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Abstract. Standard evolutionary algorithms have limited use in
practical architectural design tasks. This may be due to the poor search
efficiency and the lack of diversity of the result. In order to overcome
these weaknesses, this paper proposes a hybrid evolutionary algorithm
combining an island model approach (parallel distributed technique)
and a steady-state replacement strategy for maintaining a rich design
diversity of the result while speeding up the search process. Through
a demonstration, it is shown that the hybrid algorithm can effectively
improve both design diversity and search efficiency.
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1. Introduction
Architectural design, according to Liu et al (2003), can be characterised as an
iterative divergent-convergent process, where designers create a wide range of
design alternatives at the divergent design exploration stage and then evaluate
and modify these at the convergent exploitation stage. Compared to other types
of algorithms, evolutionary algorithms are considered a potential technique to
support such divergent-convergent processes with computers (Turrin et al, 2011).
The reasons for this are twofold. On the one hand, for divergent design exploration,
evolutionary algorithms take advantage of the population-based strategy and the
stochastic search approach making such algorithms an explorer of the design
space, which may discover unexpected design alternatives. On the other hand,
for convergent design exploitation, the application of the tournament selection
and the population replacement ensures the evolutionary search process focus
on optimal solutions in the design space. However, evolutionary algorithms are
still less widespread in real-world architectural design tasks as one might expect.
The research identifies two key challenges that degrade the utility of evolutionary
algorithms in architectural design practice. The first challenge relates to poor
design diversity while the second one relates to poor search efficiency.
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With regards to design diversity, the converging nature of the evolutionary
process eventually makes all individuals become more and more similar (Figure
1 left). In other words, the population loses design diversity soon after the
process discovers a subspace with local-optima and starts fitness exploitation.
The convergent search process and the lose of design diversity undermine the
divergent design exploration process. In this regards, instead of searching only
for optimum design solutions, it is more relevant for designers to execute an
evolutionary process that can identify a wide variety of design alternatives with
acceptable performance. By comparing these design alternatives and identifying
patterns and trends, designers can learn more about the design problem and come
up with creative design solutions (Woodbury & Burrow, 2006).

Figure 1. Diagrams of a standard (centralised population) search process (left) and a
distributed parallel search process (right).

With regards to search efficiency, the generational replacement strategy
applied by most evolutionary algorithms results in slow search processes because
the design population can evolve only after all individuals in the current generation
have been evaluated. Such a process does not proceed as the natural evolutionary
process does, where elite individuals affect the population immediately and
asynchronously once they come into being. For many studies or applications with
a fast evaluation process, poor search efficiency may not draw much attention.
However, most architectural design optimizations require evaluation processes
based on detail and time-consuming performance simulations, which can prolong
the overall search process. When constrained by tight design schedules, poor
overall search efficiency will significantly degrade the utility of evolutionary
algorithms for real-world architectural design tasks.

The two abovementioned challenges can be controlled, to some extent, by
adjusting the selection pressure in order to achieve the desired intensity of design
exploration or exploitation. Even so, these two challenges still act against one
another. The pursuit of design exploration inevitably hinders search efficiency
and vice versa. Thus, in order to reconcile the contradiction between these
two challenges, the research proposes a new hybrid evolutionary algorithm
integrating an island model approach (Alba & Troya, 1999) with a state-steady
replacement strategy (Rasheed, 1998). The development of the algorithm is aimed
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at accommodating the requirements of design diversity and search efficiency
concurrently. Compared with standard evolutionary algorithms, the proposed
hybrid algorithm meets the need for improving both design diversity and search
efficiency through a series of parallel search processes focusing on different
subspaces, while each of the search processes exploits the subspace more greedily
(Figure 1 right).

2. Hybrid Evolutionary Algorithm
For the proposed hybrid evolutionary algorithm, the application of an island
model approach and a state-steady replacement strategy will help maintain design
diversity and speed up the search process. However, the combination of these two
techniques is non-trivial, as overcoming both poor design diversity and poor search
efficiency at the same time is challenging. First and foremost, the design space
defined by the parametric model of architectural design is commonly multimodal,
whichmeans that there aremany feasible design subspaces sparsewithin the design
space (Wang et al, 2018). Multimodal design spaces are, in fact, in favour of
designers’ divergent design exploration, as design exploration does not strictly
require the search process focus on finding the global optimum but can instead
perform multiple parallel searches. With such parallel search processes, the
evolutionary process can provide multiple design solutions, helping designers to
uncover patterns or trade-offs within the design problem. In addition, focusing too
much on speeding up the evolutionary process by emphasising design exploitation
can result in premature convergence. Such risks can be offset if design diversity
is maintained by parallel search processes.

With regards to these two facets, the combination of the island model and
steady-state replacement strategy allows the hybrid algorithm to search the design
space both exploratively and exploitatively: the island model approach enables
the search process to focus on several feasible subspaces rather than one single
subspace simultaneously, while the steady-state replacement strategy speeds up
the search process in exploiting each of the design subspaces (Figure 1 right).
In the remainder of this section, we describe these two techniques and the
implementation of the proposed hybrid algorithm.

2.1. ISLAND MODEL

For maintaining design diversity, it is important to preserve the accessibility
of different promising subspaces during the evolutionary search process.
Accessibility implies that the search process can reach all locations in the design
space with reasonable effort (Woodbury & Burrow, 2006), through recombining
(crossover) or random shuffling (mutation) certain parameters (genes) of the
already discovered individuals. From this point of view, a weakness of the
standard evolutionary algorithm is that many subspaces with desirable design
solutions are often lost when a local-optima with slightly better fitness is found.
Such local-optima quickly start to overwhelm the rest of the population, and as
a result, individuals carrying information that could guide the search process to
locate other promising subspace are typically killed and replaced. For preserving
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the accessibility of different subspaces, the island model can be used to reduce
competition between individuals from different promising subspaces.

The island model uses a parallel distributed search approach that can overcome
certain disadvantages inherent in the centralised population models, including
prematurity and poor robustness (Alba & Troya, 1999). Such centralised models
treat the entire population as a single breeding unit and execute evolutionary
operations (crossover and mutation) on the whole population. In contrast, the
island model splits the population into several ‘niche’ subpopulations that are
then evolved relatively independently. This separation of the search process
into subpopulations avoids the entrapment of local-optima at the outset of the
evolutionary process.

While the initial incentive for developing the island model approach is mainly
aimed at preventing prematurity, it also introduces other benefits. One such
benefit is the ability to launch parallel searches from multiple points in the design
space. This makes the island model a compelling approach for maintaining
design diversity during design exploration. With the island model approach, the
sub-optimal individuals found by each subpopulation are able to be preserved for
a longer time and will not be immediately replaced when better individuals are
found in other subpopulations. Thus, the accessibility of different subspaces can
be preserved, which allows the evolutionary process to exploit multiple sub-optima
inside each subspace.

2.2. STEADY-STATE REPLACEMENT STRATEGY

In order to improve search efficiency, the steady-state replacement strategy
may have certain advantages (Janssen, 2015). Compared with the generational
replacement strategy, the steady-state replacement strategy evaluates only a
small number of individuals and immediately replaces inferior individuals in the
population. Thus, the evolutionary process is more responsive to the discovery
of new improving individuals, as it can react to feedback from performance
evaluation more promptly.

In the proposed hybrid algorithm, a steady-state replacement strategy is
used. All other evolutionary operations are still run sequentially, as in standard
evolutionary algorithms. In each iteration, a fixed number of individuals in every
subpopulation are randomly selected as parents to create offspring. The parents
and offspring then all compete with one another. The higher ranking individuals
(either parents or offsprings) are then inserted back into the subpopulation while
the rest are discarded. The selective nature of the steady-state replacement strategy
renders the evolutionary process exploitative. However, as mentioned above, the
risk of over-exploitation or premature convergence can be compensated by the
explorative nature of the island model.

2.3. IMPLEMENTATION

In order to facilitate ease of use for designers, the hybrid algorithm is
implemented in the Rhino-Grasshopper environment as a built-in component. The
component has several graphical user interfaces (GUI) for providing information
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to assist designers to understand the search progress. The component provides
visualizations at both the global population level or at the subpopulation level for
enabling users to keep track of the evolutionary progress. These visualizations
show progress trend lines and other basic information (Figure 2).

Figure 2. GUIs of the component.

In addition to the island model approach and steady-state replacement strategy,
there are two other important techniques implemented in the algorithm worth
mentioning. The first technique focuses on the generation of the initial population.
It is reported that the distribution of the initial population has a significant impact
on the quality of the subsequent evolutionary process. An uneven initial population
distribution can result in early entrapment of the evolutionary search process
by poor local-optima (Maaranen et al, 2007). In this regards, we used Latin
Hypercube Sampling to generate an initial population to ensure the population
can spread more evenly in the design space.

The second technique relates to the exchange of individuals between
subpopulations. Natural evolutionary processes often benefit from mating
across the boundaries of the subgroups of different species (Chipperfield et al,
1994). Likewise, the exchange of genetic material among subpopulations is also
encouraged when using the island model, and the exchange process is referred
to as migration. The use of migration can help a subpopulation entrapped in
a poor fitness subspace to escape to other subspaces by introducing genetic
material from other subpopulations. The mixture of genetic material from two
subpopulations allows the search process to reposition itself somewhere between
the two associated subspaces.

For most algorithms based on an island model, the migration is triggered
synchronously after a fixed number of iterations. When triggered, all
subpopulations will simultaneously send and receive individuals with other
subpopulations. However, such migration operations can be harmful if
well-evolved individuals with better fitness are sent to a subpopulation still under
evolution. In order to prevent this weakness, the proposed hybrid algorithm
executes the migration in an asynchronous fashion. The approach is based on
previous studies by Horii et al. (2002). With this approach, the exchange process
will only be triggered when the evolution of a subpopulation falls into stagnation.
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3. Demonstration
For demonstrating the utility of the hybrid algorithm, the paper uses a design
problem from a previous study (Wang et al, 2018). The design generates high-rise
buildings with an atrium and a series of vertical gardens. The objective is to
search for design alternatives that optimise economic performance, taking into
account various factors including rental profit, and facade and structural cost. With
the economic performance evaluation, a simplified calculation is used that has
the advantage of being fast to evaluate. Otherwise, running relevant simulations
would be too time-consuming. We will not go into other implementation details
of the design here, as they can be found in the above-mentioned study.

With regards to search efficiency, the design space defined by the parametric
model is huge and multimodal. Searching such a design space, the evolutionary
process can be easily misled by a local-optima, resulting in premature stagnation.
In this regards, section 3.1 compares the proposed hybrid algorithm in terms of
search efficiency with two other search techniques: a random search technique
and a simple genetic algorithm (SGA).

With regards to the design diversity, section 3.2 presents the evolutionary
result from the proposed hybrid algorithm. The result presents a rich diversity of
design variation, giving designers a better understanding of the trade-off between
economic performance and geometric features.

3.1. SEARCH EFFICIENCY

The three search techniques were all executed in Rhino-Grasshopper platform. In
addition to the hybrid algorithm, the random search was executed by setting the
parameter list to always be 100% random, while SGA was executed using the
Grasshopper Galapagos genetic algorithm component (Rutten, 2013). The setup
of each search technique is illustrated in Table 1. In order to reduce the impact of
stochastic variation, the search process for each technique was repeated five times.
During each search process, the best two solutions found at each point in time were
recorded. The reason for recording the best two is that focusing only on the best
solution can conceal the overall progress of the whole population. By recording
the best two solutions, the improvement of the population is shown more clearly.

Table 1. The parameter setup for the three search techniques .

For SGA, the number of stagnant generation was set to 20. In comparison,
since there are no mechanisms for the hybrid algorithm and the random search to
stop the search process, 5000 births were set as the limit of the search. The setting
of 20 generations or 5000 births considered both the factors of search completeness
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and of run-time limits.
Figure 3 shows the fitness progression trend lines of the search processes for

the three alternative search techniques. In term of the improvement of the fitness,
SGA is inferior to the other two other techniques. The result suggests that SGA is
incapable of solving design problems with such large multimodal spaces. This is
most likely due to the fact that the exploitative nature of SGA can easilymislead the
search process towards current sub-optimal subspaces. In such cases, the search
process can often spend a long time exploiting a subspace that does not include
any acceptable designs. This is the case for the bottom trend line in Figure 3, that
produced 12 thousand births but only made very limited progress.

Figure 3. Fitness progress trend lines of the evolutionary runs.

Compared with SGA, the random search is little more efficient in solving
the assigned design problem. Without exploitation, the search process randomly
explores the design space in an unbiased way. As a result, overall search
progress is generally better than SGA. However, without any search heuristic, the
improvement achieved by the search process is limited.

In comparison, the proposed hybrid algorithm outperforms the other two search
techniques in terms of search efficiency. The evolutionary process with the
hybrid algorithm is able to identify promising subspaces faster than the other two
approaches. Partly this is due to the use of Latin Hypercube Sampling, which
ensures that the initial population evenly covers the design space. This gives the
evolutionary process access to a wide range of design subspaces at the outset of
the search. In addition, the steady-state replacement strategy enables the search
process to discard inferior design variants faster. The evolutionary heuristics of
the hybrid algorithm also prevent the search process from just wandering around
the design space as the random search does.

In addition to the initial fast discovery of the feasible design alternatives, over
the long term the hybrid algorithm is also able to find better designs than the
other two techniques. This ability to deliver steady progress is due to the use
of the island model. At the early search stage, the island model approach prevents
the evolutionary process from being entrapped by a single local-optima. But this
also divides the computational search effort into multiple parallel search processes.
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However, as the search progresses, the parallel search process allows the hybrid
algorithm to exploit each of the subspaces more efficiently. As a result, it is more
likely to discover designs with better fitness among these subpopulations. Lastly,
the migration of individuals among subpopulations can allow the search process
to escape from the entrapment of poor local-optima. The island model approach
contrasts with the centralised population model used by SGA, which must pay the
price of putting “all the eggs in one basket”.

3.2. DESIGN DIVERSITY

As a sign of search convergence, the genetic distribution displayed by parallel
coordinates (Wortmann, 2018) can also be used as an indicator of the similarity
among the individuals in the design population. With SGA, the genetic distribution
will typically become reduced with the search progress (Figure 4), which means
that most individuals in the final population will come from one particular
subspace. Figure 4 and Figure 5 respectively show the genetic distribution of one
of the conducted evolutionary runs based on SGA and the hybrid algorithm. The
comparison shows that the hybrid algorithm can preserve richer diverse genotypes
than SGA. Even so, the genotypes preserved with the use of the hybrid algorithm
all have approximately the same fitness (the right-hand two columns of Figure
5 indicates the fitness of the genotype), which means that there is no significant
trade-off on obtaining richer design diversity.

Figure 4. An example genetic distribution change process with Galapagos.

Figure 5. Genetic distribution of elite individuals from different subpopulations with the
hybrid algorithm.

The diverse genetic distribution can help designers grasp the implication
of design performance. It is clear from Figure 5 that these individuals share
similar values for certain parameters while differing in others. The pattern of
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genetic distribution indicates that the parameters with similar values are significant
for creating satisficing solutions. By identifying these significant parameters,
designers are able to modify the design in consideration of other objectives but
avoid steering the modification into infeasible design solutions. The pattern
of the genetic distribution also indicates that the found designs should share a
certain geometric similarity, which can reveal certain relationships between design
performance and geometric features.

Figure 6 shows a set of example design alternatives evolved using the hybrid
algorithm. Each of the design alternatives comes from a different sub-population.
On first sight, all design alternatives have a similar geometric feature, namely that
vertical gardens are inserted on middle-to-upper floors. This result is aligned with
the conclusion of the previous study that reveals how the insertion of vertical
gardens can cause a smaller loss in economic performance. There are also
noticeable geometric differences among these design alternatives. By comparing
the geometric features and the fitness value, the designer can find the trade-off
relationship of the fitness with geometrical features. Among the presented designs,
the design alternatives with complex interlocking vertical gardens are typically
poor in economic performance because the increase in the number and the size of
vertical gardens raises the facade cost while reducing the rental profit.

Figure 6. Optimal designs in different subpopulations.

4. Discussion
The conducted experiment compares the search efficiency of the hybrid algorithm
with a random search and SGA while also investigating design diversity. The
results of the experiment reveal that, by combining the island model and
the steady-state replacement strategy, the hybrid algorithm can simultaneously
overcome the challenges of poor search efficiency and poor design diversity. This
is achieved by integrating these two techniques in a way that synergies their
individual strengths. The analysis in Section 3.1 makes it clear that even if the
SGA search was repeated numerous time, it is highly unlikely that it would ever
reach the fitness levels achieved by the hybrid algorithm.

Compared with the other two search techniques, the use of the hybrid algorithm
can alsomake the evolutionary design process more robust. In Figure 3, the pattern
of the fitness trend lines demonstrates that the evolutionary processes based on the
hybrid algorithm are more stable than the other search techniques in terms of the
final fitness value and overall search progress. This will allow designers to develop



602 L. WANG, P. JANSSEN AND G. JI

greater trust in the evolutionary result. In contrast, the trend lines for SGA are
unstable, rendering it untrustworthy.

The experiment also highlights the weakness of SGA in searching multimodal
design spaces. The poor design diversity and search efficiency of SGA make
it unsuitable for use within the divergent-convergent design process. This also
confirms what Wortmann (2018) has identified - the problematic integration of
SGA within architectural design. In this regards, the research provides a potential
solution for applying evolutionary search in architectural design. The proposed
hybrid algorithm can allow the results from evolutionary search to act as catalysts
in the divergent-convergent architectural design process.

The research has successfully demonstrated the proposed hybrid algorithm for
a specific design problem. However, according to the No-free-lunch theorem
(Wolpert & Macready, 1997), it is not possible for an algorithm to solve all
problems effectively and efficiently. Hence, further systematic examinations are
needed to identify the range of problems that the proposed hybrid algorithm is able
to solve, which also points out the future research direction.
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