
Design Tool Development - eCAADe 29 245

Evolutionary Developmental Design for Non-Programmers

Patrick Janssen1, Cihat Basol2, Kian Wee Chen3

1,2,3National University of Singapore
1patrick@janssen.name, 2cihatbasol@gmail.com, 3chenkianwee@gmail.com

Abstract. Evolutionary developmental design (Evo-Devo-Design) is a design method that
combines complex developmental techniques with an evolutionary optimisation techniques.
In order to use such methods, the problem specific developmental and evaluation procedures
typically need to be define using some kind of textual programming language. This paper
reports on an alternative approach, in which designers can use Visual Dataflow Modelling
(VDM) instead of textual programming. This research described how Evo-Devo-Design
problems can defined using the VDM approach, and how they can subsequently be run using
a Distributed Execution Environment (called Dexen) on multiple computers in parallel. A
case study is presented, where the Evo-Devo-Design method is used to evolve designs for a
house, optimised for daylight, energy consumption, and privacy.
Keywords. Evolutionary; developmental; design; performance; optimisation.

INTRODUCTION
Evolutionary design is loosely based on the neo-
Darwinian model of evolution through natural se-
lection. A population of individuals is maintained
and an iterative process applies a number of evo-
lutionary steps that create, transform, and delete
individuals in the population. Each individual rep-
resents a design variant, and has a genotype rep-
resentation and a phenotype expression: the geno-
type representation encodes information that can
be used to create a model of the design, while the
phenotype expression is the actual design model.
The individuals in the population are evaluated
relative to one another, and on the basis of these
evaluations, new individuals are created using ‘ge-
netic operators’ such as crossover and mutation.
The process is continued through numerous gen-
erations so as to ensure that the population as a
whole evolves and adapts.

Evolutionary design differs from other types
of evolutionary approaches (such a genetic algo-
rithms) in that it includes a complex developmen-
tal step that generates a phenotype by applying
the genes in the genotype (Frazer 1995, Bentley
and Kumar 1999, Stanley and Miikkulainen 2003,
Janssen 2004, Hornby 2005, Kowaliw and Banzhaf
2011). We therefore refer to this as evolutionary
developmental design, or Evo-Devo-Design. For
designers, the developmental step is crucially im-
portant, since it delineates the search space of
possible designs. The Evo-Devo-Design method is
able to augment the traditional process of design
exploration, in which typically only a small number
of options will be considered. The advantage of
Evo-Devo-Design is that it is able to automatically
develop and evaluate large populations of design
variants. This method has proved to be well suited

246 eCAADe 29 - Design Tool Development

to design processes that are typically divergent and
exploratory (Janssen 2004).

One of the key drawbacks of such advanced dig-
ital design methods has been the need for designers
to write and develop their own customised software
tools. This has severely limited the general appli-
cability of such methods. This paper describes an
alternative approach, whereby designers can apply
Evo-Devo-Design methods without having to write
any code. The authors have developed a Distribut-
ed EXecution ENvironment (Dexen) for population
based multi-objective optimisation algorithms. Such
algorithms include hill climbing, simulated anneal-
ing and evolutionary algorithms [1,7,8]. In this paper,
we will focus on using Dexen for Evo-Devo-Design.

Following this introduction, section two gives
an overview of the Dexen architecture. Section
three focuses on how non-programmers can use
Dexen for Evo-Devo-Design. Section four reports
on a case-study experiment using Dexen to evolve
a house design.

DEXEN SYSTEM ARCHITECTURE
The two main goals of Dexen are speed and flex-
ibility. Speed is an issue since design optimisation
problems typically require complex simulations
that can be prohibitively slow. Flexibility is an is-
sue since design optimisation problems typically
require highly customised evolutionary steps, of-
ten requiring the integration of existing simulation
programs. In order to achieve these goals, Dexen
has been designed with two key features. First,
for speed, Dexen is designed to run on multiple
computers in parallel. Second, for flexibility, Dexen
provides an end-user programming model that al-
lowed users to encapsulate the problem specific
aspects within a few key scripts.

Dexen is based on a previous multi-objective
evolutionary developmental design environment
called EDDE (Janssen 2004, Janssen et al 2005, Jans-
sen 2009). Dexen has been developed with a fun-
damentally different type of architecture to achieve
improvements in both speed and flexibility.

The process of running a population based
optimisation problem within Dexen is described
as a job. The blueprint for the job is referred to as
a job definition or (in the case of design jobs) the
design schema (Janssen 2004). The schema de-
fines a set of computational procedures, which are
referred to as tasks. When a job is run, the tasks
will be executed by Dexen. Each task will act on
entities in the population called individuals. An
individual represents a complete solution to the
problem being optimised.

For design optimisation jobs, the schema will
typically include three tasks: development, evalu-
ation, and feedback. Development will generate a
model of the design. Evaluation will evaluate some
performance criteria of the model. Finally, feedback
will use the results from evaluation to generate or
modify individuals. If the algorithm being used is an
evolutionary algorithm, then feedback will kill some
low performance individuals, and generate some
new individuals using crossover and mutation.

Dexen has been designed for two levels of user,
which we refer to as general users and specialist us-
ers. General users are assumed to have the required
programming skills to developed their own schemas
from scratch. Specialist users may not have the re-
quired programming skills, but will instead be able
to create schemas by using automated schema gen-
erators. Specialist users may typically have advanced
knowledge and skills in their domain of interest.

Different schema generators can be created for
various areas of specialisation. Each schema gen-
erator will target specific software tools. Currently, a
schema generator has been developed focusing on
architectural design using the Sidefx Houdini soft-
ware, to be discussed in more detail in section 4.

Dexen components
Dexen consists of four main types of components:
one server, and multiple clients, masters and slaves.
Each of these components can run on separate ma-
chines, thereby allowing the computation to be dis-
tributed between multiple machines.

Design Tool Development - eCAADe 29 247

 • The server is the core of the system, and all oth-
er components connect to the server.

 • Each client provides a user interface for an end
user to start, stop, and monitor the progress of
jobs. When a user starts a job, they need to use
the client to upload the schema for that job.
This schema will include a set of tasks that need
to be executed.

 • Each master manages one job, including the
population of individuals associated with that
job. A user my start multiple jobs, in which case
Dexen will create multiple masters.

 • Slaves execute the user defined tasks associ-
ated with a particular job. Typically, many slaves
will be running in parallel. Dexen will automati-
cally assign slaves to masters to execute tasks
without requiring any action from the user.

A Dexen population consists of a set of indi-
viduals, each of which can become a complete
solution to the problem being optimised. Initially,
when individuals are first created, they contain only
the basic parameters (or genes) for a particular so-
lution. As individuals are processed, they may ac-
cumulate additional information, and they thereby
change their state.

For example, for an evolutionary schema, an
individual’s state includes it’s genotype, phenotype,
and performance scores. The individual starts life
with only a time of birth and a genotype. The de-
velopment task creates a phenotype. One or more
evaluation tasks calculate the performance scores.
Finally, the feedback task kills some existing individ-
uals, and generate some new individuals (who will
only have a genotype).

The Dexen population is therefore a heteroge-
neous population that contains individuals in differ-
ent states. For example, some may only have geno-
types, some may also have phenotypes, and some
may also have performance scores.

A schema must define two types of tasks: one
master task and one or more slave tasks. The mas-
ter task will usually be used to configure various

settings and to initialize the population. Initialization
typically consists of creating a set of new individuals
to start the optimization process. Each slave task will
then process individuals from the population.

Each slave task performs a specific user defined
procedure, and as a result it requires individuals in
a particular state. For example, an evaluation task
may need an individual that already has a pheno-
type, but that does not yet have an evaluation score.
Individuals that do not meet these criteria need to
be rejected. A filtering process therefore has to take
place in order to discover which individuals in the
population match which slave task. In order to do
this, each slave task is assigned a user define bool-
ean function, referred to as the filter function. This
is used to decide if a particular individual is valid for
processing by that task.

EVO-DEVO-DESIGN FOR NON-
PROGRAMMERS
For the general user, writing a schema involves de-
fining the tasks that will be executed by Dexen. The
user needs to define one master task, and one or
more slave tasks. The programming model that has
been defined for these tasks is both simple and pow-
erful. The schema has to be written in Python, and a
basic understanding of object-orientated program-
ming is required.

However, for users that are non-programmers,
writing a schema may be difficult. Such users may
be architects and engineers who are experts in their
own field, but who may not have the required pro-
gramming skills needed to write the schema code.
For such users, schema generators can be used in
order to automate the process of creating schemas.
Schema generators are implemented as part of the
client and run on the user’s local computer.

Schema generators target specific software
applications. The user will be required to de-
fine the problem specific aspects of their sche-
mas in some format that will not require them
to write code. For example, in a design scenario,
the user would be required to define the design

248 eCAADe 29 - Design Tool Development

development and one or more design evaluation
procedures. The schema generator can then be
used to generate all the necessary Python code to
wrap these core procedures.

In order to define the core procedures, a design-
er could use the Visual Dataflow Modelling approach
(VDM). VDM allows users to program by visually link-
ing together graphical nodes with wires. The nodes
and wires are arranged by users to create complex
networks through which data can flow. Each node
represents a function, and the wires represent the
data inputs and outputs for the function (Woodbury
2010, Janssen and Chen 2011).

The Houdini schema generator
In order to demonstrate this approach, a schema
generator has been developed for a 3D CAD and ani-
mation software, called SideFX Houdini.

For development, a Houdini network that gen-
erates a phenotype from a set of genes is required.
The phenotype will be some kind of model of the
design variant. For evaluation, the Houdini network
that generates an evaluation score from a pheno-
type is required. A simulation program may be used
in order to perform the evaluation. If more than one
criteria needs to be evaluated, then multiple net-
works can be created.

The Houdini schema generator provides a set of
Houdini nodes that the development and evaluation
network must use. These nodes are used to define
the start and end points of each network, and the
user can then create any type of network between
these two points. The Python code generated by
the schema generator will assume that these special
nodes are present and will read and write data from
these nodes. For development, a genotype and a
phenotype node is provided. For evaluation, a phe-
notype and an evaluation score node is provided.

The user also needs to set some basic param-
eters in a settings file for the schema generator. The
parameters that can be set include the following:
 • The optimisation algorithm to be used. Options

include hill climbing, simulated annealing, or

evolutionary algorithm.
 • The population size, the maximum number of

births, and the input sizes for all tasks, including
feedback.

 • The settings for the feedback task, including the
ranking and selection algorithms to use for the
birth and death of individuals.

 • The names of the Houdini files in which the
development and evaluation networks are de-
fined.

 • The structure of the genotype, including the
types of genes. (For example, genes can be inte-
gers, floats, or strings.) The length of the geno-
type is assumed to remain constant.

In order to generate the schema, the user places
the settings file and the Houdini files in a single fold-
er, and then uses the client to execute the schema
generator script. This will result in the Python files
being automatically generated for the schema, and
being placed in the same folder.

The generator will create the Python code for
the master task, and each of the slave tasks. For the
development and evaluation tasks, Python wrap-
pers will be generated for the Houdini files. For the
feedback task, a simple feedback procedure will
be generated. In this procedure, the individuals re-
ceived by the feedback task will be ranked, the low
performance individuals will be killed, and the high
performance individuals will be used as parents for
breeding new individuals.

The user may then upload this schema to the
server to start running the job.

 A CASE STUDY
In the case study, a Houdini schema was developed
for a free-standing house in a residential setting.
Three performance criteria were defined: minimi-
zation of energy consumption, maximization of
daylight, and maximization of privacy. A number of
Houdini files were created, and the Houdini schema
generator was then used to automatically generate
the Python code for the schema.

Design Tool Development - eCAADe 29 249

Slave tasks
In total, four Houdini files were created, one for each
slave task: the development task, the energy evalu-
ation task, the daylight evaluation task, and the pri-
vacy evaluation task. Each Houdini file contains a
network of nodes that define a problem specific pro-
cedure to be executed by Dexen.

The Houdini development network maps the
genotype to the phenotype. The network starts with
a Dexen genotype node and ends with a Dexen phe-
notype node.

The genotype in this case consists of 55 real val-
ued genes, each in the range 0.0 to 1.0. The pheno-
type is a three dimensional model of the house, saved
in the Houdini format. The model is shown in Fig. 1.

The house is spread over three floors, and has
a living room, dining room, a kitchen, and four bed-
rooms. A stair-core gives access to all three floors.
The living room, dining room, and kitchen are always
located on the ground floor. In addition, one of these
spaces on the ground floor will be a double height
space. The bedrooms are all located on the upper
floors. Service spaces such as bathrooms and store
rooms are not included. A typical (randomly gener-
ated) house is shown in Fig 2, and the genotype for
this example is show in Fig 1.

Conceptually, the developmental process can
be thought of as a process that transforms an initial
simple model into a final complex model. The initial
model consists of 12 equal spaces. On each floor, four
spaces are packed together around a centre point
so that they meet in the middle. The model of the
house (i.e. the phenotype) is generated as follows:
 • The programmes are assigned to the spaces

using 9 genes. The programmes are subject to
various constraints. For example, for the ground
floor level, the stair-core and living room must

be adjacent to one another, and the living room
and dining room must be adjacent to one an-
other. Each programme also has a required area.

 • The size of each space is defined using 9 genes.
Since the area is already known, the genes only
need to assign the proportion of the spaces. The
three stair-core spaces are also constrained to
all have the same size, so that the stack on top
of each other.

 • The windows are inserted using 12 genes. Each
space can have a window in either of its two
outward facing walls. The two possible window
types are strip window or fully glazed. Each
room must have at least one window, but can-
not have two fully glazed windows.

 • The sun shades are defined using 24 genes. Sun
shades are only added to walls that have win-
dows. The genes control the depth of each of
the sun shades.

 • The orientation of the building is defined using
one gene. The building is first placed in the cen-
tre of the site, orientated so that the stair-core is
facing the road. The gene is then used to rotate
the building by a certain amount.

In many cases, the genes are mapped to some
other values. For example, the sun shade genes are
mapped to a dimension from 0 to 2 meters, and the
orientation gene is mapped to an angle from -45 to
45 degrees. In some cases, the genes can also be
mapped to a set of discrete variables. For example,
for the window genes, each gene is mapped to one
of the seven possible choices of window pair choices.

On level 2, a situation can arise where one of
the bedrooms is diagonally opposite the stair-core.
In such a case, the bedroom would become inac-
cessible. As a result, if this situation arises, then the

Fig 1. An example of a house
generated using the Houdini
developmental network.

250 eCAADe 29 - Design Tool Development

spaces are offset in order to create an adjacency be-
tween the stair-core and the diagonal bedroom. This
situation can be seen in the example shown in Fig. 1.

After the main geometry of the house has been
generated, all dimensions are then snapped to a
constructional grid. In this case, this grid was set to
0.3 meters. This final step ensures that there are no
awkward dimensions. This also means that the area
of the rooms will not exactly match the required ar-
eas for each programme. However, since the devia-
tion is small, this is seen as being acceptable.

Each Houdini evaluation network uses the
phenotype (generated by the development task) to
calculate an evaluation score. Each network starts
with a Dexen phenotype node, and ends with a
Dexen evaluation score node. In addition, custom
nodes have been developed to actually perform
each type of evaluation. These custom evalua-
tion nodes provide the user with a simple method
of running the required simulations. The custom
nodes can be inserted into the Houdini network to
perform the simulation. The input into the custom
node will be the Houdini geometry, and the output
will be the simulation results. The custom nodes
will also have a set of simulation parameters that
can be set by the user.

For energy and daylighting evaluation, the
EnergyPlus and Radiance simulation programs are
used respectively. The custom nodes will read the
Houdini geometry, generate the text-based input
file, execute the simulation program, read the text-
based results file, and finally import the results back
into Houdini. The EnergyPlus node calculates the
energy required to keep the house within a certain
temperature range using an ideal load air system.
The Radiance node calculates the percentage of
floor area that has a daylight level of higher than 300
Lux for a standard overcast sky condition. At an early
design stage, these are seen as good indicators of
the relative performance of the design with respect
to energy consumption and daylighting.

For privacy, a custom node is used that calcu-
lates the privacy level of each window based on the

relative position and orientation of other windows of
neighbouring houses. (See Fig. 2.) A value of 100%
indicates total privacy, while 0% indicates no privacy.
This calculation is performed inside Houdini, so in
this case, no external simulation program is required.

RESULTS
The schema generator settings file was used to set
the key parameters for the job. The optimisation
algorithm was set to use an evolutionary algorithm,
and the ranking algorithm was set to use Pareto
ranking. The population size was set to 100, and the
maximum number of births was set to 10,000. The
input sizes for all tasks was set to 1, except for feed-
back, for which the input size was set to 20.

The job was executed on a cluster of 20 stan-
dard desktop PCs and was run overnight. The job
took approximately 7 hours to complete.

The Pareto graphs for the results are shown in
Fig. 3. Since there are three performance criteria, two
Pareto graphs are shown, one plotting energy against
privacy and another potting energy against daylight.
The Pareto front is plotted on both of these two graphs.

The Pareto graphs show how the number of
individuals generated by the evolutionary process
gets more dense closer to the Pareto front. The in-
dividuals in the initial population were mostly far
away from the Pareto front. Through inheritance of

Fig 2. The house on the site,
surrounded by five other
houses.

Design Tool Development - eCAADe 29 251

favourable genes, the population as a whole gradu-
ally evolved, with individuals in the population
gradually becoming optimised for the selected per-
formance criteria.

In total, there are 52 individuals on the Pareto
front. Of these individuals, most were born at the
end of the evolutionary process. (Out of the 52 in-
dividuals on the Pareto front, 40 were born during
the last 1000 births. However, individual 13 actually
turned out to be one of the best, and survived all
the way until the end.) These individuals represent
different trade-offs between energy, daylight, and

privacy. From this Pareto optimal set, individuals
that had an energy score of less than 115 KWh, or
a daylighting score of less than 75%, or a privacy
score of less than 65% are eliminated. This then
leaves 25 individuals, from which the designer can
select a preferred design. One of the best individu-
als is shown in Fig 4.

CONCLUSIONS
Initial experiment using Dexen have shown that the
use of schema generators lowers the threshold for
non-programmers to start using advanced optimi-
sation techniques. In fact, it is now possible to run
complex optimisation algorithms using only graphi-
cal CAD tools.

Dexen also achieves its two main goals of
speed and flexibility. In terms of speed, the distrib-
uted master-slave architecture means that Dexen
can easily be deployed on compute clusters, and
as a result, large and complex optimisation jobs
that would otherwise take days to run can now
be completed overnight. In terms of flexibility, the
Dexen allows a wide variety of optimisation prob-
lems to be defined.

Fig 3. Two Pareto graphs
plotting energy against
privacy and energy against
daylight. Each point repre-
sents a design. Larger black
and white circles represent
designs on the Pareto front.
White circles represent de-
signs where energy < 115
KWh, daylight > 75%, and
privacy > 65%.

Fig 4. Four examples of
evolved design variants for
a suburban detached house.
The examples shown were
randomly selected from a
population of 100 individu-
als, after approximately 8000
births.

252 eCAADe 29 - Design Tool Development

REFERENCES
Bentley, P and Kumar, S 1999, Three ways to grow

designs: A comparison of embryogenies of an
evolutionary design problem, in Proceedings of
the 1999 conference on Genetic and evolutionary
computation, Morgan Kaufmann, pp 35–43.

Caldas, L 2001, An Evolution-Based Generative Design
System: Using Adaptation to Shape Architectural
Form, Doctoral dissertation, Massachusetts Insti-
tute of Technology.

Frazer, J. H. (1995) An Evolutionary Architecture, AA
Publications, London, UK.

Hornby, G 2005, Measuring, enabling and comparing
modularity,regularity and hierarchy in evolu-
tionary design, in Proceedings of the 2005 confer-
ence on Genetic and evolutionary computation,
vol 2, pp 1729-1736.

Janssen, PHT 2004, A design method and a computation-
al architecture for generating and evolving building
designs. Doctoral dissertation, School of Design
Hong Kong Polytechnic University (October 2004).

Janssen, PHT, Frazer, JH, and Tang, MX 2005, Genera-
tive Evolutionary Design: A Framework for Gen-
erating and Evolving Three-Dimensional Build-
ing Models, in Proceedings of the 3rd International
Conference on Innovation in Architecture, Engi-
neering and Construction (AEC 2005), pp 35-45.

Janssen, PHT 2009, An evolutionary system for de-
sign exploration, in Proceedings of the CAAD Fu-
tures ‘09, pp. 259-272.

Janssen, PHT and Chen, KW 2011, Visual Dataflow Mod-
elling: A Comparison of Three Systems, in Proceed-
ings of the CAAD Futures ‘11, (to be published).

Janssen, PHT, Chen, KW, and Basol, C 2011, Iterative
Virtual Prototyping: Linking Houdini with Radi-
ance and EnergyPlus, in Proceedings of the CAAD
Futures ‘11, (to be published).

Kowaliw, T and Banzhaf, W 2011, Mechanisms for
Complex Systems Engineering through Artifi-
cial Development in Morphogenetic Engineer-
ing: Toward Programmable Complex Systems,
to appear in Morphogenetic Engineering: Toward
Programmable Complex Systems, Springer-Verlag.

Mitchell, M 1996, An introduction in Genetic Algo-
rithms, MIT Press, Massachusetts Institure of
Technology, 1996.

Shea, K 1997, Essays of Discrete Structures: Purposeful
Design of Grammatical Structures by Directed
Stochastic Search, Doctoral dissertation, Carn-
egie Mellon University, Pittsburgh, PA.

Stanley KO and Miikkulainen, R 2003, A taxonomy for
artificial embryogeny, in Artificial Life, 9(2):93–
130.

Woodbury, R 2010, Elements of Parametric Design,
Routledge, NY.

