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Abstract. We present a workflow to automatically generate semantic 3D city 
models from conceptual massing models. In the workflow, the massing design 
is exported as a Collada file. The auto-conversion method, implemented as a 
Python library, identifies city objects by analysing the relationships between the 
geometries in the Collada file. For example, if the analysis shows that a closed 
poly surface satisfies certain geometrical relationships, it is automatically 
converted to a building. The advantage of this workflow is that no extra 
modelling effort is required, provided the designers are consistent in the 
geometrical relationships while modelling their massing design. We will 
demonstrate the feasibility of the workflow using three examples of increasing 
complexity. With the success of the demonstrations, we envision the auto-
conversion of massing models into semantic models will facilitate the sharing 
of city models between domain-specific experts and enhance communications 
in the urban design process.   
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1 Introduction 

In the early stages of urban design, designers often prefer the use of conceptual 
massing models for design exploration because massing models are easy to create and 
modify. The use of massing models enables designers to visualise and receive timely 
feedback on their designs. Designers will explore multiple designs, further develop a 
few and discard unpromising designs. The use of massing models minimises 
modelling efforts or “sunk cost” on the discarded designs. These massing models are 
usually in geometrical formats such as Collada, Wavefront and DXF. The 
disadvantage is that massing models do not have semantic information, which hinders 
the sharing of models between domain-specific simulation applications and experts. 
CityGML is a standard format that documents semantic 3D city data for facilitating 
data sharing [1]. Designers can model their designs in cityGML format to facilitate 

model sharing, but this requires them to specify the semantic information. As a result, 
modelling their design in CityGML increases the modelling effort and the “sunk cost” 
of discarded design models.  

The usefulness of the cityGML model is it acts as the main data exchange format 
for sharing models with other domain experts. Domain-specific experts can visualise 
the model by directly importing it into a 3D Geospatial Information System (GIS) 
application. The 3D model will be useful for performing analyses [2] to develop the 
design further. The standardisation of the exchange format will streamline the process 
of sharing models. This paper proposes a workflow to automatically generate 
semantic 3D city models from the conceptual massing models. The generation 
process automatically identifies city objects such as buildings, terrains and land-use 
plots, and converts the massing model into a minimal cityGML model consisting of 
explicitly defined Level of Detail 1 and 0 (LOD1 and 0) city objects.  

1.1 Existing Approaches 

The most straightforward method is to construct the massing model within a 
modelling application that has CityGML modelling capability. These are usually GIS-
based applications developed for managing large GIS data set, examples of which are 
ArcGIS [2], Autodesk Infraworks 360 [3], Autodesk Map 3D [4] and Bentley Map 
[5]. However, urban designers usually work on a smaller scale and thus prefer 
modelling in Computer-Aided Design (CAD) applications such as SketchUp and 
Rhinoceros3D for their more flexible and advance 3D modelling capabilities. Thus, 
this paper focuses on facilitating the latter; transition of geometric models authored in 
CAD applications into semantic models for sharing among domain-specific experts. 
There are two main existing methods for generating a semantic 3D city model from a 
conceptual massing model: 1) import of massing models into modelling tools that 
support cityGML export or 2) the use of visual scripting to customise the conversion 
from massing to cityGML. 

The first method imports the conceptual model into a 3D modelling application 
that supports cityGML modelling. Examples of these applications include the 
CityEditor plugin for SketchUp [6] and RhinoCity plugin for Rhinoceros 3D [7]. In 
this method, designers either model the massing design in the 3D application or 
import the model into the 3D modelling application, explicitly declare the semantic 
information of each geometry and export it to cityGML format. For example, in 
CityEditor the declaration is based on SketchUp’s geometry group, where each 
geometry group must be declared as a semantic object. The main disadvantage is that 
the semantic declaration process is inevitably workflow specific and to manually 
declare each geometry’s semantic content can be a time-consuming and laborious task 
when the designer has multiple design options.  

The second method is to use visual scripting to customise the conversion. 
Designers will create their customised procedure using a visual scripting application 
to convert their massing models into cityGML. One such application is FME desktop 
application [8], which provides readily deployable functions to facilitate setting up the 
conversion procedure. For example, an urban designer models his design in SketchUp 



CAADFutures 17 - 85
 

Automatic Generation of Semantic 3D City Models from 
Conceptual Massing Models   

Kian Wee Chen 1, Patrick Janssen 2, Leslie Norford 3 

1 CENSAM, Singapore-MIT Alliance for Research and Technology, Singapore 
2 National University of Singapore, Singapore 

3 Department of Architecture, Massachusetts Institute of Technology, USA 
 

chenkianwee@gmail.com, patrick@janssen.name, lnorford@mit.edu 

Abstract. We present a workflow to automatically generate semantic 3D city 
models from conceptual massing models. In the workflow, the massing design 
is exported as a Collada file. The auto-conversion method, implemented as a 
Python library, identifies city objects by analysing the relationships between the 
geometries in the Collada file. For example, if the analysis shows that a closed 
poly surface satisfies certain geometrical relationships, it is automatically 
converted to a building. The advantage of this workflow is that no extra 
modelling effort is required, provided the designers are consistent in the 
geometrical relationships while modelling their massing design. We will 
demonstrate the feasibility of the workflow using three examples of increasing 
complexity. With the success of the demonstrations, we envision the auto-
conversion of massing models into semantic models will facilitate the sharing 
of city models between domain-specific experts and enhance communications 
in the urban design process.   

Keywords: Interoperability, GIS, City Information Modelling, Conceptual 
Urban Design, Collaborative Urban Design Process 

1 Introduction 

In the early stages of urban design, designers often prefer the use of conceptual 
massing models for design exploration because massing models are easy to create and 
modify. The use of massing models enables designers to visualise and receive timely 
feedback on their designs. Designers will explore multiple designs, further develop a 
few and discard unpromising designs. The use of massing models minimises 
modelling efforts or “sunk cost” on the discarded designs. These massing models are 
usually in geometrical formats such as Collada, Wavefront and DXF. The 
disadvantage is that massing models do not have semantic information, which hinders 
the sharing of models between domain-specific simulation applications and experts. 
CityGML is a standard format that documents semantic 3D city data for facilitating 
data sharing [1]. Designers can model their designs in cityGML format to facilitate 

model sharing, but this requires them to specify the semantic information. As a result, 
modelling their design in CityGML increases the modelling effort and the “sunk cost” 
of discarded design models.  

The usefulness of the cityGML model is it acts as the main data exchange format 
for sharing models with other domain experts. Domain-specific experts can visualise 
the model by directly importing it into a 3D Geospatial Information System (GIS) 
application. The 3D model will be useful for performing analyses [2] to develop the 
design further. The standardisation of the exchange format will streamline the process 
of sharing models. This paper proposes a workflow to automatically generate 
semantic 3D city models from the conceptual massing models. The generation 
process automatically identifies city objects such as buildings, terrains and land-use 
plots, and converts the massing model into a minimal cityGML model consisting of 
explicitly defined Level of Detail 1 and 0 (LOD1 and 0) city objects.  

1.1 Existing Approaches 

The most straightforward method is to construct the massing model within a 
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There are two main existing methods for generating a semantic 3D city model from a 
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geometry group must be declared as a semantic object. The main disadvantage is that 
the semantic declaration process is inevitably workflow specific and to manually 
declare each geometry’s semantic content can be a time-consuming and laborious task 
when the designer has multiple design options.  

The second method is to use visual scripting to customise the conversion. 
Designers will create their customised procedure using a visual scripting application 
to convert their massing models into cityGML. One such application is FME desktop 
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conversion procedure. For example, an urban designer models his design in SketchUp 
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and then translates the geometric data from SketchUp to CityGML by setting up a 
visual script in FME desktop. FME desktop provides functions to both reads and 
writes data from the SketchUp file into CityGML. The designer’s task is to read his 
massing model geometries, separate the geometries into their respective semantic 
objects and write them into CityGML schema. The task requires him to be familiar 
with the FME desktop’s functions and the cityGML schema. The main disadvantage 
is the high complexity involved in setting up the procedures. These procedures require 
designers, most of whom are novices in computer programming, to be familiar with 
modifying and adding semantics onto geometries and translating them into a specific 
schema using programming methods. Although visual scripting has been shown to 
facilitate the learning of programming methods among design students, it has also 
been shown that the visual scripting quickly becomes inadequate [9, 10] and 
confusing [11] for large and complex design tasks.  

2 Method 

We developed a workflow to automatically generate a cityGML model from a 
massing model by adapting the workflow from our previous building-level research 
[12]. The workflow focuses on city objects typically present in massing models: 
buildings, land-use plots, terrain and road networks. The automated workflow consists 
of the four main steps shown in Fig. 1: input model, execute analysis rules, execute 
template rules and retrieve model.  

In the first step of the workflow – input model – the model contains the massing of 
a city model. The massing models can be modelled in any 3D modelling application, 
provided the buildings are modelled as closed poly surfaces, terrain and land-use plots 
as open poly surfaces, and road networks as polylines, which is how designers usually 
create massing models. This method does not require extra modelling effort from 
designers as it leverages existing modelling conventions. The polylines and poly 
surfaces from the model are then sorted into a topological data structure as edges and 
shells. An edge is defined by a line or curve bounded by the starting and ending 
vertexes. A surface is defined by a closed sequence of connected edges. A shell is 
defined by a collection of connected surfaces. A closed shell has connected surfaces 
that form a watertight volume without holes.  
 

 
Fig. 1. Proposed workflow for automatically generating CityGML model from massing model 

The second step of the workflow – executing analysis rules – starts with analysing the 
massing model and generating an analysed model with geometric relationship 
attributes. These attributes are inferred from the size, orientation, and geometrical 
relationship between topologies in the massing model according to the analysis rules. 
For example, the shells are analysed and issued a unique identification with attribute 
is_shell_closed = True/False. In order to understand the relationship 
between topologies in plan, the edges and shells are projected onto the XY plane and 
analysed. Containment relationships are determined from the analysis. For example, if 
the topologies are inside one or more other shells when projected to 2D, then 
attributes are created to capture this information, namely 
is_shell_in_boundary = True/False, shell_boundary_contains 
= True/False and is_edge_in_boundary = True/False. 

The third step of the workflow – executing template rules – starts with the analysed 
model and generates the cityGML model. The template rules are matched against the 
attributes of the analysed model, and if a geometric topology matches the rules, it will 
be converted into a city object and added into the cityGML model. Designers can 
customise the template rules according to the type and scale of their urban design. 
Example rules are as follows: 

 
 If a shell has attributes is_shell_closed = True, 

is_shell_in_boundary = True, and 
shell_boundary_contains = False, then a building is generated.  

 If a shell has attributes is_shell_closed = False 
is_shell_in_boundary = False, and 
shell_boundary_contains = True, then a terrain is generated.  

 If a shell has attributes is_shell_closed = False, 
is_shell_in_boundary = True, and 
shell_boundary_contains = True, then a land-use plot on the terrain 
is generated. 

 If an edge has attribute is_edge_in_boundary = True, then roads are 
generated.  

 
In the last step, the CityGML is retrieved and shared among domain-specific 

experts to be further developed.  

3 Implementation 

The method described above is implemented as four Python classes in a Python 
library called Pyliburo [13] (https://github.com/chenkianwee/pyliburo). The Python 
classes rely on Pyliburo’s modelling kernel for analysing the geometric relationship 
between the topologies and the CityGML writer for reading and writing CityGML. 
For this implementation, the massing model is in the Collada format. Each conversion 
can be represented by a Massing2Citygml class, which reads the Collada file 
and stores each geometric topology as a ShapeAttributes class. The analysis 
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rules and template rules are implemented as abstract classes in Python, 
BaseAnalysisRule and BaseTemplateRule, to facilitate reuse and 
extensibility.  

Fig. 2 illustrates the relationships between the four classes using a Unified 
Modelling Language (UML) class diagram. In the diagram, the Massing2Citygml 
class has a one-to-many relationship (1 to N) with the ShapeAttributes and 
BaseTemplateRule classes. When an instance of Massing2Citygml exists, it 
can be associated with an unlimited number of ShapeAttributes and 
BaseTemplateRule classes, as it is necessary to append multiple 
ShapeAttributes and BaseTemplateRule classes to Massing2Citygml 
in defining a conversion. The same relationship applies to the BaseTemplateRule 
and BaseAnalysisRule classes, where multiple BaseAnalysisRule classes 
are required to define a BaseTemplateRule. The details of each class and their 
relationships are discussed below. 

 
Fig. 2. UML class diagram of the relationships between the four classes  

3.1 Massing2Citygml Class 

The Massing2Citygml class represents any massing-to-CityGML model 
conversion. To set up a conversion process, users must set up a series of analysis rules 
(section 3.3) and then configure the analysis rules for each template rule (section 3.4). 
Users add the template rules into the Massing2Citygml class after it is 
configured through the add_template_rule method. The class will execute the 

analysis rules using the execute_analysis_rule method and the template rules 
using the execute_template_rule method to identify the city objects and write 
them to a CityGML file.  

3.2 ShapeAttributes Class 

The Massing2Citygml class reads the Collada file using the read_collada 
method, converting the geometries from the file to a topology and storing it as a 
ShapeAttributes class. The ShapeAttributes class stores each topology 
from the massing model as an OCCShape class as defined in the modelling kernel 
(PythonOCC). Any additional attributes of the OCCShape are stored as a dictionary. 
The method set_shape adds an OCCShape and get_value access the attributes 
stored in the dictionary. The ShapeAttributes class is the data exchange format 
between the other three classes. 

3.3 BaseAnalysisRule class 

The BaseAnalysisRule abstract class represents any analysis rule used for 
analysing and generating geometric relationship attributes for a massing model. As 
mentioned in the example rules in section 2, we have implemented four analysis rule 
classes; IsShellClosed, IsShellInBoundary, 
ShellBoundaryContains and IsEdgeInBoundary, based on the 
BaseAnalysisRule abstract class. We will describe the IsShellClosed 
implementation to illustrate the abstract class.  

The IsShellClosed class has attributes for_shape_type = OCCShell 
and dict_key = “is_shell_closed”. OCCShell is the topology class to be 
analysed by the analysis rule and is as defined in the modelling kernel, PythonOCC. 
The execute method requires one input parameter 
occshp_attribs_obj_list, which contains a list of the ShapeAttributes 
instances from the massing model. The execute method loops through all the 
ShapeAttributes instances that are shells and assesses if they are open or closed 
shells. Once determined, it will append the geometric relationship attribute 
is_shell_closed = True/False to each ShapeAttributes instances. 
The topological attribute must be either true or false; this is enforced through the 
set_analysis_rule_item method in the ShapeAttributes class. The 
method then returns the occshp_attribs_obj_list with the topological 
attribute. 

3.4 BaseTemplateRule Class 

The BaseTemplateRule abstract class represents any template rule used for 
identifying a city object. As mentioned in section 2 example rules, we have 
implemented four template rule classes: IdentifyBuildingMassings, 
IdentifyTerrainMassings, IdentifyLandUseMassings and 
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IdentifyRoadMassings, based on the BaseTemplateRule abstract class. 
We will describe the IdentifyBuildingMassings implementation to illustrate 
the abstract class.  

The IdentifyBuildingMassings class has attribute for_shape_type = 
OCCShell. The identify method requires two input parameters, 
occshp_attribs_obj_list and the citygmlwriter object from Pyliburo. 
The identify method loops through all the shells and assesses if they satisfy the 
geometric relationship attribute conditions set in the 
analysis_rule_obj_dict_list, a list of dictionaries documenting the 
analysis rules and their corresponding attribute conditions for identifying the city 
object of interest. The class provides flexibility for users to define their own analysis 
rules and its corresponding attribute condition. To identify a building object as 
specified in section 3, one will add and specify the analysis rules and corresponding 
attribute condition IsShellClosed = True, IsShellInBoundary = 
True, and ShellBoundaryContains = False, using the 
add_analysis_rule method  The identify method then retrieves the 
dictionary that specifies the analysis rule objects and its corresponding attribute 
conditions using the get_analysis_rule_obj_dict_list method and writes 
the shell as a building city object. 

4 Examples 

We demonstrate the feasibility of the automated workflow on three examples. Two 
simpler examples illustrate how the rules operate and one complex use case illustrates 
the potential of the workflow. We used SketchUp for modelling the simpler cases and 
Rhinoceros 3D for modelling the complex case. Using the four Python classes, we 
wrote a Python script for the conversion, basing it on the analysis and templates rules 
described in section 2. The source code of the script and the example files can be 
obtained from GitHub (https://github.com/chenkianwee/pyliburo_example_files/ 
blob/master/example_scripts/collada/convert_collada2citygml.py).  

A snippet of the source code of the conversion script is shown in Fig. 3. The script 
requires only two inputs: the Collada file and the file path for the generated CityGML 
file. First, we initialise the three analysis rules classes; IsShellClosed, 
IsShellInBoundary and ShellBoundaryContains. Second, we specify 
the corresponding geometric relationship attribute conditions of each analysis rule 
class IsShellClosed = True, IsShellInBoundary = True, and 
ShellBoundaryContains = False and append it to the template class. Third, 
we append the configured template class to the Massing2Citygml class.  

 
input1 = Collada_file 
input2 = CityGML_filepath 
# 1.) set up the analysis rules 
is_shell_closed = IsShellClosed() 
is_shell_in_boundary = IsShellInBoundary() 

shell_boundary_contains = ShellBoundaryContains() 
# 2.) set up template rules 
id_bldgs = IdentifyBuildingMassings() 
id_bldgs.add_analysis_rule(is_shell_closed, True) 
id_bldgs.add_analysis_rule(is_shell_in_boundary, True) 
id_bldgs.add_analysis_rule(shell_boundary_contains, 
False) 
# 3.) add the template rule in the massing2citygml class 
massing_2_citygml = Massing2Citygml() 
massing_2_citygml.read_collada(input1) 
massing_2_citygml.add_template_rule(id_bldgs) 
massing_2_citygml.execute_analysis_rule() 
massing_2_citygml.execute_template_rule(input2) 

Fig. 3 Snippets of the conversion script with the two inputs highlighted in bold 

The generated cityGML model is validated by Val3dity [14] and the CityGML 
schema validator [15]. Val3dity checks and reports geometrical errors of the 3D 
topologies in a CityGML model. The CityGML schema validator checks and ensure a 
CityGML model follows its schema definition. A valid CityGML model does not 
contain any geometrical or schematic errors. 

4.1 Example 1 

The first example is a simple case; it has a flat terrain, 44 land-use plots, 313 
rectangular building extrusions and a road network of 56 edges as shown in Fig. 4a. 
The example contains a total of 3930 surfaces. We modelled the example using 
geometry groups as suggested in the SketchUp manual [16]. Extruded buildings, land-
use plots, terrain and road networks are modelled as separate geometry groups. Each 
group is translated into a mesh when exported into Collada. Meshes in Collada 
contain both surfaces and lines, and meshes that contain surfaces are essentially 
shells. As a result, building extrusions, land-use plots and terrain geometry groups in 
SketchUp are automatically exported as closed shells and open shells respectively. 
The network lines are also automatically exported as edges in Collada. The exported 
Collada file is triangulated to ensure the geometries are properly translated, as we 
have experienced inaccurate export of complex geometries, such as those in example 
2 and 3, with the non-triangulated option.  

Lastly, satisfying all the requirements as mentioned in section 2, the Collada file is 
converted into a CityGML model as shown in Fig. 4b. Fig. 5 shows the difference 
between a building extrusion documented in Collada (Fig. 5a) and CityGML (Fig. 5b) 
after the conversion. The main difference is the building extrusion is explicitly 
declared as a building object in CityGML, while it is only documented as a mesh in 
Collada. This is also the case for all the other identified city objects; land-use plots, 
terrain and roads, in which their semantic information is explicitly declared in the 
CityGML file. 
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IdentifyRoadMassings, based on the BaseTemplateRule abstract class. 
We will describe the IdentifyBuildingMassings implementation to illustrate 
the abstract class.  

The IdentifyBuildingMassings class has attribute for_shape_type = 
OCCShell. The identify method requires two input parameters, 
occshp_attribs_obj_list and the citygmlwriter object from Pyliburo. 
The identify method loops through all the shells and assesses if they satisfy the 
geometric relationship attribute conditions set in the 
analysis_rule_obj_dict_list, a list of dictionaries documenting the 
analysis rules and their corresponding attribute conditions for identifying the city 
object of interest. The class provides flexibility for users to define their own analysis 
rules and its corresponding attribute condition. To identify a building object as 
specified in section 3, one will add and specify the analysis rules and corresponding 
attribute condition IsShellClosed = True, IsShellInBoundary = 
True, and ShellBoundaryContains = False, using the 
add_analysis_rule method  The identify method then retrieves the 
dictionary that specifies the analysis rule objects and its corresponding attribute 
conditions using the get_analysis_rule_obj_dict_list method and writes 
the shell as a building city object. 

4 Examples 

We demonstrate the feasibility of the automated workflow on three examples. Two 
simpler examples illustrate how the rules operate and one complex use case illustrates 
the potential of the workflow. We used SketchUp for modelling the simpler cases and 
Rhinoceros 3D for modelling the complex case. Using the four Python classes, we 
wrote a Python script for the conversion, basing it on the analysis and templates rules 
described in section 2. The source code of the script and the example files can be 
obtained from GitHub (https://github.com/chenkianwee/pyliburo_example_files/ 
blob/master/example_scripts/collada/convert_collada2citygml.py).  

A snippet of the source code of the conversion script is shown in Fig. 3. The script 
requires only two inputs: the Collada file and the file path for the generated CityGML 
file. First, we initialise the three analysis rules classes; IsShellClosed, 
IsShellInBoundary and ShellBoundaryContains. Second, we specify 
the corresponding geometric relationship attribute conditions of each analysis rule 
class IsShellClosed = True, IsShellInBoundary = True, and 
ShellBoundaryContains = False and append it to the template class. Third, 
we append the configured template class to the Massing2Citygml class.  

 
input1 = Collada_file 
input2 = CityGML_filepath 
# 1.) set up the analysis rules 
is_shell_closed = IsShellClosed() 
is_shell_in_boundary = IsShellInBoundary() 

shell_boundary_contains = ShellBoundaryContains() 
# 2.) set up template rules 
id_bldgs = IdentifyBuildingMassings() 
id_bldgs.add_analysis_rule(is_shell_closed, True) 
id_bldgs.add_analysis_rule(is_shell_in_boundary, True) 
id_bldgs.add_analysis_rule(shell_boundary_contains, 
False) 
# 3.) add the template rule in the massing2citygml class 
massing_2_citygml = Massing2Citygml() 
massing_2_citygml.read_collada(input1) 
massing_2_citygml.add_template_rule(id_bldgs) 
massing_2_citygml.execute_analysis_rule() 
massing_2_citygml.execute_template_rule(input2) 

Fig. 3 Snippets of the conversion script with the two inputs highlighted in bold 

The generated cityGML model is validated by Val3dity [14] and the CityGML 
schema validator [15]. Val3dity checks and reports geometrical errors of the 3D 
topologies in a CityGML model. The CityGML schema validator checks and ensure a 
CityGML model follows its schema definition. A valid CityGML model does not 
contain any geometrical or schematic errors. 

4.1 Example 1 

The first example is a simple case; it has a flat terrain, 44 land-use plots, 313 
rectangular building extrusions and a road network of 56 edges as shown in Fig. 4a. 
The example contains a total of 3930 surfaces. We modelled the example using 
geometry groups as suggested in the SketchUp manual [16]. Extruded buildings, land-
use plots, terrain and road networks are modelled as separate geometry groups. Each 
group is translated into a mesh when exported into Collada. Meshes in Collada 
contain both surfaces and lines, and meshes that contain surfaces are essentially 
shells. As a result, building extrusions, land-use plots and terrain geometry groups in 
SketchUp are automatically exported as closed shells and open shells respectively. 
The network lines are also automatically exported as edges in Collada. The exported 
Collada file is triangulated to ensure the geometries are properly translated, as we 
have experienced inaccurate export of complex geometries, such as those in example 
2 and 3, with the non-triangulated option.  

Lastly, satisfying all the requirements as mentioned in section 2, the Collada file is 
converted into a CityGML model as shown in Fig. 4b. Fig. 5 shows the difference 
between a building extrusion documented in Collada (Fig. 5a) and CityGML (Fig. 5b) 
after the conversion. The main difference is the building extrusion is explicitly 
declared as a building object in CityGML, while it is only documented as a mesh in 
Collada. This is also the case for all the other identified city objects; land-use plots, 
terrain and roads, in which their semantic information is explicitly declared in the 
CityGML file. 
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Fig. 4. Example 1 (a) SketchUp massing model (b) Converted CityGML model from the 
massing model 

 

 
Fig. 5. (a) Building extrusion exported as Collada from SketchUp (b) Converted CityGML 
building extrusion with explicit building semantic information.    

4.2 Example 2 

The second example is a more complex case; it has an elevated terrain, 59 land-use 
plots, 453 building extrusions and a road network of 1125 edges. The added 
complexities are the TIN (Triangulate Irregular Network) mesh of the elevated terrain 
consisting of 4961 triangulated surfaces (Fig. 6a) and the non-rectangular building 
extrusions (Fig. 6b).  

 
Fig. 6. Added complexities of example 2 (a) TIN mesh of the elevated terrain (b) Examples of 
non-rectangular building extrusions 

All the geometries are modelled according to the recommended SketchUp modelling 
workflow (Fig. 7a). The example as shown in Fig. 7 contains a total of 37,794 
surfaces. The conversion script converted the exported Collada into CityGML (Fig. 
7b). The script was able to successfully identify the open shell terrain of 4961 
surfaces and non-rectangular extrusions of 76 surfaces, and convert them into the 
CityGML object as shown in Fig. 8 and Fig. 9.  

 

 
Fig. 7. Example 2 (a) SketchUp massing model with elevated terrain and non-rectangular 
extrusions (b) Converted CityGML model from the massing model 
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Fig. 8. (a) Terrain shell of 4961 surfaces exported as Collada from SketchUp (b) Converted 
CityGML terrain with explicit terrain semantic information 

 

 
Fig. 9. (a) Non-rectangular building extrusion of 76 surfaces exported as Collada from 
SketchUp (b) Converted CityGML non-rectangular building extrusion with explicit building 
semantic information   

4.3 Example 3 

The last example is the most complex case of all; it has an elevated terrain, 60 land-
use plots, 174 buildings and a road network of 1512 edges. The complexity of this 
example is that each building is a complex solid consisting of hundreds of thousands 
of polygon surfaces (Fig. 10). SketchUp’s push/pull modelling technique [17] is not 

suitable for modelling such complex solids.  We used a NURBS modelling 
application, Rhinoceros 3D, and modelled the geometries according to this 
application’s recommended modelling workflow. The loft command was used 
extensively for modelling the twisting and slanting towers (Fig. 10a). The join 
command was then used to join all the lofted surfaces together to form a closed shell. 
For more complex geometries that are made up of multiple complex solids (Fig. 10b), 
the boolean union command was used to fuse multiple solids into a single solid.    

 

 
Fig. 10. Complex building solids from example 3 (a) twisting and slanting tower constructed 
with loft and join command (b) building consisting of multiple solids fuse into a single solid 
with the boolean union command. 

Unfortunately, Rhinoceros 3D is only able to export the building, land-use plot and 
terrain surfaces and is not able to export the network edges into the Collada format. 
The workaround is to first export the surfaces from Rhinoceros 3D into SketchUp 
through the .3ds format and then continue to model the network edges in SketchUp as 
shown in Fig. 11a. The geometries are eventually exported as Collada and converted 
into CityGML using the conversion script as shown in Fig. 11b. The example contains 
a total of 255,953 surfaces. The script was able to successfully convert all the 
complex building solids into CityGML building objects. Fig. 12 shows an example of 
a twisting tower of 2960 surfaces and Fig. 13 an example of a building that is made 
up of multiple complex solids of 3270 surfaces that were converted into CityGML 
building objects.  
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Fig. 8. (a) Terrain shell of 4961 surfaces exported as Collada from SketchUp (b) Converted 
CityGML terrain with explicit terrain semantic information 
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with the boolean union command. 

Unfortunately, Rhinoceros 3D is only able to export the building, land-use plot and 
terrain surfaces and is not able to export the network edges into the Collada format. 
The workaround is to first export the surfaces from Rhinoceros 3D into SketchUp 
through the .3ds format and then continue to model the network edges in SketchUp as 
shown in Fig. 11a. The geometries are eventually exported as Collada and converted 
into CityGML using the conversion script as shown in Fig. 11b. The example contains 
a total of 255,953 surfaces. The script was able to successfully convert all the 
complex building solids into CityGML building objects. Fig. 12 shows an example of 
a twisting tower of 2960 surfaces and Fig. 13 an example of a building that is made 
up of multiple complex solids of 3270 surfaces that were converted into CityGML 
building objects.  
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Fig. 11. Example 3 (a) SketchUp massing model with elevated terrain and complex building 
solids (b) Converted CityGML model from the massing model 

 

 
Fig. 12. (a) Complex solid geometry of 2960 surfaces constructed with Rhinoceros loft 
command and exported to SketchUp then to Collada (b) Converted CityGML complex solid 
with explicit building semantic information.     

 
Fig. 13. (a) Complex solid geometry of 3270 surfaces constructed with Rhinoceros loft and 
boolean union commands and exported to SketchUp then to Collada (b) Converted CityGML 
complex solid with explicit building semantic information.     

4.4 Discussion 

The auto-conversion of the massing models to cityGML in examples 1-3 takes 1, 14 
and 145 minutes respectively, on a workstation laptop with an i7 processor and 16GB 
RAM. The complexity in example 3 demands substantially more time for the 
conversion as compared to examples 1 and 2. However, 145 minutes of computational 
time is a considerable improvement compared to the required time for manually 
remodelling the cityGML model. Moreover, it is not common to model in such 
complexity in the early design stages; we foresee most applications will have the 
complexity of examples 1 or 2. As the Python library is still an early prototype, 
further improvement will be made to speed up the conversion process for complex 
examples. The working prototype will be open and free for usage and feedback 
(https://github.com/chenkianwee/pyliburo/blob/master/massing2citygml.py). 

 For designers with no programming background who follow the recommended 
modelling workflow of the respective 3D modelling applications, we have introduced 
a configuration that only requires two inputs for the conversion and demonstrated its 
feasibility with the three examples. We envision that the auto-conversion workflow 
would be used in conjunction with our previous research that generates a 3D semantic 
city model from open data online [18]. Based on the workflow introduced in [18], 
designers can acquire all the available data online for reconstructing the existing 
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further improvement will be made to speed up the conversion process for complex 
examples. The working prototype will be open and free for usage and feedback 
(https://github.com/chenkianwee/pyliburo/blob/master/massing2citygml.py). 

 For designers with no programming background who follow the recommended 
modelling workflow of the respective 3D modelling applications, we have introduced 
a configuration that only requires two inputs for the conversion and demonstrated its 
feasibility with the three examples. We envision that the auto-conversion workflow 
would be used in conjunction with our previous research that generates a 3D semantic 
city model from open data online [18]. Based on the workflow introduced in [18], 
designers can acquire all the available data online for reconstructing the existing 
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project site into a CityGML model and use it for the massing design stage. Unlike the 
conversion from a geometric to a semantic model where there is a need for inferring 
semantic information, all the geometric data is present in the semantic model. Thus, 
the CityGML model of the existing site can be easily converted into the geometric 
model and imported into any 3D modelling application for use in the massing design 
stage. The massing model will be constructed based on the site model. Essentially, 
with a streamlined workflow based on an open-standard city model, we hope to 
enhance communication between experts and facilitate the urban design process. 

Currently, the auto-conversion method can only identify four types of city objects; 
buildings, terrain, land-use plots and roads. However, the library’s flexibility and 
extensibility, described in section 3, allows designers with a programming 
background to easily configure or create new analysis and template rules catering to 
their own modelling workflow. One can easily reconfigure the current analysis and 
template rules for identifying exceptions. One such exception is that land-use plots 
demarcated for recreational use do not have to contain buildings; to identify such 
land-use plots one can easily add another land-use template rule with existing analysis 
rules, IsShellClosed = False, IsShellInBoundary = True, and 
ShellBoundaryContains = False.  

When the existing palette of rules is not sufficient for identifying city objects of 
interest, Pyliburo provides the building blocks, a modelling kernel and a CityGML 
writer, for creating new rules. For example, one can identify LOD1 road networks by 
modelling roads as shells instead of edges. In this scenario, one can model the roads 
as open shells that are contained within a terrain shell and not containing other 
objects. This only requires the designers to implement a new template rule to identify 
LOD1 roads, while reusing the IsShellClosed = False, 
IsShellInBoundary = True, and ShellBoundaryContains = 
False analysis rules to identify the shells as roads.  

Similarly, for identifying other transportation infrastructures such as tunnels and 
bridges, designers will have to decide the modelling procedure for such 
infrastructures. Tunnels can be modelled as closed shells that are below the terrain 
and bridges as closed shells that are floating above the terrain. This will require the 
designer to implement a new set of analysis rules and template rules. First of all, 
designers have to implement two analysis rules; IsShellUnder and 
IsShellFloating. To implement IsShellUnder, project the shell upwards; if 
it hits another shell, it means the projected shell is placed under another shell. 
Similarly for IsShellFloating, project the shell downwards; if it hits another 
shell and has a distance from the shell, it means the projected shell is floating above 
another shell. Then append these analysis rules to the template rules: 
IsShellClosed = True and IsShellUnder = True for identifying 
tunnels and IsShellClosed = True and IsShellFloating = True for 
identifying bridges. 

5 Conclusion 

This paper shows the feasibility of the workflow for automatically generating a 
semantic 3D city model, cityGML, from a conceptual massing model. The workflow 
does not require extra modelling effort from designers while modelling their massing 
design, as it leverages existing modelling workflows. The auto-conversion requires 
only two inputs, the massing model for the conversion and the file path to store the 
generated cityGML model.  It eliminates the time-consuming and laborious task of 
remodelling massing models into cityGML models so that urban designers can focus 
on design rather than modelling technicalities. The cityGML model documents partial 
data from the early design stages in a standard format that can be readily viewed and 
modified by other 3D GIS applications, thus streamlining the process of sharing 
models between domain-specific experts. We envision this would facilitate 
communications between experts in an urban design process. 

Further improvements of the auto-conversion include the development of an auto-
correct feature for the massing geometries and a Graphical User Interface (GUI) for 
the library. First, for the conversion of complex geometries consisting of thousands of 
surfaces, it is demanding for the designers to ensure that each surface is error-free. 
We would like to implement an auto-correct feature to address this issue. Initially, we 
need to integrate the Val3dity library for identifying invalid geometries. According to 
the error identified, we will then develop algorithms using the modelling kernel from 
Pyliburo to fix the geometries. By doing so, the workflow will be more designer-
friendly.  

Second, we propose the development of a GUI for the library so that designers who 
are non-programmers are also able to change the analysis and template rule 
configurations. We propose developing a parameter tree GUI similar to feature-based 
modellers such as CATIA. In the parameter tree GUI, the analysis rules are nested 
within a template rule and the template rules within a Massing2Citygml 
conversion; one can readily remove or append rules to configure the conversion.  
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project site into a CityGML model and use it for the massing design stage. Unlike the 
conversion from a geometric to a semantic model where there is a need for inferring 
semantic information, all the geometric data is present in the semantic model. Thus, 
the CityGML model of the existing site can be easily converted into the geometric 
model and imported into any 3D modelling application for use in the massing design 
stage. The massing model will be constructed based on the site model. Essentially, 
with a streamlined workflow based on an open-standard city model, we hope to 
enhance communication between experts and facilitate the urban design process. 

Currently, the auto-conversion method can only identify four types of city objects; 
buildings, terrain, land-use plots and roads. However, the library’s flexibility and 
extensibility, described in section 3, allows designers with a programming 
background to easily configure or create new analysis and template rules catering to 
their own modelling workflow. One can easily reconfigure the current analysis and 
template rules for identifying exceptions. One such exception is that land-use plots 
demarcated for recreational use do not have to contain buildings; to identify such 
land-use plots one can easily add another land-use template rule with existing analysis 
rules, IsShellClosed = False, IsShellInBoundary = True, and 
ShellBoundaryContains = False.  

When the existing palette of rules is not sufficient for identifying city objects of 
interest, Pyliburo provides the building blocks, a modelling kernel and a CityGML 
writer, for creating new rules. For example, one can identify LOD1 road networks by 
modelling roads as shells instead of edges. In this scenario, one can model the roads 
as open shells that are contained within a terrain shell and not containing other 
objects. This only requires the designers to implement a new template rule to identify 
LOD1 roads, while reusing the IsShellClosed = False, 
IsShellInBoundary = True, and ShellBoundaryContains = 
False analysis rules to identify the shells as roads.  

Similarly, for identifying other transportation infrastructures such as tunnels and 
bridges, designers will have to decide the modelling procedure for such 
infrastructures. Tunnels can be modelled as closed shells that are below the terrain 
and bridges as closed shells that are floating above the terrain. This will require the 
designer to implement a new set of analysis rules and template rules. First of all, 
designers have to implement two analysis rules; IsShellUnder and 
IsShellFloating. To implement IsShellUnder, project the shell upwards; if 
it hits another shell, it means the projected shell is placed under another shell. 
Similarly for IsShellFloating, project the shell downwards; if it hits another 
shell and has a distance from the shell, it means the projected shell is floating above 
another shell. Then append these analysis rules to the template rules: 
IsShellClosed = True and IsShellUnder = True for identifying 
tunnels and IsShellClosed = True and IsShellFloating = True for 
identifying bridges. 

5 Conclusion 

This paper shows the feasibility of the workflow for automatically generating a 
semantic 3D city model, cityGML, from a conceptual massing model. The workflow 
does not require extra modelling effort from designers while modelling their massing 
design, as it leverages existing modelling workflows. The auto-conversion requires 
only two inputs, the massing model for the conversion and the file path to store the 
generated cityGML model.  It eliminates the time-consuming and laborious task of 
remodelling massing models into cityGML models so that urban designers can focus 
on design rather than modelling technicalities. The cityGML model documents partial 
data from the early design stages in a standard format that can be readily viewed and 
modified by other 3D GIS applications, thus streamlining the process of sharing 
models between domain-specific experts. We envision this would facilitate 
communications between experts in an urban design process. 

Further improvements of the auto-conversion include the development of an auto-
correct feature for the massing geometries and a Graphical User Interface (GUI) for 
the library. First, for the conversion of complex geometries consisting of thousands of 
surfaces, it is demanding for the designers to ensure that each surface is error-free. 
We would like to implement an auto-correct feature to address this issue. Initially, we 
need to integrate the Val3dity library for identifying invalid geometries. According to 
the error identified, we will then develop algorithms using the modelling kernel from 
Pyliburo to fix the geometries. By doing so, the workflow will be more designer-
friendly.  

Second, we propose the development of a GUI for the library so that designers who 
are non-programmers are also able to change the analysis and template rule 
configurations. We propose developing a parameter tree GUI similar to feature-based 
modellers such as CATIA. In the parameter tree GUI, the analysis rules are nested 
within a template rule and the template rules within a Massing2Citygml 
conversion; one can readily remove or append rules to configure the conversion.  
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Abstract. The presence of web2.0 and traceable mobile devices creates new 
opportunities for urban designers to understand cities through an analysis of 
user-generated data. The emergence of “big data” has resulted in a large amount 
of information documenting daily events, perceptions, thoughts, and emotions 
of citizens, all annotated with the location and time that they were recorded. 
This data presents an unprecedented opportunity to gauge public opinion about 
the topic of interest. Natural language processing with social media is a novel 
tool complementary to traditional survey methods. In this paper, we validate 
these methods using tourism data from Trip-Advisor in Andorra.  
“Natural language processing” (NLP) detects patterns within written languages, 
enabling researchers to infer sentiment by parsing sentences from social media. 
We applied sentiment analysis to reviews of tourist attractions and restaurants. 
We found that there were distinct geographic regions in Andorra where 
amenities were reviewed as either uniformly positive or negative. For example, 
correlating negative reviews of parking availability with land use data revealed 
a shortage of parking associated with a known traffic congestion issue, 
validating our methods. We believe that the application of NLP to social media 
data can be a complementary tool for urban decision making.  

Keywords: Short Paper, Urban Design Decision Making, Social Media, 
Natural Language Processing 

1 Introduction 

Compelling arguments for the use of bottom-up social opinions to inspire urban de- 
signs can be found in influential books such as “The Image of the City” (Lynch, 
1960), “Death and Life of Great American Cities” (Jacobs, 1964), and “City is not a 
Tree” (Alexander, 1966). A large scale survey of public opinion for this purpose, 
however, was difficult in the 1960s because it relied on time-consuming traditional 
ethnographic tools such as surveys and interviews. Presently, modern geo-located 
data mining techniques can be deployed.  

Compared to the traditional methods, such as sampled survey, NLP with social 
media is not only more cost-effective, but furthermore highlights urban issues on a 




