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ABSTRACT 

Evolutionary algorithms have popularly been used 

for the past ten years in building performance 

optimisation (Attia 2013). The long runtime of a 

performance-based multi-objective optimisation can 

be reduced by using faster proxy simulations (Choo 

et al 2013). Beside using proxy simulations, the 

optimisation process can be improved by selecting 

other types of multi-objective algorithms. This paper 

will present the use of multi-objective  ant colony 

algorithm as a possible alternative to multi-objective 

evolutionary algorithm. The multi-objective 

optimisation of a semi-transparent building integrated 

photovoltaic (BIPV) facade is used for the proof of 

concept. The design of semi-transparent BIPV 

facades has an impact on a wider range of factors, 

including solar heat gain and daylight penetration 

into the rooms of the building. Results from the 

experiments conducted show that multi-objective ant 

colony algorithm can speed up the multi-objective 

optimisation process but does not perform as well as 

the multi-objective evolutionary algorithm. 

INTRODUCTION 

Long runtimes are common in performance-based 

multi-objective optimisations of building parameters. 

This is because detailed building performance 

simulation tools, which have relatively long 

runtimes, are typically coupled with a multi-objective 

optimisation evolutionary algorithm. Choo et al 

(2013) has shown that the runtime of a performance-

based multi-objective optimisation can be reduced by 

using faster proxy simulations. 

Commonly used multi-objective algorithm like 

evolutionary algorithm (EA) have been widely used 

in building related multiobjective optimisation 

(Caldas 2008, Charron and Athienitis 2006, Wang et 

al 2005). Attia et al (2013) highlighted that EA has 

been very popular for the past ten years in building 

performance optimisation. They have even been 

integrated into software packages for the designers’ 

convenience. An example of such integration is 

Galapagos, an optimisation component in 

Grasshopper (Rutten 2011), a visual data modelling 

system that allows designers who are not trained in 

scripting to quickly generate parametric models. 

Designers usually use the existing optimisation tool 

provided in the software packages and do not try and 

implement other types of multi-objective 

optimisation algorithms. Such algorithms are not 

restricted to just multi-objective evolutionary 

algorithm (MOEA). There are also swarm 

intelligence-based optimisation algorithms like multi-

objective ant colony (MOAC) which are much newer 

than EA and are therefore not commonly used for 

building related applications. 

Hence, this paper will present the use of MOAC for 

improving the speed and performance of multi-

objective optimisation. A comparison between 

MOAC and MOEA will show if MOAC can be a 

better alternative.  

The multi-objective optimisation of a semi-

transparent building integrated photovoltaic (BIPV) 

facade is used for the proof of concept. Unlike 

typical roof-mounted photovoltaic systems, where 

performance is predominantly focused on the amount 

of electricity generated, the design of semi-

transparent BIPV facades has an impact on a wider 

range of factors, including solar heat gain and 

daylight penetration into the rooms of the building. 

Hence, a semi-transparent BIPV façade is used here 

because its conflicting performance criteria presents 

a good design senario for multi-objective 

optimisation.  

The paper is structured as follows: in the next  

section we will give a detailed description of 

parametric model and facade performance metrics 

used in the experiments. It is followed by an 

overview of both MOAC and MOEA. Thereafter we 

will present the methodology used to conduct the 

experiments. Lastly, the results will be analysed and 

discussed.  



EXPERIMENTS 

To compare the performance of both MOAC (multi-

objective ant colony) and MOEA (multi-objective 

evolutionary algorithm), a design problem which 

involves the multi-objective performance 

optimisation of a semi-transparent BIPV facade is 

first defined. 

Parametric Model. 

A parametric model of a typical office space with a 

semi-transparent BIPV facade is created with 

Houdini, a procedural modelling software from 

Sidefx (2013). A typical north oriented office space 

for an  occupancy of one person with 4 m (width) x 4 

m (depth) x 3 m (height) is modelled for the 

experiment, as shown in Figure 1 (top). The facade is 

separated into three panels: BIPV panels 1, 2, 3, each 

of them is independent from one another. For each 

panel, three design variables, cell width cell height,  

and cell spacing are defined in the parametric model 

as shown in Figure 1 (bottom). These design 

variables 𝑥𝑖𝑗 , define the PV cell pattern for each 

independent panel, where subscript 𝑖 = 1, 2, 3, 

represents the panels and subscript 𝑗 = 1, 2, 3 

represents the three design variables (cell width, cell 

height and cell spacing) in each façade panels. Cell 

width and height vary from 5 – 15.5 cm at 0.5 cm 

steps but are independent from each other. Cell 

spacing varies from 0.5 – 5 cm at 0.5 cm steps. All 

the cells of the semi-transparent BIPV facades will 

be similar in shape. The pattern occupies a facade 

with a height of 3 m and width of 4 m.  

Façade Performance Metrics 

The multi-objective optimisation of a semi-

transparent BIPV façade will involve maximising 

electricity generation, minimising the ETTV 

(envelope thermal transfer value) and maximising the 

working plane area, 0.85m height from the floor, that 

has a minimum illuminance of 300lx. These three 

performance metrics are used as fitness functions for 

the optimisation because of their relatively fast speed 

of computation. The competing goals of each metric 

presents a good setup for the multi-objective 

optimisation algorithms to balance the trade-offs. 

Electricity Generation 

The fitness function for annual electricity generation 

is based on the following mathematical equation: 

𝐸𝑝𝑣  =  𝐴𝑝𝑣 ∙ 𝐹𝑝𝑣 ∙ 𝐺𝑡 ∙ 𝜂𝑚𝑜𝑑 ∙ 𝜂𝑖𝑛𝑣                         (1) 

where 𝐸𝑝𝑣   is the electrical energy produced by the 

photovoltaic system (kWh·a-1), 𝐴𝑝𝑣 is the gross area 

of the semi-transparent BIPV facade (m2), 𝐹𝑝𝑣 is the 

fraction of surface area with active solar cells, 𝐺𝑡 is 

the total annual solar radiation energy incident on the 

BIPV façade (which is computed at 561 kWh·m-2·a-1 

by Radiance), 𝜂𝑚𝑜𝑑 is the semi-transparent BIPV 

module efficiency (which is set at 12%) and 𝜂𝑖𝑛𝑣 is 

the average inverter efficiency (which is set at 90%). 

Envelope Thermal Transfer Value 

ETTV is used as the second fitness function for the 

optimisation. ETTV is an easy-to-use mathematical 

equation to calculate the heat transfer through the 

façade (BCA 2004).  It was developed as a measure 

of the thermal performance of the building envelope. 

The equation of ETTV is shown below: 

 

𝐸𝑇𝑇𝑉 = 12(1 − 𝜔) ∙ 𝑈𝑤 + 3.4𝜔 ∙ 𝑈𝑓 + 211𝜔 ∙ 𝐶 ∙ 𝑆     (2) 

 

where 𝜔 is the window-to-wall ratio, 𝑈𝑤 is the 

thermal transmittance of an opaque wall which is 0 

W·m-2·K-1 because the modelled facade is a full 

height curtain wall, 𝑈𝑓 is the thermal transmittance of 

the fenestration, which is assumed to be 5.8 W·m-2·K-1 

in the experiments, 𝐶 is the correction factor for solar 

heat gain through the fenestration and 𝑆 is the 

shading coefficient of the fenestration. 

  

Figure 1. Top: Typical office used in the simulation 

model with illuminance sensor points (in red) on a 10 

x 10 grid. Bottom: Schematic of cell arrangement for 

the modelled semi-transparent BIPV façade. 𝑖 =
1, 2, 3, where 𝑖 is the BIPV panel number. 

 

Floor Area with Minimum Illuminance 

The last fitness function is the working plane area, 

0.85m height from the floor, which has a minimum 

illuminance for the office of 300 lx. The illuminance 

level is calculated using the Radiance software (Ward 

and Shakespeare 1998). Sensor points on a  10 x 10 

grid at 0.85m height from the floor are used for the 

illuminance simulation (refer to Figure 1, top). The 

illuminance level is calculated with an overcast sky 

for the June solstice at 1200h where the sun faces the 

north façade of the typical office space. An overcast 



sky is assumed here for the worst daylight scenario. 

The following settings were used in Radiance: ab = 

2, ad = 1000, as = 20, ar = 300 and aa = 0.1, where ab 

is ambient bounce, ad is ambient resolution, ar is 

ambient resolution and aa is ambient accuracy. The 

detailed explanation of the settings is beyond this 

paper. They can be referred to in the Radiance 

manual. (Ward and Shakespeare 1998) 

OVERVIEW OF ALGORITHMS  

Algorithm for MOAC Optimisation 

Dorigo (1992) was the first to introduce ant colony 

optimisation. Its concept mimics the food foraging 

behaviours of ant colonies to find the shortest path 

between the food sources and their nests. Ants 

randomly explore their surrounding and leave a 

pheromone trail on the ground. Ants probabilistically 

choose the paths marked by strong concentration of 

pheromone levels. When an ant finds a food source, 

it will evaluate the quantity and quality of the food. 

The quantity of pheromone that an ant leaves on the 

ground depends on the quantity and quality of the 

food, which is the behaviour that the ant colony 

optimisation model replicates mathematically. 

Applying MOAC to a multi-objective optimisation 

problem, the graphical representation in Figure 2 

describes how the problem is represented in an ant 

colony optimisation algorithm.  

In Figure 2, each layer is a design variable 𝑥𝑖𝑗  in 

Figure 1. Nodes 𝑑𝑟𝑠 are the values of each design 

variable (layer), where 𝑟 is the layer number and 𝑠 is 

the design variable number.  There are a total of 9 

layers. Each layer shown in Figure 2 has 22 nodes. 

The nodes are connected through links with 

pheromone value, 𝜏𝑢𝑣
𝑟𝑠 . The subscript u is the next 

layer where 𝑢 = 𝑟 + 1 and 𝑣 is the design variable 

number of this next layer. An example of a possible 

“path” or design variant is shown as a bold (red) line. 

The ant colony optimisation algorithm contains the 

following components: 

 

 Number of artificial ants in a colony, 𝑚 – each 

“ant” represents a possible design variant. 

 Probability of selection, 𝑝𝑢𝑣 – this is the 

probability of selecting a link from node 𝑟𝑠 to 

𝑢𝑣 as shown in Figure 2. 

 Initial pheromone trail, 𝑝𝑖𝑛𝑖𝑡 – all links in the 

solution space of an ant colony optimisation 

algorithm is first initialised with a single value: 

 

𝑝𝑖𝑛𝑖𝑡 =  
1

�̅�+�̅�+ 𝑐 ̅
           (3) 

 

Where �̅� + �̅� + 𝑐̅ are the averaged normalised 

fitness functions of all the design variants in the 

first iteration. 

 

 Pheromone value of each link: 

 

𝜏𝑢𝑣
𝑟𝑠 ← (1 − 𝑝𝑒𝑣)𝜏𝑢𝑣 

𝑟𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑠, 𝑢 𝑎𝑛𝑑 𝑣       (4) 

 

where 𝑝𝑒𝑣  is the pheromone evaporation rate.  

 Pheromone evaporation rate, 𝑝𝑒𝑣 , is applied to 

the existing pheromone value when an artificial 

ant, 𝑘, has taken a path to the food source. 

 Pheromone deposit, is the pheromone value after 

an artificial ant, 𝑘, has taken the same path back 

to the nest. Pheromone deposit is applied to the 

links on the path after 𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 are calculated: 

 

𝜏𝑢𝑣
𝑟𝑠 ← 𝜏𝑢𝑣

𝑟𝑠 + 
1

𝑎𝑘+ 𝑏𝑘+ 𝑐𝑘
           (5) 

 

where 𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 are fitness values of fitness 

functions of objective 𝑎, 𝑏, 𝑐 for an artificial ant, 

𝑘. 

 

 
Figure 2. Graphical representation of a discrete 

variable problem with 9 design variables as 

described in the text. 

 

The following describes the multi-objective ant 

colony optimisation algorithm: 

 

randomly select paths (feasible design variants) for 

𝑚 number of ants, 

calculate values of fitness functions, 

initialise all links with pheromone, 𝑝𝑖𝑛𝑖𝑡  , 

update pheromone value, 𝜏𝑢𝑣
𝑟𝑠 , on each link of the 

selected path as described in equation (4), 

Repeat 

calculate probability of each link 𝑝𝑢𝑣, 

select each link to form a path (feasible design 

variant) for 𝑚 number of ants based on probability 

𝑝𝑢𝑣, 

for each of the selected path, 

evaporate pheromone value with evaporation 

rate 𝑝𝑒𝑣 , 



calculate the performance metrics, 𝑎, 𝑏 and 𝑐, 

update pheromone value, 𝜏𝑢𝑣
𝑟𝑠 , on each link of 

the selected path as described in equation (5), 

until maximum number of iterations, 𝑤. 

  

For a more detailed description on ant colony 

optimisation, Dorigo and Stutzle’s book on Ant 

Colony Optimization (Dorigo and Stutzle 2004) 

provides thorough and in-depth explanations. 

Algorithm for MOEA 

MOEA is an optimisation algorithm based on natural 

evolution (Eiben 2007). The algorithm contains the 

following components: 

 

 Representation – a set of design variables, 

𝑥𝑖𝑗 , which are typically called the 

genotypes, are used to define possible 

design variations, typically called 

phenotypes or individuals, 𝑦𝑘 . Individual, 

𝑦𝑘 , represents the 𝑘𝑡ℎ design variant in a 

solution space. 

 Population – a population is a set of 

individuals in the evolution process of the 

algorithm. 

 Parent selection – this involves randomly 

selecting a set of individuals for 

recombination and mutation. 

 Crossover and mutation – this is a process 

where selected parent individuals are 

recombined to create new “off-springs” or 

variants which inherit the better “genes” 

from their “parent individuals”. This is 

shown in Figure 3 (top and middle). To 

prevent premature convergence in the 

optimisation, mutation is used to randomly 

change the “gene” sequence of a design 

variant. It is based on a probability rate 

called the mutation rate which is shown in 

Figure 3 (bottom). 

 Fitness function – this is used to evaluate 

the individuals in the population. It 

evaluates and selects for each generation, 

the individuals for recombination and 

mutation. 

 

Figure 3. Graphical representation of crossovers. 

Top and middle: where parent x’ and x”are 

recombined to create two offsprings. Bottom: 𝑥2,2
∗  

and 𝑥3,3
∗  are “genes” that are mutated. 

 

The following evolutionary algorithm code was used 

in the experiments. It demonstrates how the 

components mentioned above are correlated: 

 

randomly generate  first 𝑛 individuals, 

calculate the fitness values of fitness function 𝑎, 𝑏, 𝑐, 

Repeat 

for each generation 

randomly select 𝑘 number parents, 

rank all selected 𝑘 parents, 

select first 
𝑘

2
 of parents to recombine 𝑘 off-

springs and eliminate 𝑘 selected parents, 

randomly change genotype of off-spring 

with mutation rate, 𝑚, 

calculate the performance metrics for the 

new 𝑘 off-springs, 

until maximum number of generations, 𝑔. 

METHODOLOGY 

Performance Measures to Compare Algorithms 

To compare the performance of MOAC with MOEA, 

a performance metric called the C measure, defined 

by Zitzler (1999) is used.  C measure is the ratio of 

design solutions on one Pareto front that dominates 

another. Given two sets of solution 𝑋′ and 𝑋" from 

the multi-objective optimisations, the C measure is 

defined as: 

 

𝐶(𝑋′, 𝑋") =  
|{𝑎" ∈ 𝑋";∃ 𝑎′ ∈ 𝑋′∶ 𝑎′ ⪰ 𝑎"}|

|𝑋"|
          (6) 

 

where 𝐶(𝑋′, 𝑋") ∈ [0,1]. If the value of 𝐶(𝑋′, 𝑋") =

1, it means that all points in 𝑋" are dominated by or 

equal to points in 𝑋′. Whereas, if (𝑋′, 𝑋") = 0, it 

means no points in 𝑋" are covered by 𝑋′. Both 

𝐶(𝑋′, 𝑋") and 𝐶(𝑋", 𝑋′) are considered because 

𝐶(𝑋′, 𝑋") may not be equal to 𝐶(𝑋", 𝑋′).  

Three variants of MOAC and MOEA as shown in 

Table 1 and 2 were created (for derivation see 

“Settings for Multi-objective Optimisation” below) 

and the best of each type were selected after using 

the C measure to analyse their performance. 10 

optimisation runs were conducted for each variant of 

MOAC and MOEA. The C measures for ten sets of 

runs are later shown in Table 3 and 4. 

To compare the speed of MOEA with MOAC, the 

best MOAC and MOEA, selected using the C 

measure as stated above, are ran on a computer with 



a Dual-Core CPU of 3GHz and 4GB RAM. The 

average time of the optimisation runs for MOEA and 

MOAC are used for comparison. The results of the 

runtime are later shown in Table 5. 

To compare the average time taken to complete each 

optimisation run, the total cumulative number of ants, 

for all iterations, used in each MOAC run and the 

total cumulative individuals, for all generations, used 

in each MOEA run are kept at 5,000.  

Settings for Multi-objective Optimisation 

For MOAC, Arora (2011) recommended the number 

of artificial ants or design variants to be 5𝑛𝑣 to  

10𝑛𝑣, where 𝑛𝑣 is the number of design variables or 

layers as shown in Figure 2. Arora (2011) also 

recommended a pheromone evaporation rate, 𝑝, 

between 0.4 and 0.8. These values were considered in 

the settings for the design variants. 

Given an optimization run with a total of 5,000 

individuals in total, MOAC 0 is first given the 

following settings where 𝑚 = 100, 𝑤 = 50 and 𝑝 =
0.4. To find out the effects of 𝑝, MOAC 1 is given a 

value of 𝑚 = 100, 𝑤 = 50 and 𝑝 = 0.8. To find out 

the effects of m, MOAC 2 is given the following 

settings where 𝑚 = 50, 𝑤 = 100 and 𝑝 = 0.8. Table 

1 summaries these three MOAC variants. 

Table 1: Variants of MOAC 

 

Variants 𝑚  𝑤  𝑝  

MOAC 0 100 50 0.4 

MOAC 1 100 50 0.8 

MOAC 2 50 100 0.8 

 

Table 2: Variants of MOEA 

 

Variants 𝑔  𝑛  𝑘  𝑚  

MOEA 0 99 100 0.50 0.01 

MOEA 1 62 100 0.80 0.01 

MOEA 2 31 200 0.80 0.01 

 

For MOEA, both Zitzler (1999) and Deb (2001) have 

used a crossover of k=0.8 and a mutation rate of 0.01. 

Hence, MOEA 0 is given the following settings 

where 𝑔 = 62, 𝑛 = 100, 𝑘 = 0.8 and 𝑚 = 0.01. To 

find out the effects of the crossover, 𝑘, MOEA is 

given the following settings where 𝑔 = 99, 𝑛 = 100, 

𝑘 = 0.5 and m=0.01. To find out the effects of the 

initial population size, n, MOEA is given the 

following settings where 𝑔 = 31, 𝑛 = 200, 𝑘 =
0.8 and 𝑚 = 0.01. Table 2 summaries these three 

MOEA variants. 

All comparisons between variants of MOAC and 

MOEA were done using the C measure (Zitzler 

1999). After comparing variants of MOAC and 

MOEA individually as shown in Table 3, the best 

performing MOAC and MOEA are compared using 

the C measures (see Table 4). 

Both variants of MOAC and MOEA are applied to 

minimise ETTV, maximise electricity generation and 

maximise area with minimum daylight of 300 lx. 

RESULTS AND DISCUSSION 

Comparing the performance of the three variants: 

MOAC 0, MOAC 1 and MOAC 2, Table 3 shows 

that MOAC 1 is the best-performing variant followed 

by MOAC 0. From this comparison, we can see that 

for MOAC, a bigger number of artificial ants 

improves the results of the Pareto front. In addition, a 

higher pheromone evaporation rate of 0.8 also 

improves the results of the Pareto front.  

 

Table 3: Comparison of all variants of MOAC and 

MOEA. The min (minimum), avg (average) and max 

(maximum) of the C measure for the set of 10 runs 

for the MOAC and MOEA variants are presented. 

 

Comparison 

of variants 

C Measure 

min avg max 

MOAC 0, 

MOAC 1 

0.066 

 

0.267 

 

0.467 

 

MOAC 1, 

MOAC 0 

0.226 0.421 0.566 

 

MOAC 0, 

MOAC 2 

0.469 0.875 1.000 

MOAC 2, 

MOAC 0 

0.000 0.152 0.583 

MOAC 1, 

MOAC 2 

0.773 0.489 0.981 

MOAC 2, 

MOAC 1 

0.000 

 

0.049 0.131 

MOEA 0, 

MOEA 1 

0.189 0.304 0.436 

MOEA 1, 

MOEA 0 

0.327 0.469 0.613 

MOEA 0, 

MOEA 2 

0.084 0.229 0.338 

MOEA 2, 

MOEA 0 

0.360 0.506 0.762 

MOEA 1, 

MOEA 2 

0.223 0.313 0.464 

MOEA 2, 

MOEA 1 

0.307 0.391 0.432 

 

Table 4: Comparison of best-performing MOAC and 

MOEA.  

 

Comparison 

of variants 

C Measure 

min avg max 

MOAC 1, 

MOEA 2 

0.0167 0.131 0.266 

MOEA 2, 

MOAC 1 

0.226 0.557 0.867 

 

Comparing the performance of the three variants of 

MOEA, MOEA 0, MOEA 1 and MOEA 2, Table 3 

shows that MOEA 2 is the best-performing variant 

followed very closely by MOEA 1. With reference to 

MOEA 2, we can see that increasing the crossover 



value of a MOEA improves the results of the Pareto 

front. However, a two-fold increase in the number of 

the initial population size from 100 to 200 does not 

yield a significant improvement in the Pareto front. 

Comparing the best-performing MOAC variant, 

MOAC 1 and best-performing MOEA variant, 

MOEA 2, Table 4 shows that MOEA 2 dominates 

MOAC 1 by an average of 0.557 whereas MOAC 1 

dominates MOEA 2 by an average of 0.131. Figure 4 

shows a three-dimensional plot with the Pareto fronts 

for an instance of MOAC 1 and MOEA 2. MOAC 1 

dominates MOEA 2 with a few design variants 

(shown in blue) where MOEA 2 dominates MOAC 1. 

 

 
Figure 4. Pareto fronts of MOAC 1 and  MOEA 2 

with only a few design variants from MOAC 1 

dominating MOEA 2, shown in blue. Design variants 

of MOAC 1 are shown in green and design variants 

of MOEA 2 are shown in red. 

 

For multi-objective optimisation, the quality of the 

solutions along the Pareto front is determined by how 

close they get to the theoretical optimum where 

𝐸𝑇𝑇𝑉 →  0, 𝐸𝑝𝑣  →  ∞ and the area of minimum 

illuminance of 300 lx → 16 𝑚2. Hence, if the 

average C measure for MOAC 1 is 0.131, it means 

that an average of 13.1% of the design variants on the 

Pareto front of MOAC 1 are closer to the theoretical 

optimum than those using MOEA 2. In addition, 

MOEA 2 has an average C measure of 0.557 where 

57.7% of design variants on the Pareto front of 

MOEA 2 are closer to the theoretical optimum than 

MOAC 1. 

The parallel plot for MOAC 1 in Figure 5 (top), has 

design variants with relative high ETTV 

(approximately 41.00 - 39.60 W·m-2). These design 

variants have a relatively high working plane area of 

minimum of 300 lx (16.0 – 9.5 m2) and a relatively 

low electricity generation of (approximately 764 – 

700 kWh·a-1). In addition, the parallel plot for 

MOAC 1 has design variants with relatively low 

ETTV (approximately 37.00 – 39.00 W·m-2), 

relatively low working plane area of minimum 300 lx 

(approximately 0.0 – 3.2 m2) and a relatively high 

electricity generation (approximately 800 – 880 

kWh·m-2·a-1). This behaviour shows that a design 

with more active cell area, generates more electricity 

and reduces ETTV and daylighting because the PV 

cells are shading the sunlight which results in lower 

heat gain and reduced visible light transmittance. 

 
Figure 5 Top: Parallel plot of MOAC 1 shown in 

green. Middle: Parallel plot of MOEA 2 shown in 

red. Bottom: superimposed parallel plots of MOAC 1 

and MOEA 2 

Comparing the parallel plots of both Pareto fronts of 

MOAC 1 and MOEA 2, we can see that the design 

variants of both MOAC 1 and MOEA 2 occupy high 

and low regions of all the three fitness functions. 

This is seen in Figure 5, where both MOAC 1 and 

MOEA 2 have managed: 

 to minimise ETTV which results in the 

increase in electricity generation and 

reduction in the area of minimum 

illuminance of 300 lx. 

 to maximise the electricity generation which 

results in the reduction in ETTV and 



reduction in the area of minimum 

illuminance of 300 lx. 

 to maximise the area of minimum 

illuminance of 300 lx which results in the 

increase in ETTV and reduction in 

electricity generation. 

However, from Figure 5 (bottom), we can observe 

that the design variants of MOEA 2 occupies a wider 

range for ETTV and electricity generation on the 

parallel plots when compared with MOAC 1. This 

means that MOEA 2 has managed to optimise the 

two individual objectives, ETTV and electricity 

generation, better than MOAC 1. 

Table 5: Comparison of the runtimes of all variants 

of MOAC and MOEA. The min (minimum), avg 

(average) and max (maximum) for the set of 10 runs 

for the MOAC and MOEA variants are shown. 

 

Variants Runtime 

min avg max 

MOAC 1 36:28 36:42 37:00 

MOEA 2 40:14 40:50 41:47 

 

Table 5 shows that the averaged normalised time 

taken to run MOAC 1 is 36:42 hrs and 40:50 hrs for 

MOEA 2. This shows an improvement of 10.2% in 

the run when MOAC 1 is used. 

We can conclude from the results discussed above 

that MOAC can be a good alternative, if the speed of 

running a multi-objective optimisation is more 

critical than the quality of the Pareto front which is 

determined by the C measure. 

Although MOAC 1 dominates MOEA 2, the trend of 

both parallel plots for MOAC 1 and MOEA 2 are 

similar. However, MOEA 2 has been shown to find 

better design solutions, with 57.7% of its design 

solutions dominating those of MOAC 1. 

CONCLUSION 

This paper has introduced the use of multi-objective 

ant colony (MOAC) in the multi-objective 

optimisation space of a semi-transparent BIPV 

façade.  The experiment demonstrated that MOAC 

could be an alternative for multi-objective 

optimisations. It has shown reasonable improvements 

in speeding up the multi-objective optimisation 

process for BIPV façade design. However, future 

research needs to be conducted, to compare other 

variants of MOAC and MOEA to give more insights 

into the use of ant colony optimisation for multi-

objective optimisation for building design 

optimisation. 
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