
CAADFutures 17 - 51

Automatic Parameterisation of Semantic 3D City Models
for Urban Design Optimisation

Kian Wee Chen 1, Patrick Janssen 2, Leslie Norford 3

1 CENSAM, Singapore-MIT Alliance for Research and Technology, Singapore
2 National University of Singapore, Singapore

2 Department of Architecture, Massachusetts Institute of Technology, USA

chenkianwee@gmail.com, patrick@janssen.name, lnorford@mit.edu

Abstract. We present an auto-parameterisation tool, implemented in Python,
that takes in a semantic model, in CityGML format, and outputs a parametric
model. The parametric model is then used for design optimisation of solar
availability and urban ventilation potential. We demonstrate the tool by
parameterising a CityGML model regarding building height, orientation and
position and then integrate the parametric model into an optimisation process.
For example, the tool parameterises the orientation of a design by assigning
each building an orientation parameter. The parameter takes in a normalised
value from an optimisation algorithm, maps the normalised value to a rotation
value and rotates the buildings. The solar and ventilation performances of the
rotated design is then evaluated. Based on the evaluation results, the
optimisation algorithm then searches through the parameter values to achieve
the optimal performances. The demonstrations show that the tool eliminates the
need to set up a parametric model manually, thus making optimisation more
accessible to designers.

Keywords: City Information Modelling, Conceptual Urban Design, Parametric
Modelling, Performance-Based Urban Design

1 Introduction

In the early stages of urban design, designers will explore the impact that building
layouts and building forms have on various urban performances. For example,
building layouts and forms strongly influence solar availability [1] and urban
ventilation [2, 3]. One powerful way of facilitating this exploration is using
optimisation algorithms. In the optimisation process, designers create parametric
models that allow design variants to be easily generated and evaluated according to
performance objectives. An optimisation algorithm is used to search for a series of
optimal design instances automatically. The advantage is that huge numbers of design
variants can be explored and the design can be optimised.

52 - CAADFutures 17

At the building scale, Attia et al. have highlighted how parametric modelling is one
of the main technical hurdles for applying such optimisation algorithms [4]. The
authors foresee the same technical difficulty for urban design. Currently, designers
who do urban design optimisation use parametric modelling applications with a
Visual Programming Language (VPL) interface to encode their design as a parametric
model [5, 6]. Although it has been shown that design students are able to learn
parametric modelling faster through VPL as compared to textual programming, VPL
quickly becomes inadequate when applied to complex design task such as generative
designs and large scale designs [7, 8]. In addition, VPL network easily becomes
unmanageable with too many links, nodes and confusing iteration [9]. Thus, VPL is
less than ideal for parameterising an urban scale design. Instead of using VPL, we
propose an automated method to facilitate the parameterising of urban models from
3D semantic models.

In this paper, we considered a scenario where the designer is planning a cluster of
buildings on a large urban plot. The shape of each building plan is assumed to be
fixed, but the position, orientation, and height of the buildings may be varied subject
to constraints. One key constraint is the Floor Area Ratio (FAR) of the plot, which
results in a maximum total Gross Floor Area (GFA) for all the buildings on the plot.
The heights of the building need to be constrained to ensure that this GFA is not
exceeded. Other constraints are that the buildings must stay within the plot boundary
and must not intersect one another.

To demonstrate this method, we implemented a prototype auto-parameterisation
tool. The tool imports a semantic urban model in the CityGML format [10] and
automatically generates a parametric model by parameterising the position,
orientation, and height of building objects. These parametric models can then be used
to optimise the urban layout and forms of these building objects. The usefulness of the
tool is that it allows designers to bypass the complex and time-consuming step of
constructing parametric models, thereby removing a key hurdle in the application of
optimisation algorithms within the urban design process.

2 Method

The proposed method consists of four steps as shown in Fig. 1: 1) inputting the
semantic model, 2) creating the parametric model, 3) mapping parameter values and
generating designs 4) retrieve design variant models.

Fig. 1. Proposed method for urban optimisation. The dotted box indicates the steps performed
by the auto-parameterisation tool.

In step 1, the method requires a CityGML model as input. In step 2, the tool first
analyses the semantic CityGML model and identifies all the building objects that are
on the plot. It then creates a parametric model by applying a parameter template to
each of these objects. The prototype parameter template defines three parameters:
building position, building orientation, and building height. Additional templates can
be created and customised by designers for different urban and building typologies.
For example, for a carpark, a simpler parameter template may be created that does not
have a height parameter, while for a podium block with a tower above, a more
complex parameter template may be created that has separate height parameters for
the podium and the tower.

The mapping and generate design variants process in step 3 and optimisation
process are linked in a cyclical loop. In each iteration, the mapping process generates
a population of design variants and the optimisation process evaluates them, and then
perform reproduction and selection. The reproduction and selection will generate
normalised parameter values for a new and fitter population. The mapping process
takes in the normalised values and maps them to model specific values for generation
of design variants. For the three parameters; building position, height and orientation,
the procedure for mapping the normalised values to the model-specific values are as
follows:

1. For the building position parameter, a grid is overlaid on the plot, and each

position in the grid is assigned a numeric index. The normalised position value
is then mapped to an index value in the range {0, N-1}, where N is the number
of grid points. The default number of grid points is 100, but the designer can
specify the grid density.

2. For the building orientation parameter, O, the normalised orientation value is
mapped to a rotation angle in the range {0.0, 360.0}.

3. For the building height parameter, the calculation of the actual height values
needs to take into account the FAR constraint. First, the plot area and base
floor area for each building are calculated. The number of floors for each
building is then calculated as follows:

CAADFutures 17 - 53

At the building scale, Attia et al. have highlighted how parametric modelling is one
of the main technical hurdles for applying such optimisation algorithms [4]. The
authors foresee the same technical difficulty for urban design. Currently, designers
who do urban design optimisation use parametric modelling applications with a
Visual Programming Language (VPL) interface to encode their design as a parametric
model [5, 6]. Although it has been shown that design students are able to learn
parametric modelling faster through VPL as compared to textual programming, VPL
quickly becomes inadequate when applied to complex design task such as generative
designs and large scale designs [7, 8]. In addition, VPL network easily becomes
unmanageable with too many links, nodes and confusing iteration [9]. Thus, VPL is
less than ideal for parameterising an urban scale design. Instead of using VPL, we
propose an automated method to facilitate the parameterising of urban models from
3D semantic models.

In this paper, we considered a scenario where the designer is planning a cluster of
buildings on a large urban plot. The shape of each building plan is assumed to be
fixed, but the position, orientation, and height of the buildings may be varied subject
to constraints. One key constraint is the Floor Area Ratio (FAR) of the plot, which
results in a maximum total Gross Floor Area (GFA) for all the buildings on the plot.
The heights of the building need to be constrained to ensure that this GFA is not
exceeded. Other constraints are that the buildings must stay within the plot boundary
and must not intersect one another.

To demonstrate this method, we implemented a prototype auto-parameterisation
tool. The tool imports a semantic urban model in the CityGML format [10] and
automatically generates a parametric model by parameterising the position,
orientation, and height of building objects. These parametric models can then be used
to optimise the urban layout and forms of these building objects. The usefulness of the
tool is that it allows designers to bypass the complex and time-consuming step of
constructing parametric models, thereby removing a key hurdle in the application of
optimisation algorithms within the urban design process.

2 Method

The proposed method consists of four steps as shown in Fig. 1: 1) inputting the
semantic model, 2) creating the parametric model, 3) mapping parameter values and
generating designs 4) retrieve design variant models.

Fig. 1. Proposed method for urban optimisation. The dotted box indicates the steps performed
by the auto-parameterisation tool.

In step 1, the method requires a CityGML model as input. In step 2, the tool first
analyses the semantic CityGML model and identifies all the building objects that are
on the plot. It then creates a parametric model by applying a parameter template to
each of these objects. The prototype parameter template defines three parameters:
building position, building orientation, and building height. Additional templates can
be created and customised by designers for different urban and building typologies.
For example, for a carpark, a simpler parameter template may be created that does not
have a height parameter, while for a podium block with a tower above, a more
complex parameter template may be created that has separate height parameters for
the podium and the tower.

The mapping and generate design variants process in step 3 and optimisation
process are linked in a cyclical loop. In each iteration, the mapping process generates
a population of design variants and the optimisation process evaluates them, and then
perform reproduction and selection. The reproduction and selection will generate
normalised parameter values for a new and fitter population. The mapping process
takes in the normalised values and maps them to model specific values for generation
of design variants. For the three parameters; building position, height and orientation,
the procedure for mapping the normalised values to the model-specific values are as
follows:

1. For the building position parameter, a grid is overlaid on the plot, and each

position in the grid is assigned a numeric index. The normalised position value
is then mapped to an index value in the range {0, N-1}, where N is the number
of grid points. The default number of grid points is 100, but the designer can
specify the grid density.

2. For the building orientation parameter, O, the normalised orientation value is
mapped to a rotation angle in the range {0.0, 360.0}.

3. For the building height parameter, the calculation of the actual height values
needs to take into account the FAR constraint. First, the plot area and base
floor area for each building are calculated. The number of floors for each
building is then calculated as follows:

54 - CAADFutures 17

F = (h ∙ ap ∙ rp)/(ab ∙ ∑i=0
n-1(hi))

where F is the number of floors, h is the normalised height, ap is the area of
the plot, rp is the FAR for the plot, and ab is the area of the building base. The
height of the building is then F multiplied by the floor to floor height for the
building, for which either a default value of 3m can be used, or a value can be
specified by the designers.

The parameters for position and orientation may result in design variants where
buildings either intersect one another or intersect the plot boundary. The buildings are
placed in sequence to make sure these intersections do not happen, and when
constraints are broken, the parameter values are iteratively adjusted until a valid
model is generated.

3 Implementation

The proposed method is implemented in a Python library called Pyliburo [11]
(https://github.com/chenkianwee/pyliburo) as two Python classes, Parameterise
and BaseParm. The two classes use the modelling kernel and the CityGML
reader/writer from Pyliburo for their geometrical operations and for reading and
writing CityGML files. The Parameterise class represents a parametric model.
To parameterise a CityGML model, one needs first to configure a series of
BaseParm classes and append them to the Parameterise class. Each
BaseParm class specifies the parameterisation procedure for a parameter. We
implemented the BaseParm class as a Python abstract class to facilitate reuse and
extensibility. The Parameterise class then reads and parameterises the CityGML
model according to the appended BaseParm classes. A combination of multiple
BaseParm classes forms the parameter template as mentioned in section 2. Thus, the
Parametrise class has a one-to-many (1-N) relationship with the BaseParm
classes as shown in Fig. 2, a Unified Modelling Language (UML) class diagram. Fig.
2 also illustrates an implementation of the BaseParm class,
BldgOrientationParm, which will be discussed in detail below.

Fig. 2. UML class diagram of the two classes for the auto-parameterisation tool

3.1 Parameterise Class

The Parameterise class parameterises a CityGML model according to the added
BaseParm classes. The Parameterise class stores the CityGML data as a
pycitygml Reader class from Pyliburo. It has two other attributes. First,
parm_obj_dict_list is a list of dictionaries documenting the appended
BaseParm classes and the corresponding number of parameters for this parameter.
BaseParm classes are added to the parm_obj_dict_list using the add_parm
method. Second, the nparameters attribute is an integer indicating the number of
parameters of the parametric model calculated by the define_nparameters
method. The Parameterise class generates a design variant using the
generate_design_variant method; a random design variant can be generated

CAADFutures 17 - 55

F = (h ∙ ap ∙ rp)/(ab ∙ ∑i=0
n-1(hi))

where F is the number of floors, h is the normalised height, ap is the area of
the plot, rp is the FAR for the plot, and ab is the area of the building base. The
height of the building is then F multiplied by the floor to floor height for the
building, for which either a default value of 3m can be used, or a value can be
specified by the designers.

The parameters for position and orientation may result in design variants where
buildings either intersect one another or intersect the plot boundary. The buildings are
placed in sequence to make sure these intersections do not happen, and when
constraints are broken, the parameter values are iteratively adjusted until a valid
model is generated.

3 Implementation

The proposed method is implemented in a Python library called Pyliburo [11]
(https://github.com/chenkianwee/pyliburo) as two Python classes, Parameterise
and BaseParm. The two classes use the modelling kernel and the CityGML
reader/writer from Pyliburo for their geometrical operations and for reading and
writing CityGML files. The Parameterise class represents a parametric model.
To parameterise a CityGML model, one needs first to configure a series of
BaseParm classes and append them to the Parameterise class. Each
BaseParm class specifies the parameterisation procedure for a parameter. We
implemented the BaseParm class as a Python abstract class to facilitate reuse and
extensibility. The Parameterise class then reads and parameterises the CityGML
model according to the appended BaseParm classes. A combination of multiple
BaseParm classes forms the parameter template as mentioned in section 2. Thus, the
Parametrise class has a one-to-many (1-N) relationship with the BaseParm
classes as shown in Fig. 2, a Unified Modelling Language (UML) class diagram. Fig.
2 also illustrates an implementation of the BaseParm class,
BldgOrientationParm, which will be discussed in detail below.

Fig. 2. UML class diagram of the two classes for the auto-parameterisation tool

3.1 Parameterise Class

The Parameterise class parameterises a CityGML model according to the added
BaseParm classes. The Parameterise class stores the CityGML data as a
pycitygml Reader class from Pyliburo. It has two other attributes. First,
parm_obj_dict_list is a list of dictionaries documenting the appended
BaseParm classes and the corresponding number of parameters for this parameter.
BaseParm classes are added to the parm_obj_dict_list using the add_parm
method. Second, the nparameters attribute is an integer indicating the number of
parameters of the parametric model calculated by the define_nparameters
method. The Parameterise class generates a design variant using the
generate_design_variant method; a random design variant can be generated

56 - CAADFutures 17

by using the random parameters generated by the
generate_random_parameters method as inputs.

3.2 BaseParm Class

The BaseParm abstract class defines the parameterisation procedure for any
parameter. Any implementation of the BaseParm abstract class has the attribute
parm_range, which is a list of all the possible parameter values. The
parm_range attribute can be defined by any of three methods: the
define_int_range method, by specifying the starting integer, the last integer
and the step between each integer; the define_float_range method, by
specifying the starting float, the last float and the step between each float; and the
set_parm_range method, by specifying all the possible parameter values. With
the parm_range set, the map_normalise_parms_2_parms method maps the
normalised parameter values received to the defined parameter range. The
define_nparameters method calculates and returns the number of parameters
generated by this BaseParm. Eventually, with everything configured, the execute
method executes the parameterisation procedure for this parameter.

We have implemented three BaseParm classes: BldgFlrAreaHeightParm,
BldgOrientationParm and BldgPositionParm. We will describe the
BldgOrientationParm implementation to illustrate the abstract class. The
BldgOrientationParm class has all the methods specified by the BaseParm
abstract class. In addition, we have implemented five additional attributes and six
additional methods as shown in Fig. 2.

By configuring the attributes and methods, users of the library are defining the
constraints of the BldgOrientationParm class. The execute method requires
two inputs, the CityGML Reader object from Pyliburo that carries all the
information from the CityGML model and the list of normalised parameters. First, the
normalised parameters are mapped to the model-specific parameters using the
map_normalise_parms_2_parms method. The eligibility_test
method then filters the buildings as specified by the bldg_class,
bldg_function and bldg_usage attributes to find the eligible buildings.
Last, the execute method loops through all the eligible buildings and rotates them
counter-clockwise from their original orientation. If clash detection or boundary
detection is set to True, and the rotated building clashes with other buildings or is
outside the land-use boundary, the building will not be rotated. The method then
documents and returns the rotated design in the CityGML Reader object. The
CityGML Reader object is then passed on to the next BaseParm classes. After
being parameterised by all the BaseParm classes in the Parameterise class, a
design variant is successfully generated.

4 Examples

We demonstrate the proposed method and tool on two examples. One simple example
shows the operation of the auto-parameterisation tool and the second example shows
the integration of the tool into an optimisation design process. For the demonstrations,
we develop the tool by writing two Python scripts with the auto-parameterisation
Python classes. Both scripts require only one main input: the CityGML file to be
parameterised and optimised. The source code is available on GitHub
(https://github.com/chenkianwee/pyliburo_example_files).

4.1 Example 1

The first example is a simple case of a land-use with 13 residential buildings and two
multi-storey carpark buildings (Fig. 3a). The example was modelled in the CityGML
format and imported into the auto-parameterisation tool.

The automatic parameterisation process is illustrated as follows:

1. Each residential building is assigned the parameters building position,
orientation and height, while carparks are only assigned position and
orientation.

2. A parametric model with 43 parameters is automatically created.
3. The three parameters are as described in section 2. The ranges of their

parameters are as follows:
a. The density of the grid for the position parameter is 10m by 10m.
b. The rotation angle for the orientation parameter is 0 <= O <= 350,

10 | O.
c. The normalised height for the height parameter is 3 <= h <= 10, 1 | h

4. Fig. 3b shows four design variants generated from the automatic
parameterisation process.

Fig. 4 shows a snippet of the script. The script requires one input; the CityGML file
path to be parameterised. The BldgFlrAreaHeightParm class is first initialised.
The define_int_range method then defines lower bound, upper bound and the
step between each value of the normalised height. As specified by
apply_2_bldg_function("1000"), only residential buildings have the height
parameter. The parameter “1000” is the residential building function code in the
CityGML schema. The BldgFlrAreaHeightParm is then added to the
Parameterise class. Random normalised parameters are generated by the class
accordingly and used to generate a design variant.

CAADFutures 17 - 57

by using the random parameters generated by the
generate_random_parameters method as inputs.

3.2 BaseParm Class

The BaseParm abstract class defines the parameterisation procedure for any
parameter. Any implementation of the BaseParm abstract class has the attribute
parm_range, which is a list of all the possible parameter values. The
parm_range attribute can be defined by any of three methods: the
define_int_range method, by specifying the starting integer, the last integer
and the step between each integer; the define_float_range method, by
specifying the starting float, the last float and the step between each float; and the
set_parm_range method, by specifying all the possible parameter values. With
the parm_range set, the map_normalise_parms_2_parms method maps the
normalised parameter values received to the defined parameter range. The
define_nparameters method calculates and returns the number of parameters
generated by this BaseParm. Eventually, with everything configured, the execute
method executes the parameterisation procedure for this parameter.

We have implemented three BaseParm classes: BldgFlrAreaHeightParm,
BldgOrientationParm and BldgPositionParm. We will describe the
BldgOrientationParm implementation to illustrate the abstract class. The
BldgOrientationParm class has all the methods specified by the BaseParm
abstract class. In addition, we have implemented five additional attributes and six
additional methods as shown in Fig. 2.

By configuring the attributes and methods, users of the library are defining the
constraints of the BldgOrientationParm class. The execute method requires
two inputs, the CityGML Reader object from Pyliburo that carries all the
information from the CityGML model and the list of normalised parameters. First, the
normalised parameters are mapped to the model-specific parameters using the
map_normalise_parms_2_parms method. The eligibility_test
method then filters the buildings as specified by the bldg_class,
bldg_function and bldg_usage attributes to find the eligible buildings.
Last, the execute method loops through all the eligible buildings and rotates them
counter-clockwise from their original orientation. If clash detection or boundary
detection is set to True, and the rotated building clashes with other buildings or is
outside the land-use boundary, the building will not be rotated. The method then
documents and returns the rotated design in the CityGML Reader object. The
CityGML Reader object is then passed on to the next BaseParm classes. After
being parameterised by all the BaseParm classes in the Parameterise class, a
design variant is successfully generated.

4 Examples

We demonstrate the proposed method and tool on two examples. One simple example
shows the operation of the auto-parameterisation tool and the second example shows
the integration of the tool into an optimisation design process. For the demonstrations,
we develop the tool by writing two Python scripts with the auto-parameterisation
Python classes. Both scripts require only one main input: the CityGML file to be
parameterised and optimised. The source code is available on GitHub
(https://github.com/chenkianwee/pyliburo_example_files).

4.1 Example 1

The first example is a simple case of a land-use with 13 residential buildings and two
multi-storey carpark buildings (Fig. 3a). The example was modelled in the CityGML
format and imported into the auto-parameterisation tool.

The automatic parameterisation process is illustrated as follows:

1. Each residential building is assigned the parameters building position,
orientation and height, while carparks are only assigned position and
orientation.

2. A parametric model with 43 parameters is automatically created.
3. The three parameters are as described in section 2. The ranges of their

parameters are as follows:
a. The density of the grid for the position parameter is 10m by 10m.
b. The rotation angle for the orientation parameter is 0 <= O <= 350,

10 | O.
c. The normalised height for the height parameter is 3 <= h <= 10, 1 | h

4. Fig. 3b shows four design variants generated from the automatic
parameterisation process.

Fig. 4 shows a snippet of the script. The script requires one input; the CityGML file
path to be parameterised. The BldgFlrAreaHeightParm class is first initialised.
The define_int_range method then defines lower bound, upper bound and the
step between each value of the normalised height. As specified by
apply_2_bldg_function("1000"), only residential buildings have the height
parameter. The parameter “1000” is the residential building function code in the
CityGML schema. The BldgFlrAreaHeightParm is then added to the
Parameterise class. Random normalised parameters are generated by the class
accordingly and used to generate a design variant.

58 - CAADFutures 17

Fig. 3. (a) Example 1 has a land-use with 13 residential buildings (blue) and two multi-storey
carpark buildings (red) (b) four design variants randomly generated by the auto-
parameterisation tool.

input = CityGML_filepath
height_parm = BldgFlrAreaHeightParm ()
height_parm.define_int_range(3,10,1)
height_parm.apply_2_bldg_function("1000")
parameterise = Parameterise(input)
parameterise.add_parm(height_parm)
parameters = parameterise.generate_random_parameters()
parameterise.generate_design_variant(parameters)

Fig. 4. Snippet of the auto-parameterisation script with the input CityGML file highlighted in
bold

4.2 Example 2

The second example is a land-use with 25 residential buildings in the tropical climate
arranged in a five-by-five grid as shown in Fig. 5a. The example is parameterised in
height, orientation and position as described in section 2; the same parameter ranges
are used as in example 1 for the auto-parameterisation process. Through the
parametric model, we want to explore the impact of different configurations of height,
orientation and position on the solar irradiation and urban ventilation performances.
Fig. 5b shows two randomly generated design variants.

Fig. 5 (a) Example 2 with 25 residential buildings arranged in five by five grid (b) two design
variants randomly generated by the auto-parameterisation tool.

We measure the solar irradiation performance using the Non-Solar Heated Façade
Area Index (NSHFAI), which is the fraction of the façade area receiving annual solar
irradiation equal to or below a threshold value. The threshold value is 227.45 kWh/m2
and is based on the Singapore Green Mark’s maximal permissible Envelope Thermal
Transfer Value (ETTV) of 50W/m2 [12], multiplied by the 4549 annual daylight hours
in Singapore [13]. NSHFAI is to be maximised in the optimisation process. We
measured the urban ventilation performance using the Frontal Area Index (FAI) [14,
15], which is the ratio of the total façade area projected to a vertical plane facing the
user-defined wind direction to the horizontal plane area. The FAI is calculated using
the northeast prevailing wind direction of Singapore, and the site is gridded
100mx100m. The average FAI is calculated and used as a performance objective. The
average FAI is to be minimised in the optimisation process. Py2radiance [16] is used
to execute Radiance [17] for simulating the annual solar irradiation, and Pyliburo is
used to calculate the FAI.

 The parametric model is used for running an optimisation process with NSHFAI
and FAI as the performance objectives. We used The Non-dominated Sorting Genetic
Algorithm II (NSGAII) [18] as implemented in the Pyliburo library for the
optimisation process. The default values of 0.8 and 0.01 are used for the crossover
rate and mutation rate. Fig. 6 shows a snippet of the script illustrating the integration
of the auto-parameterisation library with the optimisation process.

The script initialises the NSGAII optimisation class by defining genes
(parameters), and scores (performance objectives) as a list of Python dictionaries.
Then for each individual in each generation, a design variant is generated using the
genotype (parameters) of an individual through the Parameterise class,
generate_design_variant method. The generated design variant is evaluated
in terms of NSHFAI and FAI. The two performances are then used for the feedback
procedure, crossover and mutation, in NSGAII. The feedback procedure generates a
new generation of individuals, and the cycle repeats until as specified by the user. The
main input for the script is the CityGML model of the design, while default values are
used for the other inputs for the optimisation algorithm and solar simulations.

CAADFutures 17 - 59

Fig. 3. (a) Example 1 has a land-use with 13 residential buildings (blue) and two multi-storey
carpark buildings (red) (b) four design variants randomly generated by the auto-
parameterisation tool.

input = CityGML_filepath
height_parm = BldgFlrAreaHeightParm ()
height_parm.define_int_range(3,10,1)
height_parm.apply_2_bldg_function("1000")
parameterise = Parameterise(input)
parameterise.add_parm(height_parm)
parameters = parameterise.generate_random_parameters()
parameterise.generate_design_variant(parameters)

Fig. 4. Snippet of the auto-parameterisation script with the input CityGML file highlighted in
bold

4.2 Example 2

The second example is a land-use with 25 residential buildings in the tropical climate
arranged in a five-by-five grid as shown in Fig. 5a. The example is parameterised in
height, orientation and position as described in section 2; the same parameter ranges
are used as in example 1 for the auto-parameterisation process. Through the
parametric model, we want to explore the impact of different configurations of height,
orientation and position on the solar irradiation and urban ventilation performances.
Fig. 5b shows two randomly generated design variants.

Fig. 5 (a) Example 2 with 25 residential buildings arranged in five by five grid (b) two design
variants randomly generated by the auto-parameterisation tool.

We measure the solar irradiation performance using the Non-Solar Heated Façade
Area Index (NSHFAI), which is the fraction of the façade area receiving annual solar
irradiation equal to or below a threshold value. The threshold value is 227.45 kWh/m2
and is based on the Singapore Green Mark’s maximal permissible Envelope Thermal
Transfer Value (ETTV) of 50W/m2 [12], multiplied by the 4549 annual daylight hours
in Singapore [13]. NSHFAI is to be maximised in the optimisation process. We
measured the urban ventilation performance using the Frontal Area Index (FAI) [14,
15], which is the ratio of the total façade area projected to a vertical plane facing the
user-defined wind direction to the horizontal plane area. The FAI is calculated using
the northeast prevailing wind direction of Singapore, and the site is gridded
100mx100m. The average FAI is calculated and used as a performance objective. The
average FAI is to be minimised in the optimisation process. Py2radiance [16] is used
to execute Radiance [17] for simulating the annual solar irradiation, and Pyliburo is
used to calculate the FAI.

 The parametric model is used for running an optimisation process with NSHFAI
and FAI as the performance objectives. We used The Non-dominated Sorting Genetic
Algorithm II (NSGAII) [18] as implemented in the Pyliburo library for the
optimisation process. The default values of 0.8 and 0.01 are used for the crossover
rate and mutation rate. Fig. 6 shows a snippet of the script illustrating the integration
of the auto-parameterisation library with the optimisation process.

The script initialises the NSGAII optimisation class by defining genes
(parameters), and scores (performance objectives) as a list of Python dictionaries.
Then for each individual in each generation, a design variant is generated using the
genotype (parameters) of an individual through the Parameterise class,
generate_design_variant method. The generated design variant is evaluated
in terms of NSHFAI and FAI. The two performances are then used for the feedback
procedure, crossover and mutation, in NSGAII. The feedback procedure generates a
new generation of individuals, and the cycle repeats until as specified by the user. The
main input for the script is the CityGML model of the design, while default values are
used for the other inputs for the optimisation algorithm and solar simulations.

60 - CAADFutures 17

#define the genes
gene_dict_list = []
for _ in range(number_of_genes):

gene_dict={“type”: “float_range”, “range”:(0.0,1.0)}
gene_dict_list.append(gene_dict)

#define the scores
shgfai_dict = {“name”: “nshfai”, “minmax”: “min”}
dfai_dict = {“name”: “fai”, “minmax”: “max”}
score_dict_list = [nshfai_dict, fai_dict]

population=initialise_nsga2(gene_dict_list, score_dict_list)

for generation in range(ngeneration):
 individuals = population.individuals
 for individual in individuals:
 parameters = individual.genotype.values

design_variant = parameterise.generate_design_variant
(parameters)
nshfai = eval_solar(design_variant)
fai = eval_fai(design_variant)
individual.set_score(0, nshfai)
individual.set_score(1, fai)

 feedback_nsga2(population)

Fig. 6. A snippet of the optimisation python script

Results.

We ran the optimisation for 40 generations with an initial population of 25 design
variants. There are seven design variants on the Pareto-front (red dots) in reference to
the base case performance (blue dot) as shown in Fig. 7. All the design variants’
performances improve significantly in comparison with the base case. Three design
variants are visualised in 3D (Fig. 7). Two design variants are on the two ends of the
Pareto front: one with the lowest NSHFAI and FAI (design variant 853), the other
with the highest NSHFAI and FAI (design variant 993). The third design variant is a
negative example with low NSHFAI and high FAI (design variant 153).

 Design variant 853 has similar NSHFAI performance as design variant 153 with
only a 0.06 difference in NSHFAI. In comparison, design variant 993 performs
significantly better in terms of NSHFAI by a 0.15-1.21 difference. This is due to the
inter-shading between buildings in design variant 993 as shown in Fig. 8. However,
the close-packing of the buildings increases its average FAI as compared to design
variant 853 by 0.04 as shown in Fig. 9. The congregation of buildings in the centre of
the plot contributes to the increase in FAI. The buildings in design variant 853 are
better spaced apart and as a result has lesser inter-shading but better FAI. Although
design variant 153 is also well-spaced like design variant 853, its bad building

positions and orientations, with their vertical facade facing the wind direction, are
blocking the wind flow.

By visualising both the Pareto front design variants and bad performing design
variants performances in 3D, designers are able to quickly assess how the building
arrangement are affecting the NSHFAI and FAI.

Fig. 7. The optimisation generated 1000 design variants with seven on the Pareto front (red
dots) and the base case (blue dot)

Fig. 8. The NSHFAI result of the three design variants. The blue surfaces are surfaces receiving
irradiation less than the threshold value.

CAADFutures 17 - 61

#define the genes
gene_dict_list = []
for _ in range(number_of_genes):

gene_dict={“type”: “float_range”, “range”:(0.0,1.0)}
gene_dict_list.append(gene_dict)

#define the scores
shgfai_dict = {“name”: “nshfai”, “minmax”: “min”}
dfai_dict = {“name”: “fai”, “minmax”: “max”}
score_dict_list = [nshfai_dict, fai_dict]

population=initialise_nsga2(gene_dict_list, score_dict_list)

for generation in range(ngeneration):
 individuals = population.individuals
 for individual in individuals:
 parameters = individual.genotype.values

design_variant = parameterise.generate_design_variant
(parameters)
nshfai = eval_solar(design_variant)
fai = eval_fai(design_variant)
individual.set_score(0, nshfai)
individual.set_score(1, fai)

 feedback_nsga2(population)

Fig. 6. A snippet of the optimisation python script

Results.

We ran the optimisation for 40 generations with an initial population of 25 design
variants. There are seven design variants on the Pareto-front (red dots) in reference to
the base case performance (blue dot) as shown in Fig. 7. All the design variants’
performances improve significantly in comparison with the base case. Three design
variants are visualised in 3D (Fig. 7). Two design variants are on the two ends of the
Pareto front: one with the lowest NSHFAI and FAI (design variant 853), the other
with the highest NSHFAI and FAI (design variant 993). The third design variant is a
negative example with low NSHFAI and high FAI (design variant 153).

 Design variant 853 has similar NSHFAI performance as design variant 153 with
only a 0.06 difference in NSHFAI. In comparison, design variant 993 performs
significantly better in terms of NSHFAI by a 0.15-1.21 difference. This is due to the
inter-shading between buildings in design variant 993 as shown in Fig. 8. However,
the close-packing of the buildings increases its average FAI as compared to design
variant 853 by 0.04 as shown in Fig. 9. The congregation of buildings in the centre of
the plot contributes to the increase in FAI. The buildings in design variant 853 are
better spaced apart and as a result has lesser inter-shading but better FAI. Although
design variant 153 is also well-spaced like design variant 853, its bad building

positions and orientations, with their vertical facade facing the wind direction, are
blocking the wind flow.

By visualising both the Pareto front design variants and bad performing design
variants performances in 3D, designers are able to quickly assess how the building
arrangement are affecting the NSHFAI and FAI.

Fig. 7. The optimisation generated 1000 design variants with seven on the Pareto front (red
dots) and the base case (blue dot)

Fig. 8. The NSHFAI result of the three design variants. The blue surfaces are surfaces receiving
irradiation less than the threshold value.

62 - CAADFutures 17

Fig. 9. The FAI false colour diagram of the three design variants.

4.3 Discussion

The two example scripts are able to auto-parameterise a CityGML model in terms of
height, orientation and position without additional inputs from the designers. Example
2 demonstrates the capability of the auto-parameterisation tool to engage optimisation
in the design process without the need to parameterise the design manually.

The Python library that is used to develop the auto-parameterisation tool offers
flexibility for designers with a programming background. This is very useful for
customising the parameterisation process for their own project. As shown in example
1, it is straightforward to customise the auto-parameterisation by appending different
BaseParm classes to the Parameterisation class. For example, to parameterise
the orientation and height of the buildings, one simply appends the
BldgFlrAreaHeightParm and BldgOrientationParm to the
Parameterise class and leaves out the BldgPositionParm.

While customising the parameter template, designers need to pay attention to the
sequence of the appended BaseParm classes, as the sequence affects the
parameterisation. If the clash detection is active for either
BldgOrientationParm or BldgPositionParm, the same set of parameters
will result in a different result depending on the sequence. For the sequence rotate-
relocate, a building that is not allowed to rotate because it clashes with a neighbouring
building will be relocated to a new position without being rotated. However, for the
sequence relocate-rotate, the building will be relocated first and allow to be rotated at
the new position as it will not clash with any neighbouring buildings.

We have only demonstrated a very narrow set of parameterisation classes. The
auto-parameterisation tool is highly extensible; one can extend the BaseParm class
to include an implementation to parameterise the building forms of a design. In
contrast to the current classes where parameters are assigned to each building, we will
parameterise the building forms of a design by assigning a parameter to each land-
use. We will define the execute method depending on the form that we will
explore. In the method, the parameter would influence the building forms on the land-
use. While defining the execute method, it is important to note whether the
implementation is compatible with the other BaseParm classes. For example, if the

urban form parameter value changes the number of buildings on the land-use, the
urban form BaseParm implementation must be appended after the
BldgFlrAreaHeightParm, BldgOrientationParm and
BldgPositionParm. This is because the three classes assign parameters according
to the original number of buildings in the CityGML model; if the number of buildings
is changed, there will be a mismatch of parameters to the buildings to be either
rotated, relocated, shorten or heighten.

Eventually, it is up to the designers to customise their script. The Python library is
open and available for any interested designer to develop, extend, explore and
experiment.

5 Conclusion

The research demonstrates the feasibility of auto-parameterising semantic 3D city
models. The proposed method is a viable solution in helping urban designers
computationally encode their designs as a parametric model for optimisation. The
auto-parameterisation tool has been integrated into an optimisation process by
connecting it with an optimisation algorithm NSGA2. The integration simplifies the
encoding process of the urban optimisation process and makes the process more
accessible to designers.

Ongoing research to improve the auto-parameterisation tool includes developing a
Graphical User Interface (GUI) for designers with no programming background to
customise the parameterisation process and integrating the Python library with a
parallel computing framework to speed up the optimisation process. Firstly, a
parameter tree GUI like a feature-based modelling application such as CATIA will be
useful for designers to append and arrange the sequence of the BaseParm classes in
the Parameterise class. Secondly, the optimisation process currently takes up to
155 hours to generate 1000 design variants. The process can be significantly sped up
by integrating the optimisation process into a parallel computing framework. We
envision an accessible and fast optimisation process will encourage adoption of
optimisation algorithm in the urban design process.

Acknowledgements. This research was supported by the National Research
Foundation Singapore through the Singapore MIT Alliance for Research and
Technology's Center for Environmental Sensing and Modeling interdisciplinary
research program.

References

1. R. Compagnon, Solar and daylight availability in the urban fabric, Energy and
Buildings, 36, 321–328 (2004)

CAADFutures 17 - 63

Fig. 9. The FAI false colour diagram of the three design variants.

4.3 Discussion

The two example scripts are able to auto-parameterise a CityGML model in terms of
height, orientation and position without additional inputs from the designers. Example
2 demonstrates the capability of the auto-parameterisation tool to engage optimisation
in the design process without the need to parameterise the design manually.

The Python library that is used to develop the auto-parameterisation tool offers
flexibility for designers with a programming background. This is very useful for
customising the parameterisation process for their own project. As shown in example
1, it is straightforward to customise the auto-parameterisation by appending different
BaseParm classes to the Parameterisation class. For example, to parameterise
the orientation and height of the buildings, one simply appends the
BldgFlrAreaHeightParm and BldgOrientationParm to the
Parameterise class and leaves out the BldgPositionParm.

While customising the parameter template, designers need to pay attention to the
sequence of the appended BaseParm classes, as the sequence affects the
parameterisation. If the clash detection is active for either
BldgOrientationParm or BldgPositionParm, the same set of parameters
will result in a different result depending on the sequence. For the sequence rotate-
relocate, a building that is not allowed to rotate because it clashes with a neighbouring
building will be relocated to a new position without being rotated. However, for the
sequence relocate-rotate, the building will be relocated first and allow to be rotated at
the new position as it will not clash with any neighbouring buildings.

We have only demonstrated a very narrow set of parameterisation classes. The
auto-parameterisation tool is highly extensible; one can extend the BaseParm class
to include an implementation to parameterise the building forms of a design. In
contrast to the current classes where parameters are assigned to each building, we will
parameterise the building forms of a design by assigning a parameter to each land-
use. We will define the execute method depending on the form that we will
explore. In the method, the parameter would influence the building forms on the land-
use. While defining the execute method, it is important to note whether the
implementation is compatible with the other BaseParm classes. For example, if the

urban form parameter value changes the number of buildings on the land-use, the
urban form BaseParm implementation must be appended after the
BldgFlrAreaHeightParm, BldgOrientationParm and
BldgPositionParm. This is because the three classes assign parameters according
to the original number of buildings in the CityGML model; if the number of buildings
is changed, there will be a mismatch of parameters to the buildings to be either
rotated, relocated, shorten or heighten.

Eventually, it is up to the designers to customise their script. The Python library is
open and available for any interested designer to develop, extend, explore and
experiment.

5 Conclusion

The research demonstrates the feasibility of auto-parameterising semantic 3D city
models. The proposed method is a viable solution in helping urban designers
computationally encode their designs as a parametric model for optimisation. The
auto-parameterisation tool has been integrated into an optimisation process by
connecting it with an optimisation algorithm NSGA2. The integration simplifies the
encoding process of the urban optimisation process and makes the process more
accessible to designers.

Ongoing research to improve the auto-parameterisation tool includes developing a
Graphical User Interface (GUI) for designers with no programming background to
customise the parameterisation process and integrating the Python library with a
parallel computing framework to speed up the optimisation process. Firstly, a
parameter tree GUI like a feature-based modelling application such as CATIA will be
useful for designers to append and arrange the sequence of the BaseParm classes in
the Parameterise class. Secondly, the optimisation process currently takes up to
155 hours to generate 1000 design variants. The process can be significantly sped up
by integrating the optimisation process into a parallel computing framework. We
envision an accessible and fast optimisation process will encourage adoption of
optimisation algorithm in the urban design process.

Acknowledgements. This research was supported by the National Research
Foundation Singapore through the Singapore MIT Alliance for Research and
Technology's Center for Environmental Sensing and Modeling interdisciplinary
research program.

References

1. R. Compagnon, Solar and daylight availability in the urban fabric, Energy and
Buildings, 36, 321–328 (2004)

64 - CAADFutures 17

2. E. Ng, C. Yuan, L. Chen, C. Ren, and J. C. H. Fung, Improving the wind environment
in high-density cities by understanding urban morphology and surface roughness: A
study in Hong Kong, Landscape and Urban Planning, 101, 59–74 (2011)

3. C. Yuan, L. Norford, R. Britter, and E. Ng, A modelling-mapping approach for fine-
scale assessment of pedestrian-level wind in high-density cities, Building and
Environment, 97, 152–165 (2016)

4. S. Attia, M. Hamdy, W. O’Brien, and S. Carlucci, Assessing gaps and needs for
integrating building performance optimization tools in net zero energy buildings
design, Energy and Buildings, 60, 110–124 (2013)

5. M. Bruno, K. Henderson, and H. M. Kim, Multi-objective Optimization in Urban
Design, in Proceedings of the 2011 Symposium on Simulation for Architecture and
Urban Design, San Diego, CA, USA (2011) at
<http://dl.acm.org/citation.cfm?id=2048536.2048549>

6. H. Taleb and M. A. Musleh, Applying urban parametric design optimisation
processes to a hot climate: Case study of the UAE, Sustainable Cities and Society, 14,
236–253 (2015)

7. A. Leitão, L. Santos, and J. Lopes, Programming Languages For Generative Design:
A Comparative Study, International Journal of Architectural Computing, 10, 139–162
(2012)

8. G. Celani and C. Vaz, CAD Scripting And Visual Programming Languages For
Implementing Computational Design Concepts: A Comparison From A Pedagogical
Point Of View, International Journal of Architectural Computing, 10, 121–138 (2012)

9. P. Janssen, Visual Dataflow Modelling: Some thoughts on complexity, in
Proceedings of the 32nd eCAADe Conference, Newcastle, UK (2014)

10. G. Gröger and L. Plümer, CityGML – Interoperable semantic 3D city models, ISPRS
Journal of Photogrammetry and Remote Sensing, 71, 12–33 (2012)

11. K. W. Chen and L. Norford, Developing an Open Python Library for Urban Design
Optimisation - Pyliburo, in Building Simuation 2017, San Francisco, USA (2017)

12. BCA Singapore, BCA Green Mark for New Non-Residential Buildings Version
NRB/4.1, (2013). at
<http://www.bca.gov.sg/greenmark/others/gm_nonresi_v4.1_revised.pdf>

13. EnergyPlus - Weather Data by Region, (2017). at <https://energyplus.net/weather-
region/southwest_pacific_wmo_region_5>

14. C. S. B. Grimmond and T. R. Oke, Aerodynamic Properties of Urban Areas Derived
from Analysis of Surface Form, Journal of Applied Meteorology, 38, 1262–1292
(1999)

15. S. J. Burian, M. J. Brown, and S. P. Linger, Morphological Analyses Using 3D
Building Databases: Los Angeles, California, Los Alamos National Laboratory
(2002)

16. P. Janssen, K. W. Chen, and C. Basol, Iterative Virtual Prototyping: Performance
Based Design Exploration, in 29th eCAADe Conference Proceedings, Ljubljana,
Slovenia (2011) at <http://cumincad.scix.net/cgi-
bin/works/Show?ecaade2011_074>

17. G. J. Ward, The RADIANCE Lighting Simulation and Rendering System, in
Computer Graphics 94 SIGGRAPH (1994)

18. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, A Fast Elitist Non-dominated
Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II, in Parallel
Problem Solving from Nature PPSN VI, Edited by M. Schoenauer, K. Deb, G.
Rudolph, X. Yao, E. Lutton, J. Merelo, and H.-P. Schwefel, Springer Berlin
Heidelberg (2000)

CAADFutures 17 - 65

2. E. Ng, C. Yuan, L. Chen, C. Ren, and J. C. H. Fung, Improving the wind environment
in high-density cities by understanding urban morphology and surface roughness: A
study in Hong Kong, Landscape and Urban Planning, 101, 59–74 (2011)

3. C. Yuan, L. Norford, R. Britter, and E. Ng, A modelling-mapping approach for fine-
scale assessment of pedestrian-level wind in high-density cities, Building and
Environment, 97, 152–165 (2016)

4. S. Attia, M. Hamdy, W. O’Brien, and S. Carlucci, Assessing gaps and needs for
integrating building performance optimization tools in net zero energy buildings
design, Energy and Buildings, 60, 110–124 (2013)

5. M. Bruno, K. Henderson, and H. M. Kim, Multi-objective Optimization in Urban
Design, in Proceedings of the 2011 Symposium on Simulation for Architecture and
Urban Design, San Diego, CA, USA (2011) at
<http://dl.acm.org/citation.cfm?id=2048536.2048549>

6. H. Taleb and M. A. Musleh, Applying urban parametric design optimisation
processes to a hot climate: Case study of the UAE, Sustainable Cities and Society, 14,
236–253 (2015)

7. A. Leitão, L. Santos, and J. Lopes, Programming Languages For Generative Design:
A Comparative Study, International Journal of Architectural Computing, 10, 139–162
(2012)

8. G. Celani and C. Vaz, CAD Scripting And Visual Programming Languages For
Implementing Computational Design Concepts: A Comparison From A Pedagogical
Point Of View, International Journal of Architectural Computing, 10, 121–138 (2012)

9. P. Janssen, Visual Dataflow Modelling: Some thoughts on complexity, in
Proceedings of the 32nd eCAADe Conference, Newcastle, UK (2014)

10. G. Gröger and L. Plümer, CityGML – Interoperable semantic 3D city models, ISPRS
Journal of Photogrammetry and Remote Sensing, 71, 12–33 (2012)

11. K. W. Chen and L. Norford, Developing an Open Python Library for Urban Design
Optimisation - Pyliburo, in Building Simuation 2017, San Francisco, USA (2017)

12. BCA Singapore, BCA Green Mark for New Non-Residential Buildings Version
NRB/4.1, (2013). at
<http://www.bca.gov.sg/greenmark/others/gm_nonresi_v4.1_revised.pdf>

13. EnergyPlus - Weather Data by Region, (2017). at <https://energyplus.net/weather-
region/southwest_pacific_wmo_region_5>

14. C. S. B. Grimmond and T. R. Oke, Aerodynamic Properties of Urban Areas Derived
from Analysis of Surface Form, Journal of Applied Meteorology, 38, 1262–1292
(1999)

15. S. J. Burian, M. J. Brown, and S. P. Linger, Morphological Analyses Using 3D
Building Databases: Los Angeles, California, Los Alamos National Laboratory
(2002)

16. P. Janssen, K. W. Chen, and C. Basol, Iterative Virtual Prototyping: Performance
Based Design Exploration, in 29th eCAADe Conference Proceedings, Ljubljana,
Slovenia (2011) at <http://cumincad.scix.net/cgi-
bin/works/Show?ecaade2011_074>

17. G. J. Ward, The RADIANCE Lighting Simulation and Rendering System, in
Computer Graphics 94 SIGGRAPH (1994)

18. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, A Fast Elitist Non-dominated
Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II, in Parallel
Problem Solving from Nature PPSN VI, Edited by M. Schoenauer, K. Deb, G.
Rudolph, X. Yao, E. Lutton, J. Merelo, and H.-P. Schwefel, Springer Berlin
Heidelberg (2000)

