
A COMPUTATIONAL SYSTEM FOR GENERATING AND EVOLVING
BUILDING DESIGNS

PATRICK H. T. JANSSEN, JOHN H. FRAZER
School of Design, Hong Kong Polytechnic University, Hong Kong.
patrick@janssen.name
Digital Practice Ecosystem, Gehry Technologies
john.frazer@gehrytechnologies.com

AND

MING-XI TANG
School of Design, Hong Kong Polytechnic University, Hong Kong.
sdtang@polyu.edu.hk

Abstract. This paper describes a generative evolutionary design system that
aims to fulfil two key requirements: customisability and scalability.
Customisability is required in order to allow the design team to incorporate
personalised and idiosyncratic rules and representations. Scalability is
required in order to allow large complex designs to be generated and evolved
without performance being adversely affected. In order to fulfil these
requirements, a computational architecture has been developed that differs
significantly from existing evolutionary systems. In order to verify the
feasibility of the this architecture, the generative process capable of creating
three-dimensional building models has been implemented and demonstrated.

1. Introduction

Evolutionary design systems are loosely based on the neo-Darwinian model of
evolution through natural selection. A population of individuals is maintained and
an iterative process applies a number of evolution steps that create, transform, and
delete individuals in the population. Each individual has a genotype representation
and a phenotype representation. The genotype representation encodes information
that can be used to create a model of the design, while the phenotype representation
is the actual design model. The individuals in the population are rated for their
effectiveness, and on the basis of these evaluations, new individuals are created
using ‘genetic operators’ such as crossover and mutation. The process is continued
through a number of generations so as to ensure that the population as a whole
evolves and adapts.

Two types of evolutionary design may be broadly identified: parametric
evolutionary design and generative evolutionary design. Parametric evolutionary



464 PATRICK H. T. JANSSEN, JOHN H. FRAZER AND MING-XI TANG

design is the more common approach. A design is predefined and parts that require
improvement are parameterised. The evolutionary system is then used to evolve
these parameters.

The generative approach, although more complex, can also be much more
powerful. This approach may be used early on in the design process and focuses
on the discovery of inspiring or challenging design alternatives for ill-defined design
tasks. A generative process is created that uses information in the genotype to
generate alternative design models. The evolutionary system will tend to evolve a
divergent set of alternative designs, with convergence on a single design often being
undesirable or even impossible. Such systems are sometimes described as divergent
systems or exploration systems. Examples of generative evolutionary design
systems include Frazer and Connor (1979), Graham et al. (1993); Frazer (1995b);
Bentley; Rosenman (1996); Coates et al. (1999); Funes and Pollack (1999); Sun
(2001).

1.1. GENERATIVE EVOLUTIONARY DESIGN FRAMEWORK

The generative evolutionary design approach has had limited success in evolving
the overall configuration and organisation of complex designs. The primary problem
identified is the generation of designs that incorporate an appropriate level of
variability. If design variability is low, then the performance of the evolutionary
system will be high but the types of designs will tend to be very predictable.
Conversely, if design variability is high, then the types of designs may be
unpredictable, but the performance by the evolutionary system will tend to be low.

In order to overcome this problem, a framework has been developed that allows
designers to restrict design variability by specifying the character of designs to be
evolved. This approach is based on the notion of a design entity that captures the
essential and identifiable character of a family of design. This design entity is called
a design schema. The design team encodes the design schema as a set of rules and
representations that can be used by the evolutionary system. The system can then
be used to evolve designs that embody the encoded character. This approach is
based on the work of Frazer and Connor (1979); Frazer (1995a); and Sun (2001).

A design schema encompasses those characteristics common to all members
of the family, possibly including issues of aesthetics, space, structure, materials
and construction. Although members of the family of designs share these
characteristics, they may differ considerably from one another in overall organisation
and configuration. Design schemas are seen as formative design generators; their
intention is synthetic rather than analytic.

The schema framework consists of two parts: a design method and an
evolutionary system. The design method broadly defines a set of tasks to be carried
out by the design team. The evolutionary system is a software system used by the
design team for generating and evolving alternative designs. This paper will focus



A COMPUTATIONAL SYSTEM FOR GENERATING AND... 465

on the architecture of this evolutionary system. Janssen et al. (2005) provide an
overview of the overall framework. For a detailed description and analysis of the
framework, see Janssen (2004).

2. The evolutionary system

Within the schema framework, the evolutionary system must fulfil two key
requirements:

● The system should be customisable, allowing for the modification and
replacement of the rules and representations used by the system. This will
allow each design team to incorporate their encoded schema and to input
data relating to the design constraints and design context. In addition, the
design team should also be able to integrate existing applications that perform
useful functions such as modelling, analysis, and simulation.

● The system should be scalable, allowing for the evolution of large complex
designs without performance being adversely affected. In most cases, the
developmental and evaluation steps are likely to be the most computationally
demanding.

A computational architecture for an evolutionary system has been developed
that fulfils these two requirements. This architecture is shown in Figure 1. A single

Figure 1: Schema-based generative evolutionary design system.



466 PATRICK H. T. JANSSEN, JOHN H. FRAZER AND MING-XI TANG

population is processed by seven steps: an initialisation and a termination step,
four evolution steps and a visualization step. The four evolution steps consist of a
reproduction step, a development, an evaluation step and a survival step. The
visualization step allows design models in the population to be visualized.

A parallel implementation is employed using a standard client-server model in
a networked computing environment. The server manages the population of designs
and performs the reproduction and survival steps, while multiple client computers
perform the developmental and evaluation steps.

2.1. CUSTOMISABILITY

In order to support customisability, the evolutionary system is broken down into
two parts: a generic core and a set of specialised components. The generic core
defines the main structure of the evolutionary system and can be used unmodified
by any design team, on any project. This core consists of underlying programme
modules that communicate and interact with one another. However, in order to be
functional, these modules must be linked to the specialised components.

The specialised components are completely customisable and must be defined
by the design team. Three types of specialised components exist: routines, data-
files, and applications.

● Routines encapsulate the rules and representations used by the evolution
steps. The design team must create a set of such routines that together
constitute the encoded schema.

● Data-files encapsulate information about the design environment,
encompassing both design constraints and design context. Examples of design
constraints may include the budget, the number of spaces, floor areas,
performance targets and so forth. The design context may include site
dimensions, site orientation, neighbouring structure, seasonal weather
variations, and so forth.

● Applications are existing software applications whose functionality the design
team may require, in particular for modelling, visualising and evaluating
design models. For example, CAD, rendering, analysis and simulation
applications may be used.

2.2. SCALABILITY

In order to support scalability, the evolutionary system employs an evolutionary
process that can be described as using a decentralised control structure and an
asynchronous evolution mode.

● A decentralised control structure is used, whereby the four evolution steps



A COMPUTATIONAL SYSTEM FOR GENERATING AND... 467

act independently from one another. Each step extracts a small number of
individuals from the population, processes these individuals, and either inserts
the resulting individuals back into the population or—in the case of the
survival step—deletes a number of individuals in the population.

● An asynchronous evolution mode is used, whereby the evolution steps process
individuals or small groups in the population as soon as they become available.
Individuals in the population will therefore be in various different states,
depending on whether they have been developed or evaluated.

This type of evolutionary process differs markedly from the process employed
by most existing evolutionary systems. A wide variety of evolutionary algorithms
exist, with the four main types being genetic algorithms (Holland, 1975), evolution
strategies (Rechenberg, 1973), evolutionary programming (Fogel, 1995), and genetic
programming (Koza, 1992). Such algorithms differ in the rules and representations
that they use in order to implement the evolution steps, but the overall evolutionary
process is similar for all of them. This process uses a centralised control structure
and a synchronised evolution mode. The centralised control structure consists of a
main loop that repeatedly invokes and executes the evolution steps. The synchronous
evolution mode consists of a procedure that stops and waits for the processing of
all individuals by one evolution step to be completed before proceeding on to the
next evolution step.

For scalability, the decentralised asynchronous approach has certain advantages
over the centralised synchronous approach. The decentralised control structure allows
client computers to be easily be added and removed from the evolutionary process
and allows the system to cope gracefully with failure of one or more client systems.
The asynchronous evolution mode reduces the execution time and is highly effective
in situations where the development and evaluation steps are costly (Rasheed and
Davidson, 1999). The evolutionary process does not need to wait for the whole
population to be developed and evaluated. As soon as an individual has been
evaluated, the evolutionary process can start to either discard or incorporate its
genetic information.

2.3. INDIVIDUALS IN THE POPULATION

Individuals in the population are processed by both the generic core and the
specialised components. The generic core consists of a set of modules that manipulate
individuals, while the specialised components include a set of routines that transform
individuals. The manipulation of individuals by the generic modules is fixed and
cannot be modified by the design team. The individual can therefore incorporate
predefined representational structures required by these modules.

The transformation of individuals by routines, on the other hand, depends on
how the design team implements these routines. As a result, the representation of



468 PATRICK H. T. JANSSEN, JOHN H. FRAZER AND MING-XI TANG

the parts of the individual (such as the genotype, phenotype and evaluation scores)
cannot be predefined in advance. The way that an individual is represented therefore
needs to incorporate an inherent flexibility. This is achieved by breaking this
representation into a generic part and a specialized part. Figure 2 shows an example
of a partially evaluated individual. The generic part includes two representations:
a set of possible flags and a unique ID.

● Flags are boolean values used to store information relating to whether the
individual has been developed and evaluated.

● The ID is an integer value that is unique in the history of the evolutionary
process.

The specialised part of an individual consists of three placeholders that can
contain variable representations: a genotype, a phenotype and a set of evaluation
scores.

● The genotype may have any type of representation, such as a binary or real-
valued string, or some other more complex type of data-structure.

● The phenotype may also have any type of representation, including standard
three-dimensional file formats.

● The evaluations consist of a list of one or more representations, which will
usually consist of a set of performance scores.

Figure 2: The representation of an individual in the population.

2.4. EVOLUTION STEPS

The population module manages the population. This module is executed on the
central server, but does not control the evolution steps. Instead, it passively waits
to be contacted by the evolution steps, thereby allowing the evolution steps to act
independently from the population module and from one another.



A COMPUTATIONAL SYSTEM FOR GENERATING AND... 469

Each of the evolution steps is conceptualised as a modular software components
that performs a transformation: each step requires a number of individuals, processes
these individuals, and produces some result. The result is usually a new or updated
set of individuals, or —in the case of the survival step—one or more individuals
to be deleted. The evolutionary process consists of evolution modules contacting
the population module to request a set of individuals, processing these individuals,
and then contacting the population module once more to send the results back
again.

This decentralised control structure results in a population where individuals
are in various different states: some only have a genotype, others have been processed
by the developmental step and have a phenotype, while others also have evaluation
scores. It is the responsibility of the population module to ensure that each step is
sent to individuals in an appropriate state. The individuals in an appropriate state
are referred to as candidates. When the population module receives a request from
one of the evolution steps, it will first identify all possible candidates in the population
and will randomly select the required number of individuals from these candidates.

The four evolution steps are described as follows:

● The reproduction module requests a pool of fully evaluated parents. This
module then produces one or more new individuals by executing the
reproduction routine.

● Each developmental module requests a single undeveloped individual. This
module then creates a phenotype for the individual by executing the
developmental routine.

● Each evaluation module requests one individual that has not been evaluated
for the objective in question. This module then creates an evaluation score
for the individual by executing the evaluation routine.

● The survival module requests a pool of fully evaluated individuals. This
module then identifies one or more individuals to be deleted from the
population by executing the survival routine.

The pools in the reproduction and survival steps vary dynamically in size, and
will be equal to the number of candidate individuals in the population at the time.
This ensures that the largest possible pool of individuals will always be used without
requiring the evolutionary process to stall.

If multiple objectives are being evaluated, at least one evaluation module per
objective must be defined. Each evaluation module will be associated with a different
evaluation routine, and each evaluation routine may make use of different analysis
or simulation applications. Once an individual has been fully evaluated, it will
contain a separate performance score for each objective. When such an individual
is processed by the survival routine, some form of scalarization will need to take
place in order to make a decision as to whether the individual should be deleted or
not. Various scalarization techniques exist, including calculating the weighted



470 PATRICK H. T. JANSSEN, JOHN H. FRAZER AND MING-XI TANG

average of the performance scores, or used Pareto-optimal ranking methods.

3. Demonstration

The evolutionary system is currently under development. One of the critical aspects
of this system is the ability of the design team to develop a generative process that
is capable of generating designs that vary in a controlled manner, referred to as
controlled variability. The process of encoding a design schema has therefore been
demonstrated. The demonstration consists of three parts:

● An example design schema has been created for a family of multi-story
buildings. The overall building form, the organization of spaces, and the
treatments of facades may all vary significantly. Some additional
complications such as sloping walls have been included, but not curved walls.

● A generative process has been created for generating design models in the
example schema. This process consists of a series of transformations that
gradually transform a three-dimensional orthogonal grid structure into a
design for a building.

● A developmental routine, an initialisation routine and a visualization routine
have been implemented for the example schema. These routines have been
used to generate and visualise a variety of design models. The designs that
are generated are complex, intelligible, and unpredictable. Controlled
variability has therefore been achieved.

3.1. GENERATIVE PROCESS

The generative process consists of a sequence of eight generative transformations
that gradually change an orthogonal grid into a 3-dimensional building model. Figure
3 shows (diagrammatically in two-dimensions) the eight generative transformations:
positioning of the grid in the site, translation of the grid-faces, inclination of outer
grid-faces, insertion of the staircase, creation of spaces, selection of outside spaces,
insertion of doors, and insertion of windows.

Most transformations require a set of parameters encoded within the genotype.
The genotype consists of a fixed length string of parameters, with each parameter
being encoded as real values in the range 0.0 to 1.0. The encoded value may be
mapped to a value within a different continuous or discrete range as required. Some
transformations may also require certain parameters or data encoded in the
environment data-file.

3.2. IMPLEMENTATION

In order to verify the character and variability of the designs that would be produced



A COMPUTATIONAL SYSTEM FOR GENERATING AND... 471

by the generative process described above, the initialisation, developmental and
visualization routines were implemented:

● The initialisation routine was used to generate a population of individuals
with randomly generated genotypes, but with no phenotypes or evaluation
scores. This routine calculates the length of the required genotype, and creates
a random value for each parameter.

● The developmental routine was used to create phenotypes for each individual.
The generative process used by this routine has already been described above.

● A visualization routine has been created that uses Ecotect by developed by
Square One Research to visualise the design models that are generated. This
routine extracts the phenotype from each individual, and then translates the
phenotype representation to the model representation used by Ecotect.

The initialisation routine was used to generate a population of genotypes, the
developmental routine was then used to generate a population of design models,
and finally the visualization routine was use to view these models. Figure 4 shows
a selection of models generated.

Figure 3: The generative process.



472 PATRICK H. T. JANSSEN, JOHN H. FRAZER AND MING-XI TANG

4. Conclusion

An evolutionary system has been described that fulfils two key requirements for
generative evolutionary design: customisability and scalability. The feasibility of
this system is supported by the demonstration, which has shown that it is possible

Figure 4: A set of generated (but not evolved) designs.



A COMPUTATIONAL SYSTEM FOR GENERATING AND... 473

to create a generative process that generates complex three-dimensional models
that vary in a controlled manner.

Since the designs have not yet been evolved, they have yet to adapt to the
objectives and the environment. The next stage of the research will focus on
developing the complete evolutionary system. This will allow designs to evolve
and adapt in response to the environment and the evaluation criteria, thereby resulting
in qualities that are seen to be desirable.

Acknowledgements

Our research project is supported by a UGC PhD project grant from the Hong Kong Polytechnic
University.

References

Caldas, L. 2001, “An Evolution-Based Generative Design System: Using Adaptation to Shape
Architectural Form.” Doctoral dissertation, Massachusetts Institute of Technology.

Coates, P., Broughton, T., and Jackson, H. 1999, “Exploring three-dimensional design worlds using
Lindenmayer Systems and Genetic Programming.” In Bentley, pp. 323–341.

Fogel, D. B. 1995, “Evolutionary computation: Towards a new philosophy of machine intelligence.”
IEEE Press.

Frazer, J. H. 1995a, “An Evolutionary Architecture.” AA Publications, London, UK.
Frazer, J. H. 1995b, “The interactivator.” AA Files, pp. 72–73.
Frazer, J. H. and Connor, J. 1979, “A conceptual seeding technique for architectural design,” In

Proceedings of International Conference on the Application of Computers in Architectural Design
and Urban Planning (PArC79), pp. 425–434, Berlin. AMK.

Funes, P. and Pollack, J., 1999, “Computer evolution of buildable objects.” In Bentley, P. J., editor,
Evolutionary Design by Computers. Morgan Kaufmann Publishers, San Francisco, CA., pp.
387–403.

Graham, P. C., Frazer, J. H., and Hull, M. C. 1993, “The application of genetic algorithms to design
problems with ill-defined or conflicting criteria.” In Glanville, R. and de Zeeuw, G., editors,
Proceedings of Conference on Values and, (In) Variants, pp. 61–75.

Holland, J. H. 1975, “Adaptation in Natural and Artificial Systems.” University of Michigan Press,
Ann Arbor.

Janssen, P. H. T., Frazer, J. H., and Tang, M-X. 2005, “Generative Evolutionary Design: A Framework
For Generating And Evolving Three-Dimensional Building Models.” International Conference
on Innovation In Architecture, Engineering And Construction (AEC) (to appear).

Janssen, P.H.T. 2004, “A design method and a computational architecture for generating and evolving
building designs.” Doctoral dissertation, School of Design Hong Kong Polytechnic University
(submitted October 2004).

Koza, J. R. 1992, “Genetic Programming: On the Programming of Computers by Means of Natural
Selection.” MIT Press, Cambridge, MA.

Rasheed, K. M. 1998, “GADO: A Genetic Algorithm for Continuous Design Optimization.” Doctoral
dissertation, Department of Computer Science, Rutgers University, New Brunswick, NJ. Technical
Report DCS-TR-352.



474 PATRICK H. T. JANSSEN, JOHN H. FRAZER AND MING-XI TANG

Rasheed, K. M. and Davidson, B.D. 1999, “Effect of global parallelism on the behaviour of a steady
state genetic algorithm for design optimization.” In proceedings of the Congress on Evolutionary
Computation (CEC’99), volume 1, pp. 534-541. IEE Press.

Rechenberg, I. 1973, “Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien der
Biologischen Evolution.” Frommann-Holzboog Verlag, Stuttgart, Germany.

Rosenman, M. A. 1996, “An exploration into evolutionary models for non-routine design.” In AID’96
Workshop on Evolutionary Systems in Design, pp. 33–38.

Sun, J. 2001, “Application of Genetic Algorithms to Generative Product Design Support Systems.”
Doctoral dissertation, School of Design, Hong Kong Polytechnic University.


