
GENERATIVE EVOLUTIONARY DESIGN:
A FRAMEWORK FOR GENERATING AND EVOLVING

THREE-DIMENSIONAL BUILDING MODELS

Patrick Janssen
patrick@janssen.name

School of Design, Hong Kong Polytechnic University

John Frazer
 Digital Practice Ecosystem, Gehry Technologies

Ming-Xi Tang

School of Design, Hong Kong Polytechnic University

ABSTRACT

This paper describes a comprehensive framework for generative evolutionary design.
The key problem that is identified is generating alternative designs that vary in a
controlled manner. Within the proposed framework, the design process is split into
two phases: in the first phase, the design team develops and encodes the essential and
identifiable character of the designs to be generated and evolved; in the second phase,
the design team uses an evolutionary system to generate and evolve designs that
incorporate this character. This approach allows design variability to be carefully
controlled. In order to verify the feasibility of the proposed framework, a generative
process capable of generating controlled variability is implemented and demonstrated.

Keywords: evolutionary design, generative design, generative system, genetic
algorithm, evolutionary algorithm

INTRODUCTION

Evolutionary design systems are loosely based on the neo-Darwinian model of
evolution through natural selection. A population of individuals is maintained and an
iterative process applies a number of evolution steps that create, transform, and delete
individuals in the population. Each individual has a genotype representation and a
phenotype representation. The genotype representation encodes information that can
be used to create a model of the design, while the phenotype representation is the
actual design model. The individuals in the population are rated for their effectiveness,
and on the basis of these evaluations, new individuals are created using ‘genetic
operators’ such as crossover and mutation. The process is continued through a number
of generations so as to ensure that the population as a whole evolves and adapts.

A wide variety of evolutionary algorithms exist, with the four main types being
genetic algorithms (Holland1975), evolution strategies (Rechenberg1973),
evolutionary programming (Fogel1963), and genetic programming (Koza1992).

The evolutionary process typically has a centralised control structure consisting of a
main loop that repeatedly invokes the evolution steps. Individuals are processed in a

synchronous manner, whereby the evolutionary process stops and waits for the
processing of all individuals by one evolution step to be completed before proceeding
onto the next evolution step.

The evolution steps include a reproduction step that creates new genotypes by
combining genetic material from randomly selected parents; a developmental step that
creates design models (phenotypes) from encoded genotypes; and an evaluation step
that evaluates the performance of the design with respect to one or more objectives. In
addition, selection and survival steps allow the genetic material of the best individuals
to pass from one generation to the next.

Types of evolutionary design
Two types of evolutionary design may be broadly identified: parametric evolutionary
design and generative evolutionary design.

Parametric evolutionary design is usually used late in the design process and focuses on
the optimisation of design solutions to well-defined design problems. An existing design
is defined and parts that require improvement are parameterised. The evolutionary
system evolves the parameter values. Such systems are generally described as
convergent search systems that search the parameter space for an optimal or satisficing
set of parameter values. Two recent examples of parametric evolutionary design systems
are Rasheed (1998); Caldas (2001).

Generative evolutionary design, on the other hand, may be used early on in the design
process and focuses on the discovery of inspiring or challenging design alternatives for
ill-defined design tasks. A generative process is created that uses information in the
genotype to generate alternative design models. The evolutionary system will tend to
evolve a divergent set of alternative designs, with convergence on a single design often
being undesirable or even impossible. Such systems are sometimes described as
divergent systems or exploration systems. Examples of generative evolutionary design
systems include Frazer and Connor (1979), Graham et al. (1993); Frazer (1995b);
Bentley (1996); Rosenman (1996a); Coates et al. (1999); Funes and Pollack (1999); Sun
(2001).

With regard to the types of designs produced, the main difference between these two
approaches relates to the variability of designs. With the parametric approach, design
variability is low. Since the designs are all based on the same parametric model, the
designs will all have the same overall organisation and configuration. With the
generative approach, the variability in designs can potentially be much greater.

Of these two approaches, the parametric approach is the more common and well
developed. The generative approach, although more complex, can be much more
powerful.

ANALYSIS OF PROBLEM

For generative evolutionary design, a distinction can be made between systems whose
main purpose is to inspire, versus systems whose main purpose is to challenge. Many
of the existing systems evolve forms that may be inspiring to designers. These types
of systems may produce highly abstract forms that trigger new possibilities in the

minds of the designers. However, if the forms do not incorporate a relatively explicit
and comprehensive description of the design, then the designers will be required to
interpret and read meaning into the forms. The designers thereby perceive a design
within the form.

In order to challenge, designs rather than forms must be evolved. Such designs must
fulfil four key criteria. The designs must be:

• Complex: The level of complexity within the designs must be commensurate
with the complexity of the entities being designed. Designs must therefore
consist of three-dimensional models consisting of a realistic number and
variety of related elements.

• Intelligible: The forms must be directly intelligible as designs by both people
and by other software systems. Important characteristics of the forms must
therefore be explicitly represented, thereby allowing for unambiguous
understanding.

• Unpredictable: The forms must vary from one another in significant ways.
This must include variation in the organised and configured of the elements
that comprise the form.

• Desirable: The forms must embody certain qualities that are seen to be
desirable by the designers using the system. These qualities may be either
qualitative or quantitative.

The first three criteria – for designs to be complex, intelligible and unpredictable –
depend primarily on how the generative process is implemented. Such a process must
use a set of generative rules to generate individual designs.

The fourth criterion – for designs to be desirable – typically depends on the
implementation of the evaluation process, which may include both an automated and
manual component. The automated component will invoke simulate and analysis
software in order to evaluate quantitative qualities. The manual component will rely
on human judgement to evaluate qualitative qualities. As well as the evaluation
process, it may also be possible to hard-code such qualities within the generative
process.

The variability problem
In order for a generative evolutionary system to challenge the designers, the
generative process must generate designs that are complex, intelligible and
unpredictable. This brings to light a fundamental problem: given a certain level of
complexity, it is very difficult to create a generative process that generates designs
that are both intelligible and unpredictable. If unpredictability is required, then the
generative process tends to become under-restricted, resulting in forms that are chaotic
and unintelligible. If intelligibility is required, then the generative process tends to
become over-restricted, resulting in designs that are all very similar and predictable.
This conflict is referred to as the variability problem.

The generative process consists of a set of generative rules that are applied to some
starting condition. The same set of rules will be used to generate each design. The
genotypes encode variations in the starting condition and in how the rules are applied.

In order to overcome the variability problem, a generative process is required where
the variability of designs is carefully controlled in order to ensure that designs are both
intelligible and unpredictable. This is referred to as controlled variability.

Developing such rules requires the identification of a set of characteristics common to
all the designs to be generated. Rules can then be created based on these shared
characteristics. Such characteristics may relate to issues of aesthetics, space, structure,
materials, construction, and so forth.

In the domain of architecture, it is difficult to identify any significant characteristics
that are shared by all possible designs (including future designs as well as existing
designs). Buildings simply vary too much for this to be possible. Even for existing
designs, attempting to pin-down shared characteristics is problematic. As a result,
some sub-set of designs needs to be considered that includes designs that are similar in
some way, but excludes others that are not similar. Since the included designs will
share certain characteristics, they may be described as a family of designs. A decision
must be made as to how to define this family.

One approach to defining the family of designs is to focus on conventional designs.
This involves defining a sub-set of designs based on typical characteristics found in
existing designs. However, such an approach is problematic since it fundamentally
limits the creativity of the designer. The aim of developing a generative evolutionary
design system is to enhance the creative process by allowing designers to explore
populations of alternative designs. If the designs being generated are required to be
conventional, then the creative process will be hindered rather than enhanced.

An alternative approach is to focus on the oeuvre or body of work of one design team.
This involves defining a sub-set of designs based on a set of characteristics developed
by a particular design team. This is the approach pursued in this research.

PROPOSED FRAMEWORK

A framework has been developed that allows designers to incorporate and express
their own design ideas. The core concept within this framework is the notion of a
design entity that captures the essential and identifiable character of a varied family of
designs by one designer or design team. This conceptualisation is defined as a design
schema. It encompasses those characteristics common to all members of the family,
possibly including issues of aesthetics, space, structure, materials and construction.
Although members of the family of designs share these characteristics, they may
differ considerably from one another in overall organisation and configuration. Design
schemas are seen as formative design generators; their intention is synthetic rather
than analytic.

When a design schema is codified in a form that can be used by a generative
evolutionary system, it provides a way of overcoming the variability problem. The
encoded schema allows complex designs to be generated that are both intelligible and
predictable. This approach is based on the work of Frazer and Connor (1979); Frazer
(1995a); Sun (2001).

The schema framework consists of two parts: a design method and an evolutionary
system. The design method broadly defines a set of tasks to be carried out by the
designer team. The evolutionary system is a software system used by the designer
team for generating and evolving alternative designs. Both the design method and the
evolutionary system are introduced below. For a more detailed discussion, see Janssen
(2004).

Design method
The design method breaks the design process down into two sequential phases. Figure
1 shows the overall structure of the design method. In the first phase, a design schema
is developed that may be used to evolve designs for a range of different projects. In
the second phase, the schema developed in the first phase is applied to a specific
project and a detailed design proposal is developed.

Each project defines a specific environment for a design, encompassing both design
constraints and design context. Examples of design constraints may include the
budget, the number of spaces, floor areas, performance targets and so forth. The
design context may include site dimensions, site orientation, neighbouring structure,
seasonal weather variations, and so forth. The schema developed in the first phase is
not specific to one design environment. Instead, the design team develops it with a
certain type of environment in mind, referred to as the niche environment. This niche
environment encompasses a range of possible constraints and a range of possible
contexts. The schema can be used in any project whose design environment falls in
the niche environment for which the schema was designed. The first phase may
therefore be viewed as a generalization process, and the second phase as a
specialization process.

Figure 1: The schema-based generative evolutionary design method.

The encoded schema will consist of a set of small programs, or routines, that
encapsulate the rules and representations for all of the evolution steps within the
evolutionary system. In order to generate and evolve alternative designs, the
evolutionary system requires the encoded schema and the encoded environment. Both
need to be encoded in a format that is compatible with the system and with one
another.

Evolutionary system
The evolutionary system maintains a single population that is manipulated by four
evolution steps: reproduction, development, evaluation and survival. In addition there
is also a visualization step that allows users to select and visualise designs in the
population, and initialisation and termination steps for starting and stopping the
evolutionary process.

One of the key requirements for the evolutionary system is customisability. The
design team must be able to encode and input both the design schema and the design
environment within the system. In addition, the design team is also likely to want to
make use of existing software applications for modelling, visualising and evaluating
design models.

The evolutionary system is therefore broken down into two parts: a generic core and a
set of specialised components. The generic core defines the main structure of the
evolutionary system and can be used unmodified by any design team, on any project.
This core consists of underlying program modules that communicate and interact with
one another. However, in order to be functional, these modules must be linked to the
specialised components. The specialised components are completely customisable and
must be defined by the design team. Three types of specialised components exist:
routines, data-files, and applications.

• Routines encapsulate the rules and representations used by the evolutionary
system. The design team must create a set of such routines that together
constitute the encoded schema.

• Data-files encapsulate information about the design environment. The design
team must create these data-files that together constitute the encoded
environment.

• Applications are existing software applications whose functionality the design
team may require, in particular for modelling, visualising and evaluating
design models.

Figure 2: Schema-based generative evolutionary design system.

As well as customisability, a second key requirement is scalability. The system should
allow for the evolution of large complex designs without performance being adversely
affected. This is especially pertinent for the evaluation step, since the simulation or
analysis of the performance of a building design can be time consuming.

In order to support scalability, a parallel architecture has been developed using a
standard client-server model in a networked computing environment. The architecture
of the system is shown in figure 2. The server manages the population of designs and
performs the reproduction and survival steps, while multiple client computers perform
the most time consuming developmental and evaluation steps.

The architecture uses an asynchronous evolutionary process in combination with a
decentralised control structure. The four evolution steps are therefore not centrally
controlled and act independently from one another. Each step extracts a small number
of individuals from the population, processes these individuals, and either inserts the
resulting individuals back into the population or – in the case of the survival step –
deletes a number of individuals in the population.

The asynchronous evolutionary process reduces the execution time and is highly
effective in situations where the development and evaluation steps are costly. The
decentralised control allows client computers to be easily be added and removed from
the evolutionary process and allows the system to cope gracefully with failure of one
or more client systems.

CONTROLLED VARIABILITY

The evolutionary system is currently under development. In order to verify the
feasibility of the schema-based framework, the process of encoding a design schema
has been demonstrated. The demonstration consists of three parts:

• An example design schema has been created for a family of multi-story
buildings. The overall building form, the organisation of spaces, and the
treatments of facades may all vary significantly. Some additional
complications such as sloping walls have been included, but not curved walls.

• A generative process has been created for generating design models in the
example schema. This process consists of a series of transformations that
gradually transform a three-dimensional orthogonal grid structure into a design
for a building.

• A developmental routine, an initialisation routine and a visualization routine
have been implemented for the example schema. These routines have been
used to generate and visualise a variety of design models. The designs that are
generated are complex, intelligible, and unpredictable. Controlled variability
has therefore been achieved.

Generative process
The generative process consists of a sequence of eight generative transformations that
gradually change an orthogonal grid into a 3-dimensional building model. Figure 3
shows (diagrammatically in two-dimensions) the eight generative transformations:
positioning of the grid in the site, translation of the grid-faces, inclination of outer

grid-faces, insertion of the staircase, creation of spaces, selection of outside spaces,
insertion of doors, and insertion of windows.

Most transformations require a set of parameters encoded within the genotype. The
genotype consists of a fixed length string of parameters, with each parameter being
encoded as real values in the range 0.0 to 1.0. The encoded value may be mapped to a
value within a different continuous or discrete range as required. Some
transformations may also require certain parameters or data encoded in the
environment data-file.

Figure 3: The generative process

Implementation
In order to verify the character and variability of the designs that would be produced
by the generative process described above, the initialisation, developmental and
visualization routines were implemented:

• The initialisation routine was used to generate a population of individuals with
randomly generated genotypes, but with no phenotypes or evaluation scores.
This routine calculates the length of the required genotype, and creates a
random value for each parameter.

• The developmental routine was used to create phenotypes for each individual.
The generative process used by this routine has already been described above.

• A visualization routine has been created that uses Ecotect by developed by
Square One Research to visualise the design models that are generated. This
routine extracts the phenotype from each individual, translates the phenotype
representation to the model representation used by Ecotect, and then allows the
design to be visualised using the Ecotect interface.

The initialisation routine was used to generate a population of genotypes, the
developmental routine was then used to generate a population of design models, and
finally the visualization routine was use to view these models. Figure 4 shows a
selection of models generated.

Figure 4: A set of generated (but not evolved) designs.

CONCLUSIONS

The demonstration has shown that it is possible to create a generative process that
generates complex three-dimensional models of building designs that are both
intelligible and unpredictable. Controlled variability has therefore been achieved.

Since the designs have not yet been evolved, they do not yet incorporate desirable
qualities. The next stage of the research will focus on developing the complete
evolutionary system. This will allow designs to evolve and adapt in response to the
environment and the evaluation criteria, thereby resulting in qualities that are seen to be
desirable.

ACKNOWLEDGEMENTS

Our research project is supported by a UGC PhD project grant from the Hong Kong
Polytechnic University.

REFERENCES

Bentley, P. J. (1996). “Generic Evolutionary Design of Solid Objects using a Genetic Algorithm.”
Doctoral dissertation, Division of Computing and Control Systems, Department of Engineering,
University of Huddersfield.

Caldas, L. (2001). “An Evolution-Based Generative Design System: Using Adaptation to Shape
Architectural Form.” Doctoral dissertation, Massachusetts Institute of Technology.

Coates, P., Broughton, T., and Jackson, H. (1999). “Exploring three-dimensional design worlds using
Lindenmayer Systems and Genetic Programming.” In Bentley, pages 323–341.

Fogel, D. B. (1995). “Evolutionary computation: Towards a new philosophy of machine intelligence.”
IEEE Press.

Frazer, J. H. (1995a). “An Evolutionary Architecture.” AA Publications, London, UK.

Frazer, J. H. (1995b). “The interactivator.” AA Files, 72–73.

Frazer, J. H. and Connor, J. (1979). “A conceptual seeding technique for architectural design.” In
Proceedings of International Conference on the Application of Computers in Architectural Design and
Urban Planning (PArC79), pages 425–434, Berlin. AMK.

Funes, P. and Pollack, J. (1999). “Computer evolution of buildable objects.” In Bentley, P. J., editor,
Evolutionary Design by Computers. Morgan Kaufmann Publishers, San Francisco, CA., pages 387–
403.

Graham, P. C., Frazer, J. H., and Hull, M. C. (1993). “The application of genetic algorithms to design
problems with ill-defined or conflicting criteria.” In Glanville, R. and de Zeeuw, G., editors,
Proceedings of Conference on Values and, (In) Variants, pages 61–75.

Holland, J. H. (1975). “Adaptation in Natural and Artificial Systems.” University of Michigan Press,
Ann Arbor.

Janssen, P. H. T. (2004). “A design method and a computational architecture for generating and
evolving building designs.” Doctoral dissertation, School of Design Hong Kong Polytechnic University
(submitted October 2004).

Koza, J. R. (1992). “Genetic Programming: On the Programming of Computers by Means of Natural
Selection.” MIT Press, Cambridge, MA.

Rasheed, K. M. (1998). “GADO: A Genetic Algorithm for Continuous Design Optimization.” Doctoral
dissertation, Department of Computer Science, Rutgers University, New Brunswick, NJ. Technical
Report DCS-TR-352.

Rechenberg, I. (1973). “Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien der
Biologischen Evolution.” Frommann-Holzboog Verlag, Stuttgart, Germany.

Rosenman, M. A. (1996). “An exploration into evolutionary models for non-routine design.” In AID’96
Workshop on Evolutionary Systems in Design, pages 33–38.

Sun, J. (2001). “Application of Genetic Algorithms to Generative Product Design Support Systems.”
Doctoral dissertation, School of Design, Hong Kong Polytechnic University.

