
S. Chien, S. Choo, M. A. Schnabel, W. Nakapan, M. J. Kim, S. Roudavski (eds.), Living Systems and
Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference of the
Association for Computer-Aided Architectural Design Research in Asia CAADRIA 2016, 157–166. © 2016,
The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong.

MÖBIUS

A parametric modeller for the web

PATRICK JANSSEN, RUIZE LI and AKSHATA MOHANTY
National University of Singapore, Singapore
patrick@janssen.name, {liruizenus, akshatamohanty}@gmail.com

Abstract. For complex parametric modelling tasks, systems that use
textual programming languages (TPLs) currently have clear ad-
vantages over visual programming languages (VPLs) systems. Their
support for a rich variety of programming mechanisms means that the
complexity of the program can remain commensurate with the com-
plexity of the modelling task. A prototype parametric modelling sys-
tem called Möbius is presented that aims to overcome the limitations
of existing VPL systems. The proposed system integrates associative
and imperative programming styles and supports iterative looping and
higher order functions. In order to demonstrate the versatility of the
Möbius, a modelling task is presented that requires the model to be
modified.

Keywords. Parametric procedural modelling; generative design; visu-
al programming; human-computer interaction.

1. Introduction

Parametric modelling is a form of programming. Two types of programming
languages are Textual Programming Languages (TPL systems) and Visual
Programming Languages (VPL systems) (Myers, 1990). Historically, the de-
bate surrounding TPL systems versus VPL systems has not been conclusive,
with researchers arguing in favour of both approaches (Menzies 2002). TPL
systems are continuing to evolve rapidly and are becoming more user-
friendly due to simplifications in syntax and improvements in the IDEs
(Leitão et al, 2012). The evolution of VPL systems on the other hand seems
to be slower.

In the design domain, a number of parametric modelling systems use
VPLs for generating models. However, these systems are known to have

158 P. JANSSEN, R. LI, AND A. MOHANTY

poor scalability (Stouffs and Chang, 2010; Park and Holt, 2010; Janssen and
Chen, 2011; Chok, 2011; Leitão et al, 2012; Janssen, 2014) due to their weak
support for fundamental programming mechanisms. Two important mecha-
nisms are iterative loops and higher-order functions.

Iteration refers to mechanisms for repeating a sub-procedure, and in-
cludes for loops, while loops and recursive function calls. VPL systems for
parametric modelling typically use a graph-based programming approach
consisting of nodes and wires, and as a result do not support iteration very
well. With dataflow and procedural modelling systems, it is possible to cre-
ate models that incorporate iterative procedures (Janssen and Stouffs, 2015).
McNeel Grasshopper is an example of a dataflow system, while SideFx
Houdini is an example of a procedural system. However, creating sophisti-
cated types of iterations in these types of systems (such as nested loops) re-
mains prohibitively difficult (Janssen and Stouffs, 2015).

Higher-order functions refers to any functions that take another function
as an argument or returns a function as a result. In parametric modelling,
such functions can be very useful as they allow components in the design to
be represented and manipulated using functions (Leitão, 2014). Most VPL
systems do not support higher-order functions. Two recent exceptions are
Autodesk Dynamo and Autodesk 3DS MCG. However, the dataflow inter-
face makes it difficult to leverage the full power of higher-order functions.
Another powerful parametric modelling system that specifically supports
higher-order functions is Rosetta (Lopes and Leitão, 2011), but this is actual-
ly a textual programming system.

Another important aspect that needs to be considered is the learning
curve. The context for this research is the Department of Architecture at the
National University of Singapore. During the last seven years, electives have
been taught teaching both Grasshopper and Houdini. Typically, students
need to both learn the tools and apply them in an architectural design project
within a single 12 week semester. For both VPL systems, this proved to be
very challenging. In the electives teaching Grasshopper, students could make
simple models quite quickly, but once more complex parametric tasks were
attempted, the learning curve quickly steepened. In the electives teaching
Houdini, students found the initial learning curve to be quite steep, but then
discovered that some quite complex tasks were easily achievable. Neverthe-
less, with further increases in parametric complexity, the learning curve
again steepened. Thus, although the learning curve for TPL systems is typi-
cally higher than VPL systems, the experiences with Grasshopper and Hou-
dini show that learning these VPL systems to a level required for complex
parametric modelling is also very time consuming.

 MÖBIUS: A PARAMETRIC MODELLER FOR THE WEB 159

A related issue with current VPL systems is that they do not allow for a
graceful progression towards learning a TPL (Aish, 2013). Given that TPLs
may always have certain advantages over VPLs, it would be desirable if the
use of a VPL system would allow users to gradually start to learn TPL con-
cepts. This would allow expert users of the VPL system to transition over to
a TPL without having to restart their learning process from scratch. Howev-
er, the concepts used in most graph-based VPL systems have limited rele-
vance when learning textual programming.

For complex parametric modelling tasks, TPL systems therefore currently
have clear advantages over VPL systems. Their support for a rich variety of
programming mechanisms means that the complexity of the program can
remain commensurate with the complexity of the modelling task. However,
it may be possible to overcome many of the shortcomings of existing para-
metric modelling VPL systems. This research has developed a prototype
VPL system called Möbius for creating complex procedural models. One of
the key objectives is to create a system that students can become proficient
in within one 12 week semester. This proficiency should go beyond simple
‘toy’ models, and should allow students to build parametric models that in-
corporate complex nested iterative loops and higher-order functions.

Section 2 will describe the key features of Möbius, and Section 3 will
present an experiment that demonstrates the versatility of Möbius. Finally,
section 4 discusses future work.

2. System overview

Möbius is a web-application that runs in the browser on the client side. As a
result, Möbius is platform independent and there is no need to install soft-
ware. Figure 1 shows the Möbius user interface.

Möbius will be introduced using the Killian Roof modelling task as an
example, based on a tutorial for Generative Components developed by Axel
Kilian in 2005. The task consists of building a simple parametric roof with a
diagrid structure (Woodbury at al, 2007). The ridge of the roof remains at a
constant height while the base of the structure varies in height in response to
an undulating ground surface. An instance if the Killian Roof is shown in
Figure 1.

Möbius integrates imperative and associative programming styles. The
imperative style of programming is supported through blocks-based pro-
gramming, where the user constructs procedures by creating sequences of
code blocks (Resnick et al, 2014). The associative style of programming is
supported through dataflow programming, where the user constructs net-

160 P. JANSSEN, R. LI, AND A. MOHANTY

works consisting of nodes and wires. Each node has an imperative procedure
that is defined using the blocks-based approach.

Figure 1. The Möbius interface, showing a model of the Killian roof.

2.1. IMPERATIVE PROGRAMMING

Nodes have types and instances. A node type is defined by specifying a pro-
cedure with a set of input and output ports. Each node type can have multiple
node instances, all of which will have the same procedure with the same in-
put and output ports. The input and output data for each instance will differ.

Node procedures are defined with the imperative programming style, us-
ing panes (c) and (d) in Figure 1. Pane (c) is used to define the input ports
for the node type. Pane (d) is used to define the procedure and output ports
for the node type using the blocks-based programming approach. In the ex-
ample in Figure 1, the procedure and inputs for the cross_section node type
are shown.

In the procedure pane, Möbius provides buttons to create five types of
code blocks. Variable blocks define new variables. Function blocks call a
specific function, selected from a drop-down list. Looping blocks create
loops such as for-each loops and while loops. Conditional blocks create if-
then conditions. Finally, output blocks create output variables, which result
in node output ports being added to the node.

Once a code block has been created, the user can customize the block by
clicking on the links and typing in values. For example, in Figure 1(d), the
first code block is a function block that calls the function divideCurve-
ByEqualArcLength. The user has created a variable called divisions to store
the result, and has edited the function arguments.

When defining variable values or function arguments, the user can enter
single-line Javascript expressions. These expressions avoid the need to have
code-blocks for simple operations such as arithmetic operations. Expressions

 MÖBIUS: A PARAMETRIC MODELLER FOR THE WEB 161

can also be used to navigate topological data structures that link geometric
entities such as vertices, edges, and faces. This allows lower level entities to
be extracted from higher level entities using simple expressions that navigate
through the data structure. For example, the expression
‘mesh.faces[3].vertices[0].z’ will return the z coordinate of the first point of
the of the fourth face in the mesh. This ability to extract specific pieces of
data from deep within geometric objects significantly simplifies the proce-
dures.

2.2. ASSOCIATIVE PROGRAMMING

Node networks are defined by placing and wiring together a set of node in-
stances. At the network level, these node instances are treated as black box-
es.

The node network is defined with the associative programming style, us-
ing panes (e) and (f) in Figure 1. Pane (e) is the node parameters pane, and is
used to set certain input values for the node instance selected in pane (f).
Pane (f) is the network pane, and is used to define the dataflow network. The
inputs to a node instance can either be defined by connecting a wire to the
input port (in which case the parameter will be hidden), or by entering a spe-
cific parameter value through the user interface widget. In the example in
Figure 1, the cross_section0 node instance is selected, and the parameters
being shown are therefore for this node.

When the dataflow network is run, the network is converted into a single
Javascript program that is then executed in one go. This represents a syn-
chronous type of execution, where the nodes are first topologically sorted
and then executed in a fixed sequence. This differs from most other dataflow
system, where nodes are executed asynchronously in response to changes to
their inputs.

The generation of a textual program from the dataflow network has the
advantage that it allows a wide range of more advanced programming mech-
anisms to be used. Two mechanism will be described in more detail: iterative
loops and higher-order functions.

2.3. ITERATIVE LOOPS AND HIGHER ORDER FUNCTIONS

Iterative loops can be created at both the procedure level and the dataflow
level. At the procedure level, users can easily define nested loops using the
blocks-based programming style. However, it may also be necessary to cre-
ate loops at the dataflow level. For example, when creating performance-
based models, dataflow networks may need to be repeatedly executed in an
iterative optimization process. Creating iterative loops at the dataflow level

162 P. JANSSEN, R. LI, AND A. MOHANTY

is possible due to the fact that all nodes are also callable as functions. This
means that a procedure inside one node can include function blocks that call
other nodes.

Higher order functions are supported by an additional output port which
returns a reference to the function that wraps the procedure for that node.
When this output is wired into another node, it results in a dashed wire,
which indicates to the user that it contains a reference to a function rather
than actual data. These wires can be used to provide a function as an input to
another downstream node. That node can then have a procedure that exe-
cutes that function.

The dataflow network for the Killian Roof example, as shown in Figure
1(f), includes a higher-order function to create the diagonal struts. This func-
tion takes a single mesh face as an input and generates two diagonal struts.
The modify_faces0 node uses this function to replace each mesh face with
diagonal struts.

3. Experiment

In order to demonstrate the versatility of the Möbius, an example developed
by Leitão et al (2012) is used. The modelling task consists of two phases: (1)
implementation of a parametric model to create a structure made of cylindri-
cal spirals; and (2) the modification of the original model to create sinusoidal
variations of the cylindrical spirals. The aim of the two-phase experiment
was to investigate how easily users were able to adapt the phase 1 model to
the new requirements in phase 2.

In the experiments conducted by Leitão et al (2012), a user-based study
was conducted to compare a TPL system with a VPL system. The TPL sys-
tem was Rosetta (Lopes and Leitão, 2011) (using VisualScheme as the tex-
tual language) and the VPL system was Grasshopper. Six designers with
varying levels of expertise were asked to complete the modelling tasks, and
the resulting models and modelling times were compared. The results
showed that the models created with Rosetta were easier to understand and
significantly more adaptable than those created with Grasshopper.

The aim of revisiting this example is to demonstrate that while it is true
that Rosetta models are more adaptable than Grasshopper models, this can-
not necessarily be generalizable to all TPL and VPL systems. As discussed
in the introduction, Grasshopper suffers from restrictive mechanisms that
make it difficult or impossible to tackle complex parametric modelling tasks
without resorting to scripting. Möbius is much less restrictive and as a result
Möbius models are more easily adapted.

 MÖBIUS: A PARAMETRIC MODELLER FOR THE WEB 163

3.1. PHASE 1: CYLINDRICAL SPIRAL TOWERS

In the first phase, the task is to create a parametric model capable of generat-
ing the structures shown in Figure 2a.

Figure 2. (a) Phase 1 cylindrical spiral towers (taken with permission from Leitão et al,

2012). (b) Möbius dataflow network for phase 1.

In Möbius, this can be achieved in many different ways. In this example,
we implement what might be considered as the most straightforward ap-
proach within Möbius.

The first decision the user needs to make is how to apply associative and
imperative programming styles. This comes down to the question of how
many nodes to create. In general, it is possible to implement everything in
one complex node, or to implement many simple nodes. The most desirable
approach is to create a small number of modular reusable nodes.

Figure 3. (a) Procedure for the spiral node. (b) Parameters for the spiral node.

In this case, four nodes are created, as shown in Figure 2b. All four nodes
are highly generic and reusable. The spiral0 node creates spirals, the pipe0
node creates pipe surfaces from curves, the reflect_copy0 node creates a
copy of objects by reflection, and the radial_copy0 node creates radial cop-

164 P. JANSSEN, R. LI, AND A. MOHANTY

ies of objects. The procedure for the spiral is shown in Figure 3a. Figure 3b
shows the parameter interface for the same node.

3.2. PHASE 2: SINUSOIDAL CYLINDRICAL SPIRAL TOWERS

In the second phase of the experiment, the parametric model needs to be
modified in order to be able to create the structures shown in Figure 4a. Only
the spiral node needs to be modified so that the radius variable in the proce-
dure (see Figure 3a) changes with height. The easiest way to achieve this is
to use a higher-order function.

The modified dataflow network is shown in Figure 4b. The radius_func0
node takes a height factor as an input and outputs the radius. The procedure
for this node is shown in Figure 5a. The calculation combines a linear func-
tion and a Sine function. The parameters for the linear function are the radius
at the top and bottom of the structure. The parameters for the Sine function
are the frequency and amplitude of the sinusoidal wave.

Figure 4. Phase 2 sinusoidal cylindrical spiral towers (taken with permission from Leitão et

al, 2012). (b) Möbius dataflow network for phase 2.

The modified spiral_sinusoidal0 node is almost the same as the original
spiral node. The procedure is shown in Figure 5b. The only difference is that
the radius is replaced by the radius function.

 MÖBIUS: A PARAMETRIC MODELLER FOR THE WEB 165

Figure 5. (a) Procedure for the ‘radius_func0’ node. (b) Procedure for the modified ‘spi-

ral_sinusoidal0’ node.

3.3. EVALUATION

The example demonstrates that the complexity of the dataflow networks and
procedures created using Möbius remain commensurate with the complexity
of the modelling task. As a result, the model is relatively easy to modify and
adapt. For users that have learnt certain basic concepts of higher order func-
tions, the transition from phase 1 to phase 2 can be implemented in a way
that is natural and intuitive.

One of the key objectives of developing Möbius is to have a system that
students can become proficient in within a 12 week semester. At this stage of
the research, no user studies have been conducted yet and this objective can
therefore not yet be evaluated. The two examples above were used as a pre-
liminary test of the Möbius VPL. In the future, Möbius will be used as a tool
for teaching parametric design. User studies will then be conducted for a va-
riety of modelling tasks, allowing further data and feedback to be gathered.

An additional benefit of using Möbius is the fact that the creation of pro-
cedures using blocks teaches users the basic concepts of textual program-
ming. As users become more experienced, they can then gradually transition
over to textual programming.

4. Future work

Möbius is under active development, and various additional components and
user interface enhancements are being worked on. Additional viewers and
function modules are being developed for BIM and GIS. Support for debug-
ging parametric models is being enhanced with more visual feedback. In ad-
dition to these ongoing development efforts, there are also two more funda-
mental areas that will be tackled in the future.

First, the execution of the code generated from the dataflow networks
will be optimised for performance using memorisation techniques. Tradi-
tional dataflow systems have the advantage that they only need to re-execute

166 P. JANSSEN, R. LI, AND A. MOHANTY

nodes whose inputs have changed. However, in Möbius this is not possible
due to the fact that code is generated for the whole dataflow network and
then executed as one standalone script. Memorisation is an optimization
technique that stores the results of function calls and returns the cached re-
sult when the same inputs occur again.

Second, the current Javascript geometry libraries will be replaced by
more complete geometry engines supporting a wider range of geometric
functions. Möbius currently uses the Verbs geometry library developed by
Peter Boyer (http://verbnurbs.com). Future geometry engines being explore
include OpenCascade (http://www.opencascade.com) and CGAL
(http://www.cgal.org).

Acknowledgements
This research was supported by the Singapore Ministry of Education under an AcRF
Tier 1 grant (R-295-000-104-112).

References
Aish, R.: 2013, DesignScript: Scalable Tools for Design Computation, Proceedings of the

31st eCAADe Conference, Delft, The Netherlands, 87–95
Chok, K.: 2011 Progressive Spheres of Innovation: Efficiency, communication and collabora-

tion, Proceedings of the 31st ACADIA Conference, Banff, Alberta, Canada, 234–241.
Janssen, P.: 2014, Visual Dataflow Modelling: Some thoughts on complexity, Proceedings of

the 32nd eCAADe Conference, Newcastle, UK, 547–556.
Janssen, P. and Chen, K.W.: 2011, Visual Dataflow Modelling: A Comparison of Three Sys-

tems, Proceedings of CAAD Futures 2011, Liege, Belgium, 801–816.
Janssen, P. and Stouffs, R.: 2015, Types of Parametric Modelling, Proceedings of the 20th

CAADRIA Conference, Daegu, Republic of Korea, 157–166.
Leitão, A.: 2014, Improving Generative Design by Combining Abstract Geometry and High-

er-Order Programming, Proceedings of the 19th CAADRIA Conference, Kyoto, Japan,
575–584.

Leitão, A., Santos, L., and Lopes, J.: 2012, Programming Languages For Generative Design:
A Comparative Study. International Journal of Architectural Computing, 10(1), 139–62.

Lopes, J. and Leitão, A.: 2011, Portable Generative Design for CAD Applications, Proceed-
ings of the 31st ACADIA Conference, Banff, Alberta, Canada, 196–203.

Myers, B. A.: 1990, Taxonomies of Visual Programming and Program Visualization, Journal
of Visual Languages and Computing, 1(1), 97–123.

Park, K. and Holt, N.: 2010, Parametric Design Process of a Complex Building In Practice
Using Programmed Code As Master Model, International Journal of Architectural Com-
puting, 8(3), 359–376.

Resnick, M., Silverman, B., Kafai, Y., Maloney, J. and Monroy-Hernández, A.: 2009,
Scratch: programming for all, Communications of the ACM, 52, 60

Stouffs, R. and Chang,W.-T.: 2010, Representational programming for design analysis, Pro-
ceedings of the International Conference on Computing in Civil and Building Engineer-
ing, Nottingham, UK, 351–359.

Woodbury, R.: 2010, Elements of Parametric Design, Routledge.

