
481

Custom Digital
Workflows: A New
Framework for Design
Analysis Integration
Bianca Toth, Patrick Janssen, Rudi Stouffs,
Andre Chaszar and Stefan Boeykens

issue 04, volume 10international journal of architectural computing

482

Custom Digital Workflows: A New Framework for
Design Analysis Integration
Bianca Toth, Patrick Janssen, Rudi Stouffs,Andre Chaszar and Stefan Boeykens

Abstract

Flexible information exchange is critical to successful design-analysis
integration, but current top-down, standards-based and model-oriented
strategies impose restrictions that contradict this flexibility. In this
article we present a bottom-up, user-controlled and process-oriented
approach to linking design and analysis applications that is more
responsive to the varied needs of designers and design teams. Drawing
on research into scientific workflows, we present a framework for
integration that capitalises on advances in cloud computing to connect
discrete tools via flexible and distributed process networks.We then
discuss how a shared mapping process that is flexible and user friendly
supports non-programmers in creating these custom connections.
Adopting a services-oriented system architecture, we propose a web-
based platform that enables data, semantics and models to be shared
on the fly.We then discuss potential challenges and opportunities for its
development as a flexible, visual, collaborative, scalable and open
system.

1. INTRODUCTION

There is a clear and urgent need for better information exchange strategies
to address the persistent lack of interoperability and integration in building
design, analysis and construction.The continuing and active discourse
amongst AEC practitioners and researchers alike highlights ongoing
limitations in both process and technology that commonly challenge design
collaboration. Recognising as a basic premise that most design teams will,
whether by choice or necessity, use a variety of software applications and
platforms, the question that remains to be answered is: How can we
develop tools and technology that support designers in creating their own
design processes, rather than having to adapt their processes to suit rigid
tool requirements?

The key idea we present in this article is that bottom-up, user-controlled
and process-oriented approaches to linking design and analysis applications
are more appropriate than current top-down, standards-based and model-
oriented strategies, because they provide degrees of flexibility critical to the
process(es) of design.This idea originally comes from discussions raised at
the “Open Systems and Methods for Collaborative BEM (Building
Environment Modelling)” workshop held at the CAAD Futures 2011
Conference in Liège, Belgium. Here, we continue the ‘open systems’ dialogue
with a conceptual framework for bringing this idea into practical application,
aiming to reduce current obstructions to collaborative design.

We propose an open framework for integration where numerous small
and specialised procedural tools are developed, adapted and linked ad-hoc,
to meet the needs of individual design projects and project teams.These
modular components encapsulate individual tasks that aid information
exchange between software tools by (semi-)automating typically tedious and
non value-adding tasks associated with preparing data for transformation
between different data schemas. Flexible and user-friendly mapping
procedures enable custom connections to be easily created and shared
between schema descriptions adhering to the same underlying data model.
A cloud-based platform allows various design and analysis tools to be strung
together in this manner, through web interfaces that let users interact with
workflows graphically. Project- and user-specific workflows can be created,
shared and managed on distributed resources, which, in combination with
the elimination of file format and programming language restrictions,
promotes maximum flexibility.

Drawing on research into scientific workflows, we describe system
requirements to guide future development of the proposed framework. In
contrast with the predominating push for ever more monolithic and
standardised tools, models and workflows, we dispense with the premise of
a multi-domain schema for integration to present instead a system that is
flexible, distributed and modular. Discarding assumptions of homogeneity in

483Custom Digital Workflows: A New Framework for Design Analysis Integration

the format of design and analysis data, we then discuss the benefits and
challenges that such a system presents for design practice and outcomes.

An initial demonstration of one possible approach to the shared
mapping procedure has already been undertaken [1], and we have assembled
a collective of researchers and practitioners interested in pursuing our
proposal.We are confident that the approach described in this framework
will lend itself well to coping with the frequently changing pace and focus of
design projects, as well as the varying priorities of their many stakeholders.

2. SYSTEM ARCHITECTURE

Similar to the AEC sector, increasing complexity in scientific research and
practice has led to a proliferation of specialised computational tools, each
developed by different people, at different times, to support different
problem-solving tasks. Across these tools, underlying data structures exhibit
a high degree of heterogeneity, akin to that observed in building software.To
manage this heterogeneity and achieve the integration required to generate
solutions, information must be matched and mapped across a succession of
different data schemas, applications and platforms [2]. Scientific workflows
enable these information exchanges to take place quickly, reliably and
flexibly, by “combining data and processes into a configurable, structured set
of steps that implement semi-automated computational solutions of a
scientific problem” [3].

Scientific workflow systems enable the composition and execution of
these complex task sequences on distributed computing resources [4].
These systems exhibit a common reference architecture, illustrated in
Figure 1, and typically consist of a graphical user interface (GUI) for
authoring workflows (which can also be edited textually), along with a
workflow engine that handles invocation of the applications required to run
the solution [5].The GUI abstracts the usage requirements of underlying
resources to critical process parameters, making computational tools and
technologies more accessible to users.The workflow engine supports
integration between applications by engaging a combination of data-flow and
control-flow constructs to handle the execution and management of tasks.
Data-flow constructs establish information dependencies between tasks, and
ensure that data-producing procedures are complete before data-consuming
ones begin [4]. Control-flow constructs support more complex workflow
interactions, such as loops and conditionals, and also coordinate the
execution of tasks on remote resources [5].Typically, control-flow
constructs are overlays on the data-flow graph, either as separate nodes or
layers.

484 Bianca Toth, Patrick Janssen, Rudi Stouffs,Andre Chaszar and Stefan Boeykens

Today, numerous workflow systems with different purposes and functionality
exist. Some provide sophisticated interfaces and graphics, like the data
visualisation application Vistrails [6], while other more generic workflow
systems, such as YAWL, are less visual but offer high-level process
abstractions that can be applied to a range of usage scenarios [5].The LONI
Pipeline is designed specifically to build up data processing streams for
neuro-imaging tools [7], while Kepler provides advanced control algorithms
for actor-oriented modelling of complex physical, biological and chemical
processes [5]. Each system acts to accelerate and streamline the workflow
process; however, their individual capabilities vary greatly due to differences
in workflow representation, data flow and control flow.The implementation
strategies employed for each of these three workflow aspects reflect the
specific requirements and technologies of the individual field or purpose for
which a system is developed.

Within the AEC industry, systems developed for the purpose of
Multidisciplinary Design Optimisation (MDO) offer comparable workflow
functionality to those mentioned above. ModelCenter [8], by Phoenix
Integration, is a commercial software package that integrates and manages
the flow of data between modelling and simulation applications, to generate
trade-off evaluations of design and performance constraints for decision
support. Purpose-built software wrappers expose the data and functionality
of design and analysis applications within the ModelCenter environment,
enabling these tools to be linked together into workflows. DesignLink [9], a
platform developed by Arup and freely available under their collaborative

� Figure 1:Workflow system

architecture.

485Custom Digital Workflows: A New Framework for Design Analysis Integration

licensing agreement, employs a different mechanism to achieve similar
workflow functionality, supporting interoperability through the combination
of an extensible XML-based file format and software-specific plug-ins that
support the import and export of this format.While these MDO
environments facilitate integration of diverse design and analysis tools, their
top-down approach to interoperability is subject to certain limitations. Use
of a common data schema to structure information exchange, regardless of
whether it is proprietary or an open standard, imposes restrictions on how
designs can be described and thus explored [10]; restrictions that are only
lessened, not overcome, when the schema is extensible. Further complicating
matters is the lack of support for non-programmers in creating custom
software connections, given that software development expertise is relatively
uncommon amongst architects and engineers [11]. In response to these
observed limitations, we pursue a more flexible and user-friendly approach to
information exchange that reconceptualises the workflow process to
support the full scope of design experience, aiming to improve design-
analysis integration across a range of application broader than simply MDO –
including open-ended design explorations, not only optimisations. Our work
differs from other related research in its bottom-up, rather than top-down,
approach to integration, which eliminates the common data schema as a
prerequisite for information exchange, allowing designers freedom to create
custom digital workflows unfettered by standardisation constraints.

In the following subsections we discuss strategies for workflow
representation, data flow and control flow in relation to the needs of the
AEC industry, to outline requirements for a system that will support our
bottom-up approach to information exchange.We aim to identify the
functionality needed to develop a flexible, open and intuitive platform for
collaborative design-analysis integration, building on capabilities exhibited in
scientific workflow systems and further capitalising on recent advances in
cloud computing.

2.1.Workflow representation

Workflow representation is critical for specifying tasks and dependencies.
Nearly all workflow systems mentioned are visual programming tools in
that they allow processes to be described graphically using some form of
‘pipes-and-filters’ logic.While not strictly workflow systems, programs like
Grasshopper, GenerativeComponents and Houdini abstract underlying CAD
systems to offer similar functionality to designers for composing
parametric-associative models, albeit performed within a single application.
Each ‘filter’ encapsulates some data processing task, and is represented by a
node, while a ‘pipe’ passes data (and in some instances control information)
between two filters, and is represented by a connecting wire. A workflow is
depicted by a network of nodes and wires to be configured and
reconfigured graphically by users as required. From a user perspective, these
nodes can act as a black box to perform a given function without the need

486 Bianca Toth, Patrick Janssen, Rudi Stouffs,Andre Chaszar and Stefan Boeykens

for extensive or expert programming, although programming can empower
the end user considerably, if the contents of the box are exposed and
editable.

Adopting this ‘pipes-and-filters’ architecture, our framework posits three
node types: process, input/output (IO) and control. Process nodes
encapsulate data analysis and transformation procedures; while the latter
two node types provide functionality related to workflow initiation,
execution and completion. An overview of these different node types, and
their respective sub-nodes, is seen in Table 1.

Process nodes have a number of (typed) input and output ports for
receiving and transmitting data, as well as variables that can be set by the
user to guide task execution.They can be further classified into ‘tool’ nodes
and ‘mapper’ nodes.Tool nodes wrap existing applications to make their
data and functionality accessible to the workflow, while mapper nodes apply
transformation procedures to data sets to map the output from one tool
node to the input of another. Ideally, these mappings are easily defined and

� Table 1: Overview of workflow

nodes.

487Custom Digital Workflows: A New Framework for Design Analysis Integration

able to be custom created (or edited) by users with limited programming
skills (discussed in more detail in Section 3). However, the need for more
complex data transformations is inevitable, and where programming is
unavoidable, the resulting nodes are differentiated as scripted mappers.
Figure 2 shows an example network in which a Maya modelling node is
connected via a series of mapper nodes (denoted by ‘M’) to Radiance and
EnergyPlus simulation nodes.The Maya node encapsulates a procedure that
starts Maya, loads a specified model, and then generates a model instance by
applying the defined parameter values.The resulting geometric output
undergoes two separate transformations that map it into both Radiance-
and EnergyPlus-compatible formats, the latter via a scripted mapper that
pre-processes geometry to ensure its compatibility with complex
EnergyPlus requirements.The simulation nodes then read in this
transformed data, run their respective simulations, and generate output data
in the form of simulation results.

IO nodes act as data sources and sinks for the workflow, as well as
providing data visualisation capabilities. Input nodes provide data by
specifying input files and control parameters, as inputs to the tool nodes
and to control the data extracted from these input files respectively. It is
important to note that input data is referenced into the workflow, not
imported, to ensure that the workflow remains dynamic and can be re-
evaluated when changes to this data occur; these changes are, however,
controlled to avoid conflicts arising while the workflow is running.Taking
the example in Figure 2, the Maya input node allows the user to specify not
only the origin of the model to be used for the data source, but also
particular types of geometry and other data contained within it, while the
EnergyPlus input node simply links the appropriate weather file.The output
node contains the workflow results, here of the EnergyPlus and Radiance
simulations.These nodes enable results to be visualised in various ways, with
users able to define data ‘mashups’ in order to customise their visualisations
without having to understand the coding of the underlying processes.

Control nodes apply constraints to the workflow, like conditionals and
loops, which manipulate the local order of execution of nodes further along
in the network. For example, an if-then node can force execution of
different branches in a workflow in response to a given condition, while a

� Figure 2: Example of a workflow

with a parametric CAD system linked

to Radiance and EnergyPlus via

mapper nodes (M) – end users

contribute white components, node

developers build the grey components,

and black components are existing

tools that are wrapped.

488 Bianca Toth, Patrick Janssen, Rudi Stouffs,Andre Chaszar and Stefan Boeykens

repeat node can force repeated execution of a network branch a particular
number of times. Global control is also possible, but is defined at workflow
level, rather than task level, as discussed in Section 2.3.

Users configure nodes and their dependencies using a workflow
interface. Since we are describing a platform that operates in the cloud, this
interface must be a web application able to access distributed cloud
services.We propose a browser-based GUI that employs HTML5 to ensure
its usability in standalone applications, or even smartphone apps.This GUI
provides drag-and-drop functionality for placing nodes on the workflow
canvas, which are then wired together by the user, similar to defining a
model in Grasshopper, or in the various scientific workflow platforms
mentioned above.

We also propose several interface features to aid users in managing
workflow complexity. Graphical nesting allows clusters of nodes to be
collapsed into composite nodes, facilitating modularisation of the workflow
to improve its legibility [12], as well as enhancing reusability through the
sharing of these clusters amongst workflows. Provenance information
retrieval and querying enables workflow history to be reviewed, so that the
decision-making process can be tracked [4]. Further functionality includes
the ability to download the source code for any non-proprietary scripted
node, modify it and then republish it.This is crucial for ensuring the
platform’s flexibility and openness; however, it does require a clear
understanding of how data is passed through the system, discussed in more
detail below.

2.2. Data flow

Interoperability is a critical issue when linking applications from different
domains. Scientific workflow systems deal with this in a number of ways,
ranging from an ontological approach, where a common data schema is
imposed on data exchanges, to an open-world approach, where the user
resolves data compatibility issues as needed - a process known as ‘shimming’
[3]. In the AEC industry, a common approach to this issue is Building
Information Modelling (BIM), which tends toward the all-encompassing
ontological end of the spectrum.This is a top-down approach, reliant on the
IFC schema and its continuous extension to cater for all possible usage
scenarios.There, pragmatic information exchange is assumed to evolve into
discipline-oriented model views, where only filtered subsets of the model
are exchanged [13]. However, IFC – like any standardised ontology – has
significant epistemological, practical and technical limitations [10, 14, 15].
With a focus on data specification, rather than on implementation of this
specification, the data content involved in IFC exchange is often ambiguous
and implemented inconsistently between software [15].There is also a lack
of agreement concerning IFC model view definitions, which often results in
file exchanges involving large, cumbersome models unable to resolve

489Custom Digital Workflows: A New Framework for Design Analysis Integration

differences in data structure and content reliably between applications [14].
Furthermore, rather than actively supporting variability in design processes,
usage scenarios are limited to that which are accommodated by the current
IFC implementation (or risky ‘hacks’ thereof).

Instead of reading and writing to a common data schema, we therefore
propose tools be coupled more effectively through procedures that allow
direct data transfer between schemas. As advocated by proponents of
design-analysis integration, this transfer only needs to involve the required
data rather than the entire building description [16].The advantage of this
run-time coupling of different applications, Hensen et al. argue, is that it
“supports the exchange of information during a simulation as opposed to
... before the simulation” [17].While this approach is vulnerable to version
changes in wrapped tools, the sharing and reuse of interoperability
solutions is a mitigating factor. Furthermore, the proposed system does not
disregard BIM, but suggests IFC exchange be part of the workflow process,
integrated into these custom data flows rather than forcing the whole
system to adhere to IFC ontology. A good example of such an approach is
found in the “GeometryGym” a suite of tools that enable parametric
models generated in Grasshopper to be linked both to BIM workflows,
through components that generate IFC objects, and to structural
simulations [18].

The absence of any schema restrictions circumvents the limitations of
a multi-domain schema like IFC, where exchanges between tools and the
underlying data schema pose risks of significant information loss and
inappropriate process constraint.The only necessary constraint we
envision is that domain-specific input and output data schemas are
described and their assumptions identified, such that users may reasonably
rely on these descriptions when creating and editing workflows.This
constraint does not limit flexibility, as a new schema may always be
defined.

Data can be stored in a digital repository, or a key-value database, a
selection that is prompted as much by the elimination of any data schema
restrictions as by the choice of a cloud-based platform.The advantages of
these are that they do not impose a fixed schema for data description, are
highly scalable, and information access can be very fast.The key for a piece
of data is a unique ID, and its value can be a file, a class, a graph or any
other data type. It should be noted that the use of discrete packages of data
over a centralised process model may introduce some redundancy and
inconsistency; for example, when different workflow branches drawing on
the same input converge, combining data from different but overlapping
models. Such redundancy, admittedly, is inherent to the bottom-up approach
to integration that we are advocating. Eliminating this redundancy, however,
would not only greatly reduce the freedom and flexibility of designers to
create their own workflow processes from any selection of tools, it would

490 Bianca Toth, Patrick Janssen, Rudi Stouffs,Andre Chaszar and Stefan Boeykens

also seriously hamper the ability to define and explore unconventional
design spaces.

2.3. Control flow

As discussed in Section 2.1, control nodes provide localised ways of
manipulating the workflow.To provide the desired level of flexibility, the
framework also needs to offer different types of global, or high-level, control
flow. Many existing workflow systems are restricted to simple flow
mechanisms, where nodes are processed one at a time, in a pre-calculated
order. Such systems generate topological orderings, where each node in the
sequence will execute only after all its predecessor nodes have executed. A
key limitation of this approach though is that the network must be a
directed acyclic graph (DAG) to generate topological orderings, and as a
result networks with loops are not supported.

Networks with loops, however, are clearly desirable in certain situations,
such as optimisation routines.To support loops and other node execution
patterns, such as triggering nodes iteratively or periodically, different high-
level control mechanisms are required. In addition to providing workflow
execution functionality, these mechanisms are needed to support distributed
computing, by triggering nodes to work in parallel with other nodes, as well
as executing synchronously or asynchronously.

To ensure maximum flexibility, the user should be able to apply different
control flow mechanisms to different parts of the network.This could be
achieved by assigning a control mechanism to a composite node, which
would further open the possibility of nesting control flow.

3. CUSTOM DATA MAPPING

In order to create custom workflows, information must be matched and
mapped across a series of different applications and schemas.This may
involve deriving new data as well as disregarding data that is superfluous in
the target format. An explicit model describing these transformations is
therefore needed to relate constructs in the source representation to
constructs in the target representation [2, 19].

In a workflow system that dispenses with file format and programming
language restrictions, like ours, these transformations are a critical issue for
usability.To support a bottom-up, user-controlled and process-oriented
approach to linking design and analysis tools, a common mapping approach
is needed that allows users with limited programming skills to easily create
and share custom mappings, so that data compatibility issues can be
resolved collaboratively on the fly. For this to be achieved, the mapping
approach must be both flexible, so that users can apply the same mapping
approach to any type of data, and user-friendly, to the extent that it supports
non-programmers in the process of creating and debugging mappers.This
approach must therefore be semantically agnostic, employing data models

491Custom Digital Workflows: A New Framework for Design Analysis Integration

that support the organisation of information at an abstract level, in terms of
the data structure, data constraints and data operations. By making the
output schema of one node and input schema of another adhere to the
same data model, a mapping between two tools may then be more easily
defined.

3.1.A flexible mapping approach

The mapping process involves two distinct levels of data representation: the
data model versus the data schema. A data model allows data to be
organised using generic constructs that are domain independent and able to
describe a broad range of information types. It is a means of defining a data
structure that is very flexible but relies on human interpretation of semantic
meaning. A data schema describes information using semantic constructs
related to a particular domain.While the range of information types
supported is typically narrower, this level of representation allows
automated interpretation of semantic meaning.We propose a mapping
approach that engages both of these representation levels in order to
ensure that it is flexible and capable of automatically generating
transformation procedures from abstract mapping definitions.

Data schemas can be defined on top of a data model by specifying
additional constraints for the underlying generic constructs. One example is
the different XML schemas defined on top of the XML data model using the
XML Schema DDL. In this manner, data in any format can be made to
adhere to the same data model, easing the mapping definition process by
ensuring commonality in the way that information is represented between
schemas. Figure 3 illustrates this layered approach (option c) in comparison
with other AEC strategies for interoperability.We can see here that its
advantage lies in providing a consistent method for defining tool
connections, which is more cohesive than linking individual tools via file
translation (option a), and less restrictive than a universal data schema
(option b).

Mappings typically need to manipulate both data structure and content
to generate the required exchange procedure.This is achieved by specifying
relationships between domain-specific constructs in the output schema and
those in the input schema. In the modelling and simulation of design
problems, the resulting relationship networks are often highly complex, and
cannot be defined through a simple declaration of semantically-equivalent
constructs between the two schemas.To minimise the need for scripted
mappers in creating such networks, the mapping approach must allow
complex relationships to be defined in a highly flexible and intuitive manner.
We propose to support this flexibility by enabling schema relationships to
be described through transformation rules, using languages designed
specifically for querying and manipulating data models. In keeping with the
data models that they are used to traverse, these languages are highly

492 Bianca Toth, Patrick Janssen, Rudi Stouffs,Andre Chaszar and Stefan Boeykens

generic semantically, and offer the flexibility needed to negotiate
relationships between disparate design and analysis schemas. It should be
noted, however, that each is unique to a particular type of data model. In a
further paper, we have considered several data models and their respective
query languages from the point of view of applicability and ease of use [1].
Since adherence to a common data model is only a prerequisite for nodes
in any individual mapping, to ensure maximum flexibility, we propose to
dispense with data model restrictions at the system level.

3.2.A user-friendly mapping approach

Similar to other workflow systems, to assist the designer in creating these
custom mappings, we propose a mapping interface that supports visual
definition of transformation rules. In our system, the input and output data
schemas of each tool and scripted mapper node are represented as a
graphical abstraction based on a data model (such as a property graph).
Using graphical constructs that represent high-level transformations,
designers are able to visually define relationships between the output and
input schemas of different nodes to generate a full specification of the data
exchange procedure [2]. Based on this user-defined information, a mapping
procedure that transforms the source data set into the target data set can
then be generated automatically. Ideally, this interface would employ
advanced algorithms that offer guidance to the designer in matching data
across schemas, so that mappings can be created in less time, with less
effort and fewer mistakes [2]. An example of this can be seen with elastic
lists [20], where the selection of one object for mapping places logical
limitations on the properties that can be selected thereafter.This would
allow users to create transformation procedures without any programming,

� Figure 3: Interoperability

approaches. Left: Linking individual

tools via file translation. Middle: Linking

tools via a shared data schema. Right:

Linking tools via a shared mapping

process.

493Custom Digital Workflows: A New Framework for Design Analysis Integration

although the interface would also enable direct editing of the
transformation script so that procedures could be enhanced for maximum
flexibility.

For tools structuring their input and output schemas using this same
data model, the resulting commonality would allow these tools to be easily
shared. Users could download diverse tools (and possibly mappers)
developed by different groups from a shared online repository, and then
string these together into their own unique customised workflows.The
users’ task would then be to define (i.e. create or edit) mappers, where
necessary, that generate data sets adhering to the input schemas of the
selected tools.

4. SYSTEM IMPLEMENTATION

Implementing our framework in the cloud promotes its scalability, efficiency
and reliability, as workflow execution can be distributed over multiple
computers in the network. Nodes may execute either as local tasks, if their
related design or analysis program resides on the local machine, or as cloud
applications, if their data-handling procedures are not linked to a locally-
housed program, and they are able to swap between modes of execution as
required.The node procedure, which may be written in any language, is
saved as an executable task that reads and writes data. A task scheduler,
housed on a server, is used to manage the execution of these tasks on
distributed resources, and the user controls the execution process through
a web-based workflow GUI that communicates with this scheduler. If the
system needs to be run locally, such as when a network connection cannot
be established, a server is simply started on the local machine.

Process nodes read and write data to and from a (distributed)
repository. Storing data in a repository ensures that a trace of all workflow
output is maintained for later perusal.The repository may be mirrored
locally, guaranteeing access to all outputs even when the user is
disconnected from the cloud. Similar to version-control systems used in
software development, such as Subversion or Git, users work on a local
copy and then merge or commit their changes to the shared repository
once the workflow has been executed. Data management within a
repository also eliminates the need for exchanging data directly between
process tasks.When a task creates output data, this is stored in the
repository together with some minimal metadata - origin, time of creation,
format, etc. - for which the Dublin Core [21], extended where necessary,
may serve as a template. In return, it receives a unique ID, which is then
passed to the task scheduler to be forwarded on to the next process
node’s task.The receiving task then queries the repository for the relevant
data.

Literature on scientific workflows also suggests several other desirable
system features [3], including:

494 Bianca Toth, Patrick Janssen, Rudi Stouffs,Andre Chaszar and Stefan Boeykens

• reusable features that are both generic and customisable to support a
wide range of tasks in specific ways;

• seamless and dynamic subscription to and publishing of data and
processes in repositories;

• execution monitoring, failure recovery and interactive user guidance of
workflows.

This functionality will be incorporated into the future development of
the system, as well as steer the implementation of features already
discussed.

5. DISCUSSION

The question of interoperability has long been vexing the AEC industry.
While computational systems for design-analysis integration, for example
PACE [22], SEMPER [23] and P3 [24], have been the subject of research for
decades and instrumental in establishing a foundation for current integration
efforts, they have largely not been adopted in practice.Their inability to
support the ad hoc workflows experienced on real projects [25] is a
problem similarly observed in integration practices today, both of which can
be attributed to implementation of an interoperability approach based on a
common data schema. By imposing inflexible standards for data
representation and exchange, restrictions are placed on the software and
processes that can be supported, and severe limitations are inflicted on the
ways in which designs can be described and explored.To overcome these
limitations, we are proposing that direct communication between different
data schemas facilitated by an open mapping approach - rather than
communication via a multi-domain schema - is the preferred and even
necessary arrangement. Although more work may be needed to create the
many tool wrappers and scripted mappers required to support such
communication, this is more desirable than over-constraint of design
processes caused by the use of standardised representations and protocols
that are only applicable within a relatively small region of ‘design space’.
These nodes do not need to be created in advance, but can be developed
or adapted by designers as the need arises, and shared amongst the user
community.This promotes greater responsiveness to user needs than when
software development is left in the hands of firms motivated by commercial
considerations.

Research and development of the proposed system is an ongoing effort
from the Open Systems group; however, success will ultimately depend on a
community of users and developers, able and willing to adapt this system to
their own workflows, capitalising on tools and processes they already have
in place.We do not aim to replace their toolsets but rather provide a
framework to embed current tools in more cohesive, shareable and
customisable digital workflows. As observed within the Grasshopper user
community, the ability to influence and effect software extension, and

495Custom Digital Workflows: A New Framework for Design Analysis Integration

benefits of combining various add-ons to functionality, encourages users to
contribute to system development. Consultants could also showcase their
skills by sharing select process nodes that they develop in-house, as is
similarly achieved by the GeometryGym and Karamba plug-ins for
Grasshopper, establishing themselves as experts to prospective clients and
co-collaborators who require specialised workflows for unique design
projects and problems.These user developments could potentially result in
a large collection of process nodes, which may compete in offering
alternative ways of achieving almost identical outcomes, and a considerable
range of options available to designers.To aid designers in choosing
appropriately, it is important not only that a description of the functionality
of each node is available, but also that the designer is able to ensure that
nodes ‘fit’ other nodes in order to compose a valid workflow. Formal input
and output schemas for tool nodes should also be made readily available, to
assist users in determining which subsets of these schemas are relevant to
their particular design scenario. Assertions should also be specified on data
outputs and assumptions specified for expected inputs so that automatic
checking of node compatibility is possible, and where compatibility is lacking
a new or modified node is substituted.

Workflow design is likely to be an incremental process in which a
number of nodes are combined into a partial workflow, tested by the
designer, then further developed and extended. Besides automatic checking
of the mutual fitness of adjacent nodes, the designer will need to check
whether the (partial) workflow is behaving as expected and producing
appropriate results.When results are not as expected, the designer will
need to debug the workflow by tracing back execution, which can be
assisted by displaying intermediate, as well final, results.

In the context of a large collection of process nodes and choice of
alternative ways to achieve the same or similar result, user-friendliness and
knowledge-based support, the two main concerns of designers when using
analysis software [26], will become crucial.These concerns will also need to
be explored in terms of the scalability of the user-defined mapping approach
when working with large data sets and more complex data schemas (like
IFC). If the increased complexity makes it difficult to construct custom
mappers, then additional data management and schema management tools
will be required – tools which could also assist in workflow debugging and
schema formalisation. Issues of accuracy, uncertainty and risk may also be of
significant concern. Macdonald et al. propose the introduction of uncertainty
considerations in simulations to provide meaningful feedback to the user
and to improve confidence through risk assessment [27].While these can be
addressed within individual software tools, the proposed system should also
introduce this functionality into the workflow environment itself.

A final issue is security and trust. In a collaborative and distributed
environment, how can we guarantee that data is secure and processes can

496 Bianca Toth, Patrick Janssen, Rudi Stouffs,Andre Chaszar and Stefan Boeykens

be trusted? Data encryption and certification of process nodes will be
prerequisites, in combination with a secure workflow platform, to ensure
trust to the user.

6. CONCLUSION

This article summarises an ongoing effort to address limitations in process
and technology that currently obstruct design collaboration. In it we argued
the need for a user-controlled and process-oriented approach to integration
and interoperability, and discussed how a cloud-based workflow system can
support more flexible and distributed design processes.We examined the
features and functionality needed to abstract computing and data resources
to make tools and technologies more accessible to users, both as individuals
and as members of design teams. As well as benefiting design practice, we
envisage the proposed system as a platform for researchers to share their
work and increase the impact of their individual efforts through integration
with other research.The system requirements that we have identified will
help to ensure that the proposed design-analysis integration platform when
developed is flexible, visual, collaborative, scalable and open.

ACKNOWLEDGEMENTS

The authors would like to acknowledge and thank the participants of the
“Open Systems and Methods for Collaborative BEM (Building Environment
Modelling)” workshop held at the CAAD Futures 2011 Conference in
Liège, Belgium, 4 July 2011, and of the LinkedIn Group sharing the same
name, for their contributions to the discussions leading to the ideas
presented and described in this paper.We invite interested parties to
contribute to the development of these ideas and to join the discussions in
the LinkedIn Group.

REFERENCES
1. Janssen, P., Stouffs, R., Chaszar,A., Boeykens, S. and Toth, B., Data Transformations

in Custom Digital Workflows: Property Graphs as a Data Model for User-
Defined Mappings, Intelligent Computing in Engineering Conference - ICE2012,
Munich, 2012.

2. Bellahsene, Z., Bonifati,A., Duchateau, F. and Velegrakis,Y., On Evaluating Schema
Matching and Mapping, in: Bellahsene, Z., Bonifati A. and Rahm E., eds., Schema
Matching and Mapping, Springer, Berlin and Heidelberg, 2011, 253-291.

3. Altıntas, , I
.
., Collaborative Provenance for Workflow-driven Science and Engineering, PhD

Thesis, University of Amsterdam, 2011.

4. Deelman, E., Gannon, D., Shields, M. and Taylor, I.,Workflows and e-Science:An
Overview of Workflow System Features and Capabilities, Future Generation
Computer Systems, 2008, 25, 528-540.

5. Curcin,V. and Ghanem, M., Scientific Workflow Systems - Can One Size Fit All?,
CIBEC 2008, Cairo, 2008, 1-9.

497Custom Digital Workflows: A New Framework for Design Analysis Integration

6. Callahan, S., Freire, J., Santos, E., Scheidegger, C., Silva, C. and Vo, H.,Vistrails:
Visualization Meets Data Management, SIGMOD 2006, Chicago, 2006, 745-747.

7. Rex, D., Ma, J. and Toga,A.,The LONI Pipeline Processing Environment,
Neuroimage, 2003, 19(3), 1033–1048.

8. http://www.phoenix-int.com/software/phx-modelcenter.php [30-10-2012]

9. http://arupforge.arup.com/wiki/index.php?title=DesignLink_SDK [30-10-2012]

10. Bowker, G. and Starr, S., Sorting Things Out: Classification and Its Consequences, MIT
Press, Cambridge, 1999.

11. Flager, F.,Welle, B., Bansal, P., Soremekun, G. and Haymaker, J., Multidisciplinary
Process Integration and Design Optimization of a Classroom Building, ITcon,
2009, 14, 595-612.

12. Davis, D., Burry, J. and Burry, M., Untangling Parametric Schemata: Enhancing
Collaboration Through Modular Programming, CAAD Futures 2011, Liège, 2011,
55-68.

13. Eastman, C.,Teichholz, P., Sacks, R. and Liston, K., BIM Handbook - A Guide to
Building Information Modeling for Owners, Managers, Designers, Engineers, and
Contractors, 2nd edn., John Wiley and Sons, Hoboken, 2011.

14. Kiviniemi,A.,Ten Years of IFC Development - Why We Are Not There Yet,
Proceedings CIB-W78, Montreal, 2006.

15. Pazlar,T. and Turk, Z., Interoperability in Practice: Geometric Data Exchange
Using the IFC Standard, ITcon, 2008, 13, 362-380.

16. Augenbroe, G., deWilde, P., Moon, H., Malkawi,A., Brahme, R. and Choudhary, R.,
The Design Analysis Integration (DAI) Initiative, 8th IBPSA Conference, Eindhoven,
2003, 79-86.

17. Hensen, J., Djunaedy, E., Rados̆ević, M. and Yahiaoui,A., Building Performance
Simulation for Better Design: Some Issues and Solutions, PLEA 2004, Eindhoven,
2004, vol. 2, 1185-1190.

18. Mirtschin, J., Engaging Generative BIM Workflows, Collaborative Design of
Lightweight Structures - LSAA 2011, Sydney, 2011, 1-8.

19. Kilian,A., Design Innovation Through Constraint Modeling, International Journal of
Architectural Computing, 2006, 4(1), 87–105.

20. http://well-formed-data.net/experiments/elastic_lists/ [30-10-2012].

21. http://dublincore.org [30-10-2012]

22. Maver,T., PACE 1: Computer Aided Design Appraisal, Architects Journal, 1971, July,
207-214.

23. Mahdavi,A., Mathew, P., Lee, S., Brahme, R., Kumar, S., Liu, G., Ries, R. and Wong,
N., On the Structure and Elements of SEMPER, ACADIA ‘96,Tucson, 1996, 71-84.

24. Kalay,Y., P3: Computational Environment to Support Design Collaboration,
Automation in Construction, 1998, 8(1), 37-48.

25. Holzer, D., Optioneering in Collaborative Design Practice, International Journal of
Architectural Computing, 2010, 8(2), 165-182.

26. Attia, S., Beltrán L., De Herde,A. and Hensen, J., “Architect Friendly”:A
Comparison of Ten Different Building Performance Simulation Tools, 11th IBPSA
Conference, Glasgow, 2009, 204-211.

27. MacDonald, I., Clarke, J. and Strachan, P.,Assessing Uncertainty in Building
Simulation, 6th IBPSA Conference, Kyoto, 1999, vol. II, 683-690.

498 Bianca Toth, Patrick Janssen, Rudi Stouffs,Andre Chaszar and Stefan Boeykens

499Custom Digital Workflows: A New Framework for Design Analysis Integration

Bianca Toth1, Patrick Janssen2, Rudi Stouffs2,3,Andre Chaszar3

and Stefan Boeykens4

1Queensland University of Technology
School of Design, 2 George Street, D Block, Level 5
Brisbane QLD 4000 Australia

bianca.toth@qut.edu.au

2National University of Singapore
Department of Architecture, 4 Architecture Drive
Singapore 117566

patrick.janssen@nus.edu.sg, stouffs@nus.edu.sg

3Delft University of Technology
Faculty of Architecture, Juliananlaan 134
2628 BL Delft,The Netherlands

a.t.chaszar@tudelft.nl, r.m.f.stouffs@tudelft.nl

4KU Leuven
Department of Architecture, Urban Design and Regional Planning
Kasteelpark Arenberg 1 - box 2431
3001 Heverlee, Belgium

Stefan.Boeykens@asro.kuleuven.be

