen-
tina, pp. 6-13.

Woodbury, R 2010, Elements of Parametric Design,
Routledge, NY.

