
84 - CAADFutures 17

Automatic Generation of Semantic 3D City Models from
Conceptual Massing Models

Kian Wee Chen 1, Patrick Janssen 2, Leslie Norford 3

1 CENSAM, Singapore-MIT Alliance for Research and Technology, Singapore
2 National University of Singapore, Singapore

3 Department of Architecture, Massachusetts Institute of Technology, USA

chenkianwee@gmail.com, patrick@janssen.name, lnorford@mit.edu

Abstract. We present a workflow to automatically generate semantic 3D city
models from conceptual massing models. In the workflow, the massing design
is exported as a Collada file. The auto-conversion method, implemented as a
Python library, identifies city objects by analysing the relationships between the
geometries in the Collada file. For example, if the analysis shows that a closed
poly surface satisfies certain geometrical relationships, it is automatically
converted to a building. The advantage of this workflow is that no extra
modelling effort is required, provided the designers are consistent in the
geometrical relationships while modelling their massing design. We will
demonstrate the feasibility of the workflow using three examples of increasing
complexity. With the success of the demonstrations, we envision the auto-
conversion of massing models into semantic models will facilitate the sharing
of city models between domain-specific experts and enhance communications
in the urban design process.

Keywords: Interoperability, GIS, City Information Modelling, Conceptual
Urban Design, Collaborative Urban Design Process

1 Introduction

In the early stages of urban design, designers often prefer the use of conceptual
massing models for design exploration because massing models are easy to create and
modify. The use of massing models enables designers to visualise and receive timely
feedback on their designs. Designers will explore multiple designs, further develop a
few and discard unpromising designs. The use of massing models minimises
modelling efforts or “sunk cost” on the discarded designs. These massing models are
usually in geometrical formats such as Collada, Wavefront and DXF. The
disadvantage is that massing models do not have semantic information, which hinders
the sharing of models between domain-specific simulation applications and experts.
CityGML is a standard format that documents semantic 3D city data for facilitating
data sharing [1]. Designers can model their designs in cityGML format to facilitate

model sharing, but this requires them to specify the semantic information. As a result,
modelling their design in CityGML increases the modelling effort and the “sunk cost”
of discarded design models.

The usefulness of the cityGML model is it acts as the main data exchange format
for sharing models with other domain experts. Domain-specific experts can visualise
the model by directly importing it into a 3D Geospatial Information System (GIS)
application. The 3D model will be useful for performing analyses [2] to develop the
design further. The standardisation of the exchange format will streamline the process
of sharing models. This paper proposes a workflow to automatically generate
semantic 3D city models from the conceptual massing models. The generation
process automatically identifies city objects such as buildings, terrains and land-use
plots, and converts the massing model into a minimal cityGML model consisting of
explicitly defined Level of Detail 1 and 0 (LOD1 and 0) city objects.

1.1 Existing Approaches

The most straightforward method is to construct the massing model within a
modelling application that has CityGML modelling capability. These are usually GIS-
based applications developed for managing large GIS data set, examples of which are
ArcGIS [2], Autodesk Infraworks 360 [3], Autodesk Map 3D [4] and Bentley Map
[5]. However, urban designers usually work on a smaller scale and thus prefer
modelling in Computer-Aided Design (CAD) applications such as SketchUp and
Rhinoceros3D for their more flexible and advance 3D modelling capabilities. Thus,
this paper focuses on facilitating the latter; transition of geometric models authored in
CAD applications into semantic models for sharing among domain-specific experts.
There are two main existing methods for generating a semantic 3D city model from a
conceptual massing model: 1) import of massing models into modelling tools that
support cityGML export or 2) the use of visual scripting to customise the conversion
from massing to cityGML.

The first method imports the conceptual model into a 3D modelling application
that supports cityGML modelling. Examples of these applications include the
CityEditor plugin for SketchUp [6] and RhinoCity plugin for Rhinoceros 3D [7]. In
this method, designers either model the massing design in the 3D application or
import the model into the 3D modelling application, explicitly declare the semantic
information of each geometry and export it to cityGML format. For example, in
CityEditor the declaration is based on SketchUp’s geometry group, where each
geometry group must be declared as a semantic object. The main disadvantage is that
the semantic declaration process is inevitably workflow specific and to manually
declare each geometry’s semantic content can be a time-consuming and laborious task
when the designer has multiple design options.

The second method is to use visual scripting to customise the conversion.
Designers will create their customised procedure using a visual scripting application
to convert their massing models into cityGML. One such application is FME desktop
application [8], which provides readily deployable functions to facilitate setting up the
conversion procedure. For example, an urban designer models his design in SketchUp

CAADFutures 17 - 85

Automatic Generation of Semantic 3D City Models from
Conceptual Massing Models

Kian Wee Chen 1, Patrick Janssen 2, Leslie Norford 3

1 CENSAM, Singapore-MIT Alliance for Research and Technology, Singapore
2 National University of Singapore, Singapore

3 Department of Architecture, Massachusetts Institute of Technology, USA

chenkianwee@gmail.com, patrick@janssen.name, lnorford@mit.edu

Abstract. We present a workflow to automatically generate semantic 3D city
models from conceptual massing models. In the workflow, the massing design
is exported as a Collada file. The auto-conversion method, implemented as a
Python library, identifies city objects by analysing the relationships between the
geometries in the Collada file. For example, if the analysis shows that a closed
poly surface satisfies certain geometrical relationships, it is automatically
converted to a building. The advantage of this workflow is that no extra
modelling effort is required, provided the designers are consistent in the
geometrical relationships while modelling their massing design. We will
demonstrate the feasibility of the workflow using three examples of increasing
complexity. With the success of the demonstrations, we envision the auto-
conversion of massing models into semantic models will facilitate the sharing
of city models between domain-specific experts and enhance communications
in the urban design process.

Keywords: Interoperability, GIS, City Information Modelling, Conceptual
Urban Design, Collaborative Urban Design Process

1 Introduction

In the early stages of urban design, designers often prefer the use of conceptual
massing models for design exploration because massing models are easy to create and
modify. The use of massing models enables designers to visualise and receive timely
feedback on their designs. Designers will explore multiple designs, further develop a
few and discard unpromising designs. The use of massing models minimises
modelling efforts or “sunk cost” on the discarded designs. These massing models are
usually in geometrical formats such as Collada, Wavefront and DXF. The
disadvantage is that massing models do not have semantic information, which hinders
the sharing of models between domain-specific simulation applications and experts.
CityGML is a standard format that documents semantic 3D city data for facilitating
data sharing [1]. Designers can model their designs in cityGML format to facilitate

model sharing, but this requires them to specify the semantic information. As a result,
modelling their design in CityGML increases the modelling effort and the “sunk cost”
of discarded design models.

The usefulness of the cityGML model is it acts as the main data exchange format
for sharing models with other domain experts. Domain-specific experts can visualise
the model by directly importing it into a 3D Geospatial Information System (GIS)
application. The 3D model will be useful for performing analyses [2] to develop the
design further. The standardisation of the exchange format will streamline the process
of sharing models. This paper proposes a workflow to automatically generate
semantic 3D city models from the conceptual massing models. The generation
process automatically identifies city objects such as buildings, terrains and land-use
plots, and converts the massing model into a minimal cityGML model consisting of
explicitly defined Level of Detail 1 and 0 (LOD1 and 0) city objects.

1.1 Existing Approaches

The most straightforward method is to construct the massing model within a
modelling application that has CityGML modelling capability. These are usually GIS-
based applications developed for managing large GIS data set, examples of which are
ArcGIS [2], Autodesk Infraworks 360 [3], Autodesk Map 3D [4] and Bentley Map
[5]. However, urban designers usually work on a smaller scale and thus prefer
modelling in Computer-Aided Design (CAD) applications such as SketchUp and
Rhinoceros3D for their more flexible and advance 3D modelling capabilities. Thus,
this paper focuses on facilitating the latter; transition of geometric models authored in
CAD applications into semantic models for sharing among domain-specific experts.
There are two main existing methods for generating a semantic 3D city model from a
conceptual massing model: 1) import of massing models into modelling tools that
support cityGML export or 2) the use of visual scripting to customise the conversion
from massing to cityGML.

The first method imports the conceptual model into a 3D modelling application
that supports cityGML modelling. Examples of these applications include the
CityEditor plugin for SketchUp [6] and RhinoCity plugin for Rhinoceros 3D [7]. In
this method, designers either model the massing design in the 3D application or
import the model into the 3D modelling application, explicitly declare the semantic
information of each geometry and export it to cityGML format. For example, in
CityEditor the declaration is based on SketchUp’s geometry group, where each
geometry group must be declared as a semantic object. The main disadvantage is that
the semantic declaration process is inevitably workflow specific and to manually
declare each geometry’s semantic content can be a time-consuming and laborious task
when the designer has multiple design options.

The second method is to use visual scripting to customise the conversion.
Designers will create their customised procedure using a visual scripting application
to convert their massing models into cityGML. One such application is FME desktop
application [8], which provides readily deployable functions to facilitate setting up the
conversion procedure. For example, an urban designer models his design in SketchUp

86 - CAADFutures 17

and then translates the geometric data from SketchUp to CityGML by setting up a
visual script in FME desktop. FME desktop provides functions to both reads and
writes data from the SketchUp file into CityGML. The designer’s task is to read his
massing model geometries, separate the geometries into their respective semantic
objects and write them into CityGML schema. The task requires him to be familiar
with the FME desktop’s functions and the cityGML schema. The main disadvantage
is the high complexity involved in setting up the procedures. These procedures require
designers, most of whom are novices in computer programming, to be familiar with
modifying and adding semantics onto geometries and translating them into a specific
schema using programming methods. Although visual scripting has been shown to
facilitate the learning of programming methods among design students, it has also
been shown that the visual scripting quickly becomes inadequate [9, 10] and
confusing [11] for large and complex design tasks.

2 Method

We developed a workflow to automatically generate a cityGML model from a
massing model by adapting the workflow from our previous building-level research
[12]. The workflow focuses on city objects typically present in massing models:
buildings, land-use plots, terrain and road networks. The automated workflow consists
of the four main steps shown in Fig. 1: input model, execute analysis rules, execute
template rules and retrieve model.

In the first step of the workflow – input model – the model contains the massing of
a city model. The massing models can be modelled in any 3D modelling application,
provided the buildings are modelled as closed poly surfaces, terrain and land-use plots
as open poly surfaces, and road networks as polylines, which is how designers usually
create massing models. This method does not require extra modelling effort from
designers as it leverages existing modelling conventions. The polylines and poly
surfaces from the model are then sorted into a topological data structure as edges and
shells. An edge is defined by a line or curve bounded by the starting and ending
vertexes. A surface is defined by a closed sequence of connected edges. A shell is
defined by a collection of connected surfaces. A closed shell has connected surfaces
that form a watertight volume without holes.

Fig. 1. Proposed workflow for automatically generating CityGML model from massing model

The second step of the workflow – executing analysis rules – starts with analysing the
massing model and generating an analysed model with geometric relationship
attributes. These attributes are inferred from the size, orientation, and geometrical
relationship between topologies in the massing model according to the analysis rules.
For example, the shells are analysed and issued a unique identification with attribute
is_shell_closed = True/False. In order to understand the relationship
between topologies in plan, the edges and shells are projected onto the XY plane and
analysed. Containment relationships are determined from the analysis. For example, if
the topologies are inside one or more other shells when projected to 2D, then
attributes are created to capture this information, namely
is_shell_in_boundary = True/False, shell_boundary_contains
= True/False and is_edge_in_boundary = True/False.

The third step of the workflow – executing template rules – starts with the analysed
model and generates the cityGML model. The template rules are matched against the
attributes of the analysed model, and if a geometric topology matches the rules, it will
be converted into a city object and added into the cityGML model. Designers can
customise the template rules according to the type and scale of their urban design.
Example rules are as follows:

 If a shell has attributes is_shell_closed = True,

is_shell_in_boundary = True, and
shell_boundary_contains = False, then a building is generated.

 If a shell has attributes is_shell_closed = False
is_shell_in_boundary = False, and
shell_boundary_contains = True, then a terrain is generated.

 If a shell has attributes is_shell_closed = False,
is_shell_in_boundary = True, and
shell_boundary_contains = True, then a land-use plot on the terrain
is generated.

 If an edge has attribute is_edge_in_boundary = True, then roads are
generated.

In the last step, the CityGML is retrieved and shared among domain-specific

experts to be further developed.

3 Implementation

The method described above is implemented as four Python classes in a Python
library called Pyliburo [13] (https://github.com/chenkianwee/pyliburo). The Python
classes rely on Pyliburo’s modelling kernel for analysing the geometric relationship
between the topologies and the CityGML writer for reading and writing CityGML.
For this implementation, the massing model is in the Collada format. Each conversion
can be represented by a Massing2Citygml class, which reads the Collada file
and stores each geometric topology as a ShapeAttributes class. The analysis

CAADFutures 17 - 87

and then translates the geometric data from SketchUp to CityGML by setting up a
visual script in FME desktop. FME desktop provides functions to both reads and
writes data from the SketchUp file into CityGML. The designer’s task is to read his
massing model geometries, separate the geometries into their respective semantic
objects and write them into CityGML schema. The task requires him to be familiar
with the FME desktop’s functions and the cityGML schema. The main disadvantage
is the high complexity involved in setting up the procedures. These procedures require
designers, most of whom are novices in computer programming, to be familiar with
modifying and adding semantics onto geometries and translating them into a specific
schema using programming methods. Although visual scripting has been shown to
facilitate the learning of programming methods among design students, it has also
been shown that the visual scripting quickly becomes inadequate [9, 10] and
confusing [11] for large and complex design tasks.

2 Method

We developed a workflow to automatically generate a cityGML model from a
massing model by adapting the workflow from our previous building-level research
[12]. The workflow focuses on city objects typically present in massing models:
buildings, land-use plots, terrain and road networks. The automated workflow consists
of the four main steps shown in Fig. 1: input model, execute analysis rules, execute
template rules and retrieve model.

In the first step of the workflow – input model – the model contains the massing of
a city model. The massing models can be modelled in any 3D modelling application,
provided the buildings are modelled as closed poly surfaces, terrain and land-use plots
as open poly surfaces, and road networks as polylines, which is how designers usually
create massing models. This method does not require extra modelling effort from
designers as it leverages existing modelling conventions. The polylines and poly
surfaces from the model are then sorted into a topological data structure as edges and
shells. An edge is defined by a line or curve bounded by the starting and ending
vertexes. A surface is defined by a closed sequence of connected edges. A shell is
defined by a collection of connected surfaces. A closed shell has connected surfaces
that form a watertight volume without holes.

Fig. 1. Proposed workflow for automatically generating CityGML model from massing model

The second step of the workflow – executing analysis rules – starts with analysing the
massing model and generating an analysed model with geometric relationship
attributes. These attributes are inferred from the size, orientation, and geometrical
relationship between topologies in the massing model according to the analysis rules.
For example, the shells are analysed and issued a unique identification with attribute
is_shell_closed = True/False. In order to understand the relationship
between topologies in plan, the edges and shells are projected onto the XY plane and
analysed. Containment relationships are determined from the analysis. For example, if
the topologies are inside one or more other shells when projected to 2D, then
attributes are created to capture this information, namely
is_shell_in_boundary = True/False, shell_boundary_contains
= True/False and is_edge_in_boundary = True/False.

The third step of the workflow – executing template rules – starts with the analysed
model and generates the cityGML model. The template rules are matched against the
attributes of the analysed model, and if a geometric topology matches the rules, it will
be converted into a city object and added into the cityGML model. Designers can
customise the template rules according to the type and scale of their urban design.
Example rules are as follows:

 If a shell has attributes is_shell_closed = True,

is_shell_in_boundary = True, and
shell_boundary_contains = False, then a building is generated.

 If a shell has attributes is_shell_closed = False
is_shell_in_boundary = False, and
shell_boundary_contains = True, then a terrain is generated.

 If a shell has attributes is_shell_closed = False,
is_shell_in_boundary = True, and
shell_boundary_contains = True, then a land-use plot on the terrain
is generated.

 If an edge has attribute is_edge_in_boundary = True, then roads are
generated.

In the last step, the CityGML is retrieved and shared among domain-specific

experts to be further developed.

3 Implementation

The method described above is implemented as four Python classes in a Python
library called Pyliburo [13] (https://github.com/chenkianwee/pyliburo). The Python
classes rely on Pyliburo’s modelling kernel for analysing the geometric relationship
between the topologies and the CityGML writer for reading and writing CityGML.
For this implementation, the massing model is in the Collada format. Each conversion
can be represented by a Massing2Citygml class, which reads the Collada file
and stores each geometric topology as a ShapeAttributes class. The analysis

88 - CAADFutures 17

rules and template rules are implemented as abstract classes in Python,
BaseAnalysisRule and BaseTemplateRule, to facilitate reuse and
extensibility.

Fig. 2 illustrates the relationships between the four classes using a Unified
Modelling Language (UML) class diagram. In the diagram, the Massing2Citygml
class has a one-to-many relationship (1 to N) with the ShapeAttributes and
BaseTemplateRule classes. When an instance of Massing2Citygml exists, it
can be associated with an unlimited number of ShapeAttributes and
BaseTemplateRule classes, as it is necessary to append multiple
ShapeAttributes and BaseTemplateRule classes to Massing2Citygml
in defining a conversion. The same relationship applies to the BaseTemplateRule
and BaseAnalysisRule classes, where multiple BaseAnalysisRule classes
are required to define a BaseTemplateRule. The details of each class and their
relationships are discussed below.

Fig. 2. UML class diagram of the relationships between the four classes

3.1 Massing2Citygml Class

The Massing2Citygml class represents any massing-to-CityGML model
conversion. To set up a conversion process, users must set up a series of analysis rules
(section 3.3) and then configure the analysis rules for each template rule (section 3.4).
Users add the template rules into the Massing2Citygml class after it is
configured through the add_template_rule method. The class will execute the

analysis rules using the execute_analysis_rule method and the template rules
using the execute_template_rule method to identify the city objects and write
them to a CityGML file.

3.2 ShapeAttributes Class

The Massing2Citygml class reads the Collada file using the read_collada
method, converting the geometries from the file to a topology and storing it as a
ShapeAttributes class. The ShapeAttributes class stores each topology
from the massing model as an OCCShape class as defined in the modelling kernel
(PythonOCC). Any additional attributes of the OCCShape are stored as a dictionary.
The method set_shape adds an OCCShape and get_value access the attributes
stored in the dictionary. The ShapeAttributes class is the data exchange format
between the other three classes.

3.3 BaseAnalysisRule class

The BaseAnalysisRule abstract class represents any analysis rule used for
analysing and generating geometric relationship attributes for a massing model. As
mentioned in the example rules in section 2, we have implemented four analysis rule
classes; IsShellClosed, IsShellInBoundary,
ShellBoundaryContains and IsEdgeInBoundary, based on the
BaseAnalysisRule abstract class. We will describe the IsShellClosed
implementation to illustrate the abstract class.

The IsShellClosed class has attributes for_shape_type = OCCShell
and dict_key = “is_shell_closed”. OCCShell is the topology class to be
analysed by the analysis rule and is as defined in the modelling kernel, PythonOCC.
The execute method requires one input parameter
occshp_attribs_obj_list, which contains a list of the ShapeAttributes
instances from the massing model. The execute method loops through all the
ShapeAttributes instances that are shells and assesses if they are open or closed
shells. Once determined, it will append the geometric relationship attribute
is_shell_closed = True/False to each ShapeAttributes instances.
The topological attribute must be either true or false; this is enforced through the
set_analysis_rule_item method in the ShapeAttributes class. The
method then returns the occshp_attribs_obj_list with the topological
attribute.

3.4 BaseTemplateRule Class

The BaseTemplateRule abstract class represents any template rule used for
identifying a city object. As mentioned in section 2 example rules, we have
implemented four template rule classes: IdentifyBuildingMassings,
IdentifyTerrainMassings, IdentifyLandUseMassings and

CAADFutures 17 - 89

rules and template rules are implemented as abstract classes in Python,
BaseAnalysisRule and BaseTemplateRule, to facilitate reuse and
extensibility.

Fig. 2 illustrates the relationships between the four classes using a Unified
Modelling Language (UML) class diagram. In the diagram, the Massing2Citygml
class has a one-to-many relationship (1 to N) with the ShapeAttributes and
BaseTemplateRule classes. When an instance of Massing2Citygml exists, it
can be associated with an unlimited number of ShapeAttributes and
BaseTemplateRule classes, as it is necessary to append multiple
ShapeAttributes and BaseTemplateRule classes to Massing2Citygml
in defining a conversion. The same relationship applies to the BaseTemplateRule
and BaseAnalysisRule classes, where multiple BaseAnalysisRule classes
are required to define a BaseTemplateRule. The details of each class and their
relationships are discussed below.

Fig. 2. UML class diagram of the relationships between the four classes

3.1 Massing2Citygml Class

The Massing2Citygml class represents any massing-to-CityGML model
conversion. To set up a conversion process, users must set up a series of analysis rules
(section 3.3) and then configure the analysis rules for each template rule (section 3.4).
Users add the template rules into the Massing2Citygml class after it is
configured through the add_template_rule method. The class will execute the

analysis rules using the execute_analysis_rule method and the template rules
using the execute_template_rule method to identify the city objects and write
them to a CityGML file.

3.2 ShapeAttributes Class

The Massing2Citygml class reads the Collada file using the read_collada
method, converting the geometries from the file to a topology and storing it as a
ShapeAttributes class. The ShapeAttributes class stores each topology
from the massing model as an OCCShape class as defined in the modelling kernel
(PythonOCC). Any additional attributes of the OCCShape are stored as a dictionary.
The method set_shape adds an OCCShape and get_value access the attributes
stored in the dictionary. The ShapeAttributes class is the data exchange format
between the other three classes.

3.3 BaseAnalysisRule class

The BaseAnalysisRule abstract class represents any analysis rule used for
analysing and generating geometric relationship attributes for a massing model. As
mentioned in the example rules in section 2, we have implemented four analysis rule
classes; IsShellClosed, IsShellInBoundary,
ShellBoundaryContains and IsEdgeInBoundary, based on the
BaseAnalysisRule abstract class. We will describe the IsShellClosed
implementation to illustrate the abstract class.

The IsShellClosed class has attributes for_shape_type = OCCShell
and dict_key = “is_shell_closed”. OCCShell is the topology class to be
analysed by the analysis rule and is as defined in the modelling kernel, PythonOCC.
The execute method requires one input parameter
occshp_attribs_obj_list, which contains a list of the ShapeAttributes
instances from the massing model. The execute method loops through all the
ShapeAttributes instances that are shells and assesses if they are open or closed
shells. Once determined, it will append the geometric relationship attribute
is_shell_closed = True/False to each ShapeAttributes instances.
The topological attribute must be either true or false; this is enforced through the
set_analysis_rule_item method in the ShapeAttributes class. The
method then returns the occshp_attribs_obj_list with the topological
attribute.

3.4 BaseTemplateRule Class

The BaseTemplateRule abstract class represents any template rule used for
identifying a city object. As mentioned in section 2 example rules, we have
implemented four template rule classes: IdentifyBuildingMassings,
IdentifyTerrainMassings, IdentifyLandUseMassings and

90 - CAADFutures 17

IdentifyRoadMassings, based on the BaseTemplateRule abstract class.
We will describe the IdentifyBuildingMassings implementation to illustrate
the abstract class.

The IdentifyBuildingMassings class has attribute for_shape_type =
OCCShell. The identify method requires two input parameters,
occshp_attribs_obj_list and the citygmlwriter object from Pyliburo.
The identify method loops through all the shells and assesses if they satisfy the
geometric relationship attribute conditions set in the
analysis_rule_obj_dict_list, a list of dictionaries documenting the
analysis rules and their corresponding attribute conditions for identifying the city
object of interest. The class provides flexibility for users to define their own analysis
rules and its corresponding attribute condition. To identify a building object as
specified in section 3, one will add and specify the analysis rules and corresponding
attribute condition IsShellClosed = True, IsShellInBoundary =
True, and ShellBoundaryContains = False, using the
add_analysis_rule method The identify method then retrieves the
dictionary that specifies the analysis rule objects and its corresponding attribute
conditions using the get_analysis_rule_obj_dict_list method and writes
the shell as a building city object.

4 Examples

We demonstrate the feasibility of the automated workflow on three examples. Two
simpler examples illustrate how the rules operate and one complex use case illustrates
the potential of the workflow. We used SketchUp for modelling the simpler cases and
Rhinoceros 3D for modelling the complex case. Using the four Python classes, we
wrote a Python script for the conversion, basing it on the analysis and templates rules
described in section 2. The source code of the script and the example files can be
obtained from GitHub (https://github.com/chenkianwee/pyliburo_example_files/
blob/master/example_scripts/collada/convert_collada2citygml.py).

A snippet of the source code of the conversion script is shown in Fig. 3. The script
requires only two inputs: the Collada file and the file path for the generated CityGML
file. First, we initialise the three analysis rules classes; IsShellClosed,
IsShellInBoundary and ShellBoundaryContains. Second, we specify
the corresponding geometric relationship attribute conditions of each analysis rule
class IsShellClosed = True, IsShellInBoundary = True, and
ShellBoundaryContains = False and append it to the template class. Third,
we append the configured template class to the Massing2Citygml class.

input1 = Collada_file
input2 = CityGML_filepath
1.) set up the analysis rules
is_shell_closed = IsShellClosed()
is_shell_in_boundary = IsShellInBoundary()

shell_boundary_contains = ShellBoundaryContains()
2.) set up template rules
id_bldgs = IdentifyBuildingMassings()
id_bldgs.add_analysis_rule(is_shell_closed, True)
id_bldgs.add_analysis_rule(is_shell_in_boundary, True)
id_bldgs.add_analysis_rule(shell_boundary_contains,
False)
3.) add the template rule in the massing2citygml class
massing_2_citygml = Massing2Citygml()
massing_2_citygml.read_collada(input1)
massing_2_citygml.add_template_rule(id_bldgs)
massing_2_citygml.execute_analysis_rule()
massing_2_citygml.execute_template_rule(input2)

Fig. 3 Snippets of the conversion script with the two inputs highlighted in bold

The generated cityGML model is validated by Val3dity [14] and the CityGML
schema validator [15]. Val3dity checks and reports geometrical errors of the 3D
topologies in a CityGML model. The CityGML schema validator checks and ensure a
CityGML model follows its schema definition. A valid CityGML model does not
contain any geometrical or schematic errors.

4.1 Example 1

The first example is a simple case; it has a flat terrain, 44 land-use plots, 313
rectangular building extrusions and a road network of 56 edges as shown in Fig. 4a.
The example contains a total of 3930 surfaces. We modelled the example using
geometry groups as suggested in the SketchUp manual [16]. Extruded buildings, land-
use plots, terrain and road networks are modelled as separate geometry groups. Each
group is translated into a mesh when exported into Collada. Meshes in Collada
contain both surfaces and lines, and meshes that contain surfaces are essentially
shells. As a result, building extrusions, land-use plots and terrain geometry groups in
SketchUp are automatically exported as closed shells and open shells respectively.
The network lines are also automatically exported as edges in Collada. The exported
Collada file is triangulated to ensure the geometries are properly translated, as we
have experienced inaccurate export of complex geometries, such as those in example
2 and 3, with the non-triangulated option.

Lastly, satisfying all the requirements as mentioned in section 2, the Collada file is
converted into a CityGML model as shown in Fig. 4b. Fig. 5 shows the difference
between a building extrusion documented in Collada (Fig. 5a) and CityGML (Fig. 5b)
after the conversion. The main difference is the building extrusion is explicitly
declared as a building object in CityGML, while it is only documented as a mesh in
Collada. This is also the case for all the other identified city objects; land-use plots,
terrain and roads, in which their semantic information is explicitly declared in the
CityGML file.

CAADFutures 17 - 91

IdentifyRoadMassings, based on the BaseTemplateRule abstract class.
We will describe the IdentifyBuildingMassings implementation to illustrate
the abstract class.

The IdentifyBuildingMassings class has attribute for_shape_type =
OCCShell. The identify method requires two input parameters,
occshp_attribs_obj_list and the citygmlwriter object from Pyliburo.
The identify method loops through all the shells and assesses if they satisfy the
geometric relationship attribute conditions set in the
analysis_rule_obj_dict_list, a list of dictionaries documenting the
analysis rules and their corresponding attribute conditions for identifying the city
object of interest. The class provides flexibility for users to define their own analysis
rules and its corresponding attribute condition. To identify a building object as
specified in section 3, one will add and specify the analysis rules and corresponding
attribute condition IsShellClosed = True, IsShellInBoundary =
True, and ShellBoundaryContains = False, using the
add_analysis_rule method The identify method then retrieves the
dictionary that specifies the analysis rule objects and its corresponding attribute
conditions using the get_analysis_rule_obj_dict_list method and writes
the shell as a building city object.

4 Examples

We demonstrate the feasibility of the automated workflow on three examples. Two
simpler examples illustrate how the rules operate and one complex use case illustrates
the potential of the workflow. We used SketchUp for modelling the simpler cases and
Rhinoceros 3D for modelling the complex case. Using the four Python classes, we
wrote a Python script for the conversion, basing it on the analysis and templates rules
described in section 2. The source code of the script and the example files can be
obtained from GitHub (https://github.com/chenkianwee/pyliburo_example_files/
blob/master/example_scripts/collada/convert_collada2citygml.py).

A snippet of the source code of the conversion script is shown in Fig. 3. The script
requires only two inputs: the Collada file and the file path for the generated CityGML
file. First, we initialise the three analysis rules classes; IsShellClosed,
IsShellInBoundary and ShellBoundaryContains. Second, we specify
the corresponding geometric relationship attribute conditions of each analysis rule
class IsShellClosed = True, IsShellInBoundary = True, and
ShellBoundaryContains = False and append it to the template class. Third,
we append the configured template class to the Massing2Citygml class.

input1 = Collada_file
input2 = CityGML_filepath
1.) set up the analysis rules
is_shell_closed = IsShellClosed()
is_shell_in_boundary = IsShellInBoundary()

shell_boundary_contains = ShellBoundaryContains()
2.) set up template rules
id_bldgs = IdentifyBuildingMassings()
id_bldgs.add_analysis_rule(is_shell_closed, True)
id_bldgs.add_analysis_rule(is_shell_in_boundary, True)
id_bldgs.add_analysis_rule(shell_boundary_contains,
False)
3.) add the template rule in the massing2citygml class
massing_2_citygml = Massing2Citygml()
massing_2_citygml.read_collada(input1)
massing_2_citygml.add_template_rule(id_bldgs)
massing_2_citygml.execute_analysis_rule()
massing_2_citygml.execute_template_rule(input2)

Fig. 3 Snippets of the conversion script with the two inputs highlighted in bold

The generated cityGML model is validated by Val3dity [14] and the CityGML
schema validator [15]. Val3dity checks and reports geometrical errors of the 3D
topologies in a CityGML model. The CityGML schema validator checks and ensure a
CityGML model follows its schema definition. A valid CityGML model does not
contain any geometrical or schematic errors.

4.1 Example 1

The first example is a simple case; it has a flat terrain, 44 land-use plots, 313
rectangular building extrusions and a road network of 56 edges as shown in Fig. 4a.
The example contains a total of 3930 surfaces. We modelled the example using
geometry groups as suggested in the SketchUp manual [16]. Extruded buildings, land-
use plots, terrain and road networks are modelled as separate geometry groups. Each
group is translated into a mesh when exported into Collada. Meshes in Collada
contain both surfaces and lines, and meshes that contain surfaces are essentially
shells. As a result, building extrusions, land-use plots and terrain geometry groups in
SketchUp are automatically exported as closed shells and open shells respectively.
The network lines are also automatically exported as edges in Collada. The exported
Collada file is triangulated to ensure the geometries are properly translated, as we
have experienced inaccurate export of complex geometries, such as those in example
2 and 3, with the non-triangulated option.

Lastly, satisfying all the requirements as mentioned in section 2, the Collada file is
converted into a CityGML model as shown in Fig. 4b. Fig. 5 shows the difference
between a building extrusion documented in Collada (Fig. 5a) and CityGML (Fig. 5b)
after the conversion. The main difference is the building extrusion is explicitly
declared as a building object in CityGML, while it is only documented as a mesh in
Collada. This is also the case for all the other identified city objects; land-use plots,
terrain and roads, in which their semantic information is explicitly declared in the
CityGML file.

92 - CAADFutures 17

Fig. 4. Example 1 (a) SketchUp massing model (b) Converted CityGML model from the
massing model

Fig. 5. (a) Building extrusion exported as Collada from SketchUp (b) Converted CityGML
building extrusion with explicit building semantic information.

4.2 Example 2

The second example is a more complex case; it has an elevated terrain, 59 land-use
plots, 453 building extrusions and a road network of 1125 edges. The added
complexities are the TIN (Triangulate Irregular Network) mesh of the elevated terrain
consisting of 4961 triangulated surfaces (Fig. 6a) and the non-rectangular building
extrusions (Fig. 6b).

Fig. 6. Added complexities of example 2 (a) TIN mesh of the elevated terrain (b) Examples of
non-rectangular building extrusions

All the geometries are modelled according to the recommended SketchUp modelling
workflow (Fig. 7a). The example as shown in Fig. 7 contains a total of 37,794
surfaces. The conversion script converted the exported Collada into CityGML (Fig.
7b). The script was able to successfully identify the open shell terrain of 4961
surfaces and non-rectangular extrusions of 76 surfaces, and convert them into the
CityGML object as shown in Fig. 8 and Fig. 9.

Fig. 7. Example 2 (a) SketchUp massing model with elevated terrain and non-rectangular
extrusions (b) Converted CityGML model from the massing model

CAADFutures 17 - 93

Fig. 4. Example 1 (a) SketchUp massing model (b) Converted CityGML model from the
massing model

Fig. 5. (a) Building extrusion exported as Collada from SketchUp (b) Converted CityGML
building extrusion with explicit building semantic information.

4.2 Example 2

The second example is a more complex case; it has an elevated terrain, 59 land-use
plots, 453 building extrusions and a road network of 1125 edges. The added
complexities are the TIN (Triangulate Irregular Network) mesh of the elevated terrain
consisting of 4961 triangulated surfaces (Fig. 6a) and the non-rectangular building
extrusions (Fig. 6b).

Fig. 6. Added complexities of example 2 (a) TIN mesh of the elevated terrain (b) Examples of
non-rectangular building extrusions

All the geometries are modelled according to the recommended SketchUp modelling
workflow (Fig. 7a). The example as shown in Fig. 7 contains a total of 37,794
surfaces. The conversion script converted the exported Collada into CityGML (Fig.
7b). The script was able to successfully identify the open shell terrain of 4961
surfaces and non-rectangular extrusions of 76 surfaces, and convert them into the
CityGML object as shown in Fig. 8 and Fig. 9.

Fig. 7. Example 2 (a) SketchUp massing model with elevated terrain and non-rectangular
extrusions (b) Converted CityGML model from the massing model

94 - CAADFutures 17

Fig. 8. (a) Terrain shell of 4961 surfaces exported as Collada from SketchUp (b) Converted
CityGML terrain with explicit terrain semantic information

Fig. 9. (a) Non-rectangular building extrusion of 76 surfaces exported as Collada from
SketchUp (b) Converted CityGML non-rectangular building extrusion with explicit building
semantic information

4.3 Example 3

The last example is the most complex case of all; it has an elevated terrain, 60 land-
use plots, 174 buildings and a road network of 1512 edges. The complexity of this
example is that each building is a complex solid consisting of hundreds of thousands
of polygon surfaces (Fig. 10). SketchUp’s push/pull modelling technique [17] is not

suitable for modelling such complex solids. We used a NURBS modelling
application, Rhinoceros 3D, and modelled the geometries according to this
application’s recommended modelling workflow. The loft command was used
extensively for modelling the twisting and slanting towers (Fig. 10a). The join
command was then used to join all the lofted surfaces together to form a closed shell.
For more complex geometries that are made up of multiple complex solids (Fig. 10b),
the boolean union command was used to fuse multiple solids into a single solid.

Fig. 10. Complex building solids from example 3 (a) twisting and slanting tower constructed
with loft and join command (b) building consisting of multiple solids fuse into a single solid
with the boolean union command.

Unfortunately, Rhinoceros 3D is only able to export the building, land-use plot and
terrain surfaces and is not able to export the network edges into the Collada format.
The workaround is to first export the surfaces from Rhinoceros 3D into SketchUp
through the .3ds format and then continue to model the network edges in SketchUp as
shown in Fig. 11a. The geometries are eventually exported as Collada and converted
into CityGML using the conversion script as shown in Fig. 11b. The example contains
a total of 255,953 surfaces. The script was able to successfully convert all the
complex building solids into CityGML building objects. Fig. 12 shows an example of
a twisting tower of 2960 surfaces and Fig. 13 an example of a building that is made
up of multiple complex solids of 3270 surfaces that were converted into CityGML
building objects.

CAADFutures 17 - 95

Fig. 8. (a) Terrain shell of 4961 surfaces exported as Collada from SketchUp (b) Converted
CityGML terrain with explicit terrain semantic information

Fig. 9. (a) Non-rectangular building extrusion of 76 surfaces exported as Collada from
SketchUp (b) Converted CityGML non-rectangular building extrusion with explicit building
semantic information

4.3 Example 3

The last example is the most complex case of all; it has an elevated terrain, 60 land-
use plots, 174 buildings and a road network of 1512 edges. The complexity of this
example is that each building is a complex solid consisting of hundreds of thousands
of polygon surfaces (Fig. 10). SketchUp’s push/pull modelling technique [17] is not

suitable for modelling such complex solids. We used a NURBS modelling
application, Rhinoceros 3D, and modelled the geometries according to this
application’s recommended modelling workflow. The loft command was used
extensively for modelling the twisting and slanting towers (Fig. 10a). The join
command was then used to join all the lofted surfaces together to form a closed shell.
For more complex geometries that are made up of multiple complex solids (Fig. 10b),
the boolean union command was used to fuse multiple solids into a single solid.

Fig. 10. Complex building solids from example 3 (a) twisting and slanting tower constructed
with loft and join command (b) building consisting of multiple solids fuse into a single solid
with the boolean union command.

Unfortunately, Rhinoceros 3D is only able to export the building, land-use plot and
terrain surfaces and is not able to export the network edges into the Collada format.
The workaround is to first export the surfaces from Rhinoceros 3D into SketchUp
through the .3ds format and then continue to model the network edges in SketchUp as
shown in Fig. 11a. The geometries are eventually exported as Collada and converted
into CityGML using the conversion script as shown in Fig. 11b. The example contains
a total of 255,953 surfaces. The script was able to successfully convert all the
complex building solids into CityGML building objects. Fig. 12 shows an example of
a twisting tower of 2960 surfaces and Fig. 13 an example of a building that is made
up of multiple complex solids of 3270 surfaces that were converted into CityGML
building objects.

96 - CAADFutures 17

Fig. 11. Example 3 (a) SketchUp massing model with elevated terrain and complex building
solids (b) Converted CityGML model from the massing model

Fig. 12. (a) Complex solid geometry of 2960 surfaces constructed with Rhinoceros loft
command and exported to SketchUp then to Collada (b) Converted CityGML complex solid
with explicit building semantic information.

Fig. 13. (a) Complex solid geometry of 3270 surfaces constructed with Rhinoceros loft and
boolean union commands and exported to SketchUp then to Collada (b) Converted CityGML
complex solid with explicit building semantic information.

4.4 Discussion

The auto-conversion of the massing models to cityGML in examples 1-3 takes 1, 14
and 145 minutes respectively, on a workstation laptop with an i7 processor and 16GB
RAM. The complexity in example 3 demands substantially more time for the
conversion as compared to examples 1 and 2. However, 145 minutes of computational
time is a considerable improvement compared to the required time for manually
remodelling the cityGML model. Moreover, it is not common to model in such
complexity in the early design stages; we foresee most applications will have the
complexity of examples 1 or 2. As the Python library is still an early prototype,
further improvement will be made to speed up the conversion process for complex
examples. The working prototype will be open and free for usage and feedback
(https://github.com/chenkianwee/pyliburo/blob/master/massing2citygml.py).

 For designers with no programming background who follow the recommended
modelling workflow of the respective 3D modelling applications, we have introduced
a configuration that only requires two inputs for the conversion and demonstrated its
feasibility with the three examples. We envision that the auto-conversion workflow
would be used in conjunction with our previous research that generates a 3D semantic
city model from open data online [18]. Based on the workflow introduced in [18],
designers can acquire all the available data online for reconstructing the existing

CAADFutures 17 - 97

Fig. 11. Example 3 (a) SketchUp massing model with elevated terrain and complex building
solids (b) Converted CityGML model from the massing model

Fig. 12. (a) Complex solid geometry of 2960 surfaces constructed with Rhinoceros loft
command and exported to SketchUp then to Collada (b) Converted CityGML complex solid
with explicit building semantic information.

Fig. 13. (a) Complex solid geometry of 3270 surfaces constructed with Rhinoceros loft and
boolean union commands and exported to SketchUp then to Collada (b) Converted CityGML
complex solid with explicit building semantic information.

4.4 Discussion

The auto-conversion of the massing models to cityGML in examples 1-3 takes 1, 14
and 145 minutes respectively, on a workstation laptop with an i7 processor and 16GB
RAM. The complexity in example 3 demands substantially more time for the
conversion as compared to examples 1 and 2. However, 145 minutes of computational
time is a considerable improvement compared to the required time for manually
remodelling the cityGML model. Moreover, it is not common to model in such
complexity in the early design stages; we foresee most applications will have the
complexity of examples 1 or 2. As the Python library is still an early prototype,
further improvement will be made to speed up the conversion process for complex
examples. The working prototype will be open and free for usage and feedback
(https://github.com/chenkianwee/pyliburo/blob/master/massing2citygml.py).

 For designers with no programming background who follow the recommended
modelling workflow of the respective 3D modelling applications, we have introduced
a configuration that only requires two inputs for the conversion and demonstrated its
feasibility with the three examples. We envision that the auto-conversion workflow
would be used in conjunction with our previous research that generates a 3D semantic
city model from open data online [18]. Based on the workflow introduced in [18],
designers can acquire all the available data online for reconstructing the existing

98 - CAADFutures 17

project site into a CityGML model and use it for the massing design stage. Unlike the
conversion from a geometric to a semantic model where there is a need for inferring
semantic information, all the geometric data is present in the semantic model. Thus,
the CityGML model of the existing site can be easily converted into the geometric
model and imported into any 3D modelling application for use in the massing design
stage. The massing model will be constructed based on the site model. Essentially,
with a streamlined workflow based on an open-standard city model, we hope to
enhance communication between experts and facilitate the urban design process.

Currently, the auto-conversion method can only identify four types of city objects;
buildings, terrain, land-use plots and roads. However, the library’s flexibility and
extensibility, described in section 3, allows designers with a programming
background to easily configure or create new analysis and template rules catering to
their own modelling workflow. One can easily reconfigure the current analysis and
template rules for identifying exceptions. One such exception is that land-use plots
demarcated for recreational use do not have to contain buildings; to identify such
land-use plots one can easily add another land-use template rule with existing analysis
rules, IsShellClosed = False, IsShellInBoundary = True, and
ShellBoundaryContains = False.

When the existing palette of rules is not sufficient for identifying city objects of
interest, Pyliburo provides the building blocks, a modelling kernel and a CityGML
writer, for creating new rules. For example, one can identify LOD1 road networks by
modelling roads as shells instead of edges. In this scenario, one can model the roads
as open shells that are contained within a terrain shell and not containing other
objects. This only requires the designers to implement a new template rule to identify
LOD1 roads, while reusing the IsShellClosed = False,
IsShellInBoundary = True, and ShellBoundaryContains =
False analysis rules to identify the shells as roads.

Similarly, for identifying other transportation infrastructures such as tunnels and
bridges, designers will have to decide the modelling procedure for such
infrastructures. Tunnels can be modelled as closed shells that are below the terrain
and bridges as closed shells that are floating above the terrain. This will require the
designer to implement a new set of analysis rules and template rules. First of all,
designers have to implement two analysis rules; IsShellUnder and
IsShellFloating. To implement IsShellUnder, project the shell upwards; if
it hits another shell, it means the projected shell is placed under another shell.
Similarly for IsShellFloating, project the shell downwards; if it hits another
shell and has a distance from the shell, it means the projected shell is floating above
another shell. Then append these analysis rules to the template rules:
IsShellClosed = True and IsShellUnder = True for identifying
tunnels and IsShellClosed = True and IsShellFloating = True for
identifying bridges.

5 Conclusion

This paper shows the feasibility of the workflow for automatically generating a
semantic 3D city model, cityGML, from a conceptual massing model. The workflow
does not require extra modelling effort from designers while modelling their massing
design, as it leverages existing modelling workflows. The auto-conversion requires
only two inputs, the massing model for the conversion and the file path to store the
generated cityGML model. It eliminates the time-consuming and laborious task of
remodelling massing models into cityGML models so that urban designers can focus
on design rather than modelling technicalities. The cityGML model documents partial
data from the early design stages in a standard format that can be readily viewed and
modified by other 3D GIS applications, thus streamlining the process of sharing
models between domain-specific experts. We envision this would facilitate
communications between experts in an urban design process.

Further improvements of the auto-conversion include the development of an auto-
correct feature for the massing geometries and a Graphical User Interface (GUI) for
the library. First, for the conversion of complex geometries consisting of thousands of
surfaces, it is demanding for the designers to ensure that each surface is error-free.
We would like to implement an auto-correct feature to address this issue. Initially, we
need to integrate the Val3dity library for identifying invalid geometries. According to
the error identified, we will then develop algorithms using the modelling kernel from
Pyliburo to fix the geometries. By doing so, the workflow will be more designer-
friendly.

Second, we propose the development of a GUI for the library so that designers who
are non-programmers are also able to change the analysis and template rule
configurations. We propose developing a parameter tree GUI similar to feature-based
modellers such as CATIA. In the parameter tree GUI, the analysis rules are nested
within a template rule and the template rules within a Massing2Citygml
conversion; one can readily remove or append rules to configure the conversion.

Acknowledgements. This research was supported by the National Research
Foundation Singapore through the Singapore MIT Alliance for Research and
Technology's Center for Environmental Sensing and Modeling interdisciplinary
research program.

References

1. Gröger, G. and Plümer, L.: CityGML – Interoperable semantic 3D city models, ISPRS
Journal of Photogrammetry and Remote Sensing, 71, 12–33 (2012)

2. <https://www.arcgis.com/features/index.html>, accessed on 1 June 2017
3. <http://www.autodesk.com/products/infraworks-360/overview>, accessed on 1 June 2017
4. <http://www.autodesk.com/products/autocad-map-3d/overview>, accessed on 1 June 2017
5. <https://www.bentley.com/en/products/product-line/infrastructure-asset-performance-

software/bentley-map>, accessed on 1 June 2017
6. 3DISGmbH, CityEditor User Manual, Bocholt, Germany (2016)

CAADFutures 17 - 99

project site into a CityGML model and use it for the massing design stage. Unlike the
conversion from a geometric to a semantic model where there is a need for inferring
semantic information, all the geometric data is present in the semantic model. Thus,
the CityGML model of the existing site can be easily converted into the geometric
model and imported into any 3D modelling application for use in the massing design
stage. The massing model will be constructed based on the site model. Essentially,
with a streamlined workflow based on an open-standard city model, we hope to
enhance communication between experts and facilitate the urban design process.

Currently, the auto-conversion method can only identify four types of city objects;
buildings, terrain, land-use plots and roads. However, the library’s flexibility and
extensibility, described in section 3, allows designers with a programming
background to easily configure or create new analysis and template rules catering to
their own modelling workflow. One can easily reconfigure the current analysis and
template rules for identifying exceptions. One such exception is that land-use plots
demarcated for recreational use do not have to contain buildings; to identify such
land-use plots one can easily add another land-use template rule with existing analysis
rules, IsShellClosed = False, IsShellInBoundary = True, and
ShellBoundaryContains = False.

When the existing palette of rules is not sufficient for identifying city objects of
interest, Pyliburo provides the building blocks, a modelling kernel and a CityGML
writer, for creating new rules. For example, one can identify LOD1 road networks by
modelling roads as shells instead of edges. In this scenario, one can model the roads
as open shells that are contained within a terrain shell and not containing other
objects. This only requires the designers to implement a new template rule to identify
LOD1 roads, while reusing the IsShellClosed = False,
IsShellInBoundary = True, and ShellBoundaryContains =
False analysis rules to identify the shells as roads.

Similarly, for identifying other transportation infrastructures such as tunnels and
bridges, designers will have to decide the modelling procedure for such
infrastructures. Tunnels can be modelled as closed shells that are below the terrain
and bridges as closed shells that are floating above the terrain. This will require the
designer to implement a new set of analysis rules and template rules. First of all,
designers have to implement two analysis rules; IsShellUnder and
IsShellFloating. To implement IsShellUnder, project the shell upwards; if
it hits another shell, it means the projected shell is placed under another shell.
Similarly for IsShellFloating, project the shell downwards; if it hits another
shell and has a distance from the shell, it means the projected shell is floating above
another shell. Then append these analysis rules to the template rules:
IsShellClosed = True and IsShellUnder = True for identifying
tunnels and IsShellClosed = True and IsShellFloating = True for
identifying bridges.

5 Conclusion

This paper shows the feasibility of the workflow for automatically generating a
semantic 3D city model, cityGML, from a conceptual massing model. The workflow
does not require extra modelling effort from designers while modelling their massing
design, as it leverages existing modelling workflows. The auto-conversion requires
only two inputs, the massing model for the conversion and the file path to store the
generated cityGML model. It eliminates the time-consuming and laborious task of
remodelling massing models into cityGML models so that urban designers can focus
on design rather than modelling technicalities. The cityGML model documents partial
data from the early design stages in a standard format that can be readily viewed and
modified by other 3D GIS applications, thus streamlining the process of sharing
models between domain-specific experts. We envision this would facilitate
communications between experts in an urban design process.

Further improvements of the auto-conversion include the development of an auto-
correct feature for the massing geometries and a Graphical User Interface (GUI) for
the library. First, for the conversion of complex geometries consisting of thousands of
surfaces, it is demanding for the designers to ensure that each surface is error-free.
We would like to implement an auto-correct feature to address this issue. Initially, we
need to integrate the Val3dity library for identifying invalid geometries. According to
the error identified, we will then develop algorithms using the modelling kernel from
Pyliburo to fix the geometries. By doing so, the workflow will be more designer-
friendly.

Second, we propose the development of a GUI for the library so that designers who
are non-programmers are also able to change the analysis and template rule
configurations. We propose developing a parameter tree GUI similar to feature-based
modellers such as CATIA. In the parameter tree GUI, the analysis rules are nested
within a template rule and the template rules within a Massing2Citygml
conversion; one can readily remove or append rules to configure the conversion.

Acknowledgements. This research was supported by the National Research
Foundation Singapore through the Singapore MIT Alliance for Research and
Technology's Center for Environmental Sensing and Modeling interdisciplinary
research program.

References

1. Gröger, G. and Plümer, L.: CityGML – Interoperable semantic 3D city models, ISPRS
Journal of Photogrammetry and Remote Sensing, 71, 12–33 (2012)

2. <https://www.arcgis.com/features/index.html>, accessed on 1 June 2017
3. <http://www.autodesk.com/products/infraworks-360/overview>, accessed on 1 June 2017
4. <http://www.autodesk.com/products/autocad-map-3d/overview>, accessed on 1 June 2017
5. <https://www.bentley.com/en/products/product-line/infrastructure-asset-performance-

software/bentley-map>, accessed on 1 June 2017
6. 3DISGmbH, CityEditor User Manual, Bocholt, Germany (2016)

100 - CAADFutures 17

7. <http://www.rhinoterrain.com/en/rhinocity-3.html>, accessed on 1 June 2017
8. <http://www.safe.com/fme/fme-desktop/>, accessed on 1 June 2017
9. Leitão, A. L. Santos and Lopes, J.: Programming Languages For Generative Design: A

Comparative Study, International Journal of Architectural Computing, 10, 139–162 (2012)
10. Celani, G. and Vaz, C.: CAD Scripting And Visual Programming Languages For

Implementing Computational Design Concepts: A Comparison From A Pedagogical Point
Of View, International Journal of Architectural Computing, 10, 121–138 (2012)

11. Janssen, P.: Visual Dataflow Modelling: Some thoughts on complexity, in Proceedings of
the 32nd eCAADe Conference, Newcastle, UK (2014)

12. Janssen, P., Chen, K. W., Mohanty, A.: Automated Generation of BIM Models, in
Proceedings of the 34th eCAADe Conference, Oulu, Finland (2016)

13. Chen, K. W. and Norford, L.: Developing an Open Python Library for Urban Design
Optimisation - Pyliburo, in Building Simulation 2017, San Francisco, USA (2017)

14. Ledoux, H.: On the Validation of Solids Represented with the International Standards for
Geographic Information, Computer-Aided Civil and Infrastructure Engineering, 28, 693–
706 (2013)

15. <http://geovalidation.bk.tudelft.nl/schemacitygml/>, accessed on 1 June 2017
16. <https://help.sketchup.com/en/article/3000120>, accessed on 1 June 2017
17. Schell, B., Esch, J. L., Ulmer, J. E.: System and method for three-dimensional modeling,

Google Patents, <https://www.google.com/patents/US6628279>, accessed on 1 June 2017
18. Chen, K. W. and Norford, L. K.: Workflow for Generating 3D Urban Models from Open

City Data for Performance-Based Urban Design, in Asim 2016 IBPSA Asia Conference,
Jeju, Korea (2016)

Urban Data Mining with Natural Language Processing:
Social Media as Complementary Tool for Urban Decision Making

Nai Chun Chen 1, Yan Zhang 2, Marrisa Stephens 3, Takehiko Nagakura 4, Kent
Larson 5

1, 2, 3, 4, 5 Massachusetts Institute of Technology
naichun@mit.edu, ryanz@mit.edu, marissa@mit.edu, takehiko@mit.edu, ekll@mit.edu

Abstract. The presence of web2.0 and traceable mobile devices creates new
opportunities for urban designers to understand cities through an analysis of
user-generated data. The emergence of “big data” has resulted in a large amount
of information documenting daily events, perceptions, thoughts, and emotions
of citizens, all annotated with the location and time that they were recorded.
This data presents an unprecedented opportunity to gauge public opinion about
the topic of interest. Natural language processing with social media is a novel
tool complementary to traditional survey methods. In this paper, we validate
these methods using tourism data from Trip-Advisor in Andorra.
“Natural language processing” (NLP) detects patterns within written languages,
enabling researchers to infer sentiment by parsing sentences from social media.
We applied sentiment analysis to reviews of tourist attractions and restaurants.
We found that there were distinct geographic regions in Andorra where
amenities were reviewed as either uniformly positive or negative. For example,
correlating negative reviews of parking availability with land use data revealed
a shortage of parking associated with a known traffic congestion issue,
validating our methods. We believe that the application of NLP to social media
data can be a complementary tool for urban decision making.

Keywords: Short Paper, Urban Design Decision Making, Social Media,
Natural Language Processing

1 Introduction

Compelling arguments for the use of bottom-up social opinions to inspire urban de-
signs can be found in influential books such as “The Image of the City” (Lynch,
1960), “Death and Life of Great American Cities” (Jacobs, 1964), and “City is not a
Tree” (Alexander, 1966). A large scale survey of public opinion for this purpose,
however, was difficult in the 1960s because it relied on time-consuming traditional
ethnographic tools such as surveys and interviews. Presently, modern geo-located
data mining techniques can be deployed.

Compared to the traditional methods, such as sampled survey, NLP with social
media is not only more cost-effective, but furthermore highlights urban issues on a

