
M. A. Schnabel (ed.), Cutting Edge: 47th International Conference of the Architectural Science Associa-
tion, pp. 197–206. © 2013, The Architectural Science Association (ANZAScA), Australia

EVOLUTIONARY DESIGN OF HOUSING:

A template for development and evaluation procedures

PATRICK JANSSEN and VIGNESH KAUSHIK

National University of Singapore, Singapore

patrick@janssen.name, vigneshkaushik@gmail.com

Abstract. Evolutionary design is an approach that evolves populations
of design variants through the iterative application of a set of compu-
tational procedures. This paper proposes a template and set of tech-
niques for creating the development and evaluation procedures. The
template defines a clear structure for the procedures, while the tech-
niques provide specific strategies for generating models and handling
constraints. A demonstration is presented where the template is used
to create development and evaluation procedures for a large complex
residential housing project.

Keywords. Evolutionary design; generative modelling; constraint
handling; decision chain encoding; point block housing.

1. Introduction

Evolutionary design (Frazer 1995, Bentley 1999, Caldas 2001, Bentley and

Corne 2002, Janssen 2004) is an approach that evolves populations of design

variants through the iterative application of a set of computational proce-

dures. The development procedure generates design variants, one or more

evaluation procedures assess the performance of design variants, and the

feedback procedure drives the evolutionary process by applying selective

pressure to the population. The feedback procedure applies selective pres-

sure by ensuring that design variants with low performance scores are more

likely to be killed, while design variants with high performance scores are

more likely to survive, and to be selected for reproduction.

This paper will focus mainly on the development and evaluation proce-

dures. Section 2 describes a template for creating such development and

evaluation procedures, section 3 presents the demonstration of the applica-

tion of the template, and section 4 briefly draws conclusions and indicates

avenues of further research.

198 P. JANSSEN AND V. KAUSHIK

2. The Development and Evaluation Procedures

The development procedure generates a phenotype, which is a design vari-

ant. One or more evaluation procedures generate a set of evaluation scores,

which are measures of performance for a design variant. Janssen and

Kaushik (2013a) proposed a template for development procedures. This pa-

per builds on this previous template, by expanding the scope to include both

development procedures and evaluation procedures. Figure 1 shows the pro-

cedures and sub-procedures of the proposed template.

Figure 1: The template for development and evaluation procedures

2.1 DEVELOPMENT PROCEDURE

The development procedure starts with a model of the environment (e.g. the

site and surroundings) and generates a skeleton model of the design variant,

under the influence of a set of genes. The aim is to create development pro-

cedures that result in phenomes with sufficient design variability. Phenomes

for architectural and urban designs are typically both highly variable and

highly constrained. They are highly variable in the sense that there is no

fixed organisational plan, but instead entities can be organised in space in a

wide variety of ways. At the same time, these organisations are highly con-

strained by various rules delineating the validity of possible designs. This

type of phenome that is both highly variable and at the same time highly

constrained is described as having bounded variability.

In order to achieve bounded variability, a key challenge is effectively

handling constraints. In particular, two type of constraints need to be han-

dled: combinatorial constraints and geometric constraints. For combinatorial

constraints, a technique called decision chain encoding can be used (Janssen,

2004; Janssen and Kaushik, 2013b), while for geometric constraints, dynam-

ic solvers can be used. Together, these two sets of techniques form a simple

yet powerful toolkit for handling a wide variety of constraints.

The decision chain encoding technique structures the skeleton generation

process as a sequential chain of decision points. Each decision point involves

 EVOLUTIONARY DESIGN OF HOUSING 199

choosing one option from a list of options. The list of options is created by a

set of rules that generate options and then and then filter out options that vio-

late constraints. Note that for each decision, the total number of valid options

may not be known and may depend on the previous decisions.

The decision chain encoding technique can therefore be used to generate

configurations that adhere to a range of combinatorial constraints. However,

the resulting configurations may still violate other geometric constraints. For

resolving these geometric constraint violations, dynamics solvers can be

used. These dynamics solvers will, over a series of time steps, try to modify

the configuration in order to resolve any constraint violations. Depending on

the types of constraints, a variety of dynamic solvers can be used, such as

particle solvers, rigid body solvers, inverse kinematic solvers, and cloth

solvers.

2.2 EVALUATION PROCEDURE

The evaluation procedure starts with a skeleton model and generates an

evaluation score for the design variant. As a side effect, the evaluation pro-

cedures also generate domain models required for analysis or simulation.

Since the skeleton model is a sparse model, data compensation techniques

need to be used in order to add the missing data.

3. Demonstration

In this section, the implementation of a development procedure and a set of

evaluation procedures for an example design schema are described. The

schema is for a residential housing development consisting of a set of point

blocks.

3.1 DESIGN SCHEMA

In the design scenario, it is envisaged that a developer plans to build a set of

residential buildings with flats arranged around central cores containing cir-

culation and services, a typical typology referred to as a 'point-block'. Typi-

cal layouts of the individual flats are defined in advance but the positions

and heights of the point blocks and the number of flat types for each point

block can be varied.

The site is located in Singapore, with an area of 8.4 hectares and a plot

ratio of 2.0. In total, 1400 flats are required. Figure 2 shows the 7 flat types

(together with the required quota for each flat type), and the 4 block types.

Flats are always arranged around the core in pairs, sharing a common wall

and forming vertical stacks of flats of variable height (each between 6 to 12

floors high). At the ground level, each block type can accommodate a differ-

200 P. JANSSEN AND V. KAUSHIK

ent number of flats around the core (4, 6, and 8 flats). However, due to the

variable stack heights, the number of flats and the core may reduce as it goes

up.

Figure 2: Flat types and block types

Figure 3 shows an example of a single block, together with a conceptual

section showing a level of car parking at the bottom covered by a landscaped

level on top. The blocks can be freely positioned on the site, with all blocks

being accessible either by car via the lower car park and by foot via the up-

per landscaped level. The upper level has greenery as well as swimming

pools and playgrounds. The aim is to optimise the configuration of point

blocks and flats so as maximise saleable value and at the same time maxim-

ise a number of window performance criteria (described in more detail be-

low).

Both the development and evaluation procedures were created in the pro-

cedural modelling software SideFX Houdini. This software allows these

procedures to be defined visually using Visual Dataflow Modelling (VDM)

(Janssen and Chen 2011). In addition, the software also includes a wide

range of procedural modelling tools and dynamic solvers.

 EVOLUTIONARY DESIGN OF HOUSING 201

Figure 3: Conceptual section across the site

3.2 DEVELOPMENT PROCEDURE

The development procedure uses a decision chain encoding technique in or-

der to handle the combinatorial constraints on the flat types and a dynamics

particle solver technique in order to handle the geometric constraints related

to point block positioning.

The point block configurations are generated using a combination of sim-

ple parametric modelling techniques and decision chain encoding tech-

niques. The genotype is structured so that there are a repeating set of 16

genes defined for each point block.

The process of positioning and orientating the block on site is performed

using some simple parametric rules. For positioning, the site area is mod-

elled as a UV surface, and two genes are used to define a UV position on

that surface. For orientation, the third gene is used to rotate the block be-

tween 0 and 360 degrees. This process of positioning and orientation ignores

possible collisions between blocks, as those will be resolved later using the

dynamics particle solver. The remaining 13 genes are used to form a single

block of flats through the decision chain encoding process. This process

takes into account various combinatorial constraints in choosing the appro-

priate flat types and stack heights so as to not overshoot the quota.

Since the blocks can be of variable height, the total number of blocks re-

quired to achieve the desired number of flats may also vary, with the maxi-

mum number of blocks set at 32 blocks. In order to handle this variability,

genotypes with redundant genes are used. Since there are a maximum of 32

blocks with 16 genes per block, the total number of genes for generating the

blocks is 480. However, due to the redundancy, some of these genes may not

be used. For example, if a block is of type 1 (4 flats per floor), then it will

only require 2 stack genes and 4 flat type genes, meaning that the other stack

and flat type genes are not used. Similarly, if the required number of flats

has been achieved with 30 blocks, then the last 32 (16x2) genes will not be

used.

202 P. JANSSEN AND V. KAUSHIK

In addition the blocks, swimming pools and playgrounds are also added

to the site layout. These are positioned in the same way as the blocks, using

UV positioning genes. These additional programmatic functions are not di-

rectly evaluated, but they play an important role since they create open spac-

es between the blocks.

Figure 4: Dynamics particle solver repositioning particles on the site.

Once all the blocks, swimming pools, and playgrounds have been gener-

ated, they may be intersecting and overlapping. In order to resolve these is-

sues, a dynamics particle solver is used. For this solver, each block, swim-

ming pool, or playground is represented as a circular particle. For the blocks,

the radius of the particle is adjusted to fit the size of the block. The site

boundary is defined as a particle boundary and the particles are then posi-

tively charged so that they repel one another. These particles are then ani-

mated for 1000 frames, allowing the particle to reposition themselves, there-

by automatically resolving the overlaps between the blocks. Figure 4 shows

a set of frames from the animation.

3.3 EVALUATION PROCEDURES

The first step in the evaluation process is the generation of the domain spe-

cific models. The skeleton model resulting from the development procedure

is a sparse 2D skeletal model. For each block, the model contains a set of

polygons that represent the plans of the flat types tagged with attributes de-

fining the number of floors. A number of different domain specific models

are then generated from this 2D skeleton as inputs for analysis and simula-

tion. In addition to the domain models, visualisation models can also be gen-

erated in order to help designers evaluate other aspects of the design. Figure

 EVOLUTIONARY DESIGN OF HOUSING 203

5 shows the 2D skeleton model on the left, along with three other models

generated from this skeleton.

Figure 5: Different types of models generated from the 2D skeleton.

For evaluating saleable value, a domain model is generated that includes

only the floor plates of the individual flats. The calculation uses a simple

formula that adjusts the price per square meter according to the floor level.

For evaluating window performance, a domain model is generated that

only includes the outer building surface together with the living room and

bedroom windows of the flats. The window performance takes into account

certain site conditions, including a canal along one side of the site that is

treated as a desirable view, and a number of busy roads that are treated as

sources of noise pollution. For each window, three different criteria are con-

sidered:

 Maximisation of unobstructed view in front of the window, where 100% in-

dicates a completely unobstructed view of 50 meter radius.

 Maximisation of views of the canal, where 100% indicates that the whole

stretch of the canal in front of the site is visible.

 Minimisation of exposure to road noise, where 100% indicates that there is a

road directly in front of the window.

These three criteria could be treated as separate performance criteria.

However, this would result in four evaluation scores, which makes the evo-

lutionary search process more difficult. For this example, it was therefore

decided to combine these criteria into a single window performance score.

The saleable value and window performance evaluation criteria are in

conflict with one another. For a high saleable value, larger number of low

height blocks is preferred since it maximises the number of garden flats in

the ground floor. However, this results in closely packed blocks that obstruct

one another. For a high window performance, smaller number of tall blocks

is therefore preferred. The evolutionary process allows designers to explore

the trade-offs between such conflicting performance criteria.

204 P. JANSSEN AND V. KAUSHIK

3.1. RESULTS

The evolutionary process was executed on the Amazon EC2 cloud compu-

ting platform using Dexen, a distributed execution environment for popula-

tion based optimisation algorithms (Janssen et. al. 2011). Compute instances

were started with a total of 200 CPUs.

Figure 6: Final non-dominated Pareto set.

The population size was set to 200 and a simple asynchronous steady-state

evolutionary algorithm was used. Each generation, 50 individuals were ran-

domly selected from the population and ranked using multi-objective Pareto

ranking. The 2 individuals with the lowest rank were killed, and the 2 indi-

viduals with the highest rank (rank 1) were used as parents for reproduction.

Standard crossover and mutation operators for real-valued genotypes were

used, with a mutation probability of 0.02 and crossover probability of 0.9.

Reproduction between pairs of parents resulted in 2 new children, thereby

ensuring that the population size remained constant.

The final non-dominated Pareto set for the whole population contains a

range of design variants with differing trade-offs between saleable value and

window performance. The Pareto graph is shown in Figure 6. Three of the

design variants from this non-dominated set are shown in figure 7.

 EVOLUTIONARY DESIGN OF HOUSING 205

Figure 7: Design variants.

4. Conclusions

This paper has proposed a template and a set of techniques for the creation

of development and evaluation procedures for evolutionary design. The de-

velopment procedure generates a sparse skeletal model adhering to a variety

of constraints. For combinatorial constraints, decision chain encoding tech-

niques are used, and for geometric constraints, dynamics solver techniques

are used. Each evaluation procedure calculates an evaluation score for a spe-

cific performance criterion. The skeleton model is used in order to generate a

more detailed domain specific model, which is then used for analysis and

simulation. The resulting performance data is then condensed into a single

evaluation score.

The techniques used in the development and evaluation procedures can

be created by designers with limited programming skills using VDM soft-

ware. A demonstration has been presented where the template is used to cre-

ate development and evaluation procedures for a large and complex residen-

tial housing project. In the demonstration, the development and evaluation

procedures are defined using a VDM software called Sidefx Houdini, lever-

aging the procedural modelling tools and dynamic solvers that exist within

the software.

References

Bentley, P.J., editor: 1999, Evolutionary Design by Computers, Morgan Kaufmann Publish-
ers, San Francisco, CA.

206 P. JANSSEN AND V. KAUSHIK

Bentley, P.J. and Corne, D.W., editors: 2002, Creative Evolutionary Systems, Academic
Press, London, UK.

Caldas, L.: 2001, An evolution-based generative design system: using adaptation to shape ar-
chitectural form, Doctoral dissertation, Massachusetts Institute of Technology.

Draghi, J., and Wagner, G.: 2008, Evolution of evolvability in a development model, Theoreti-
cal Population Biology, 62, 301–315.w

Eiben, A.E., and Smith J.E.: 2003, Introduction to evolutionary computing. In: Springer, Nat-
ural Computing Series, 1st edition.

Frazer, J.H.: 1995, An Evolutionary Architecture. AA Publications, London, UK
Janssen, P.H.T.: 2004, A design method and computational architecture for generating and

evolving building designs. Doctoral Dissertation, School of Design, Hong Kong Poly-
technic University.

Janssen, P.H.T.; Chen, K.W., and Basol, C.: 2011, Evolutionary development design for non-
programmers, In Proceedings of 29th eCAADe Conference, Ljubljana (Slovenia), 245-252

Janssen, P.H.T. and Kaushik, V.: 2012, Iterative Design Simulation: Exploring trade-offs be-
tween speed and accuracy. In Proceedings of 30th eCAADe Conference, Czech Technical
University, Czech Republic.

Janssen, P. H. T. and Kaushik, V.: 2013a, Skeletal modelling – a developmental template for
evolutionary design. In Proceedings of the 18th International Conference on Computer-
Aided Architectural Design Research in Asia (CAADRIA), Singapore, 15-18 May 2013,
705–714.

Janssen, P. H. T. and Kaushik, V.: 2013b, Decision chain encoding: Evolutionary design op-
timization with complex constraints. In Proceedings of the 2nd EvoMUSART Conference,
Vienna, Austria, 3-5 April 2013, 157–167.

Kumar, S., and Bentley, P.J..: 1999, Three ways to grow designs: a comparison of embryoge-
nies for an evolutionary design problem, In Proceedings of the Genetic and Evolutionary
Computation Conference ‘99, 35–43.

Mahner, M. and Kary, M.: 1997, What exactly are genomes, genotypes and phenotypes? And
what about phenomes? J. Theor. Biol, 186, 55–63.

Michalewicz, Z.: 1996, Genetic Algorithms + Data Structures = Evolution Programs, Berlin
Heidelberg: Springer-Verlag, 3rd edition (First edition 1992).

