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Abstract. Design tools that aim not only to analyse and evaluate, but also to generate and explore alternative
design proposals are now under development. An evolutionary paradigm is presented as a basis for creating such
tools. First, the evolutionary paradigm is shown to be the only successful design system on which this new phase of
design tool could be based. Secondly, any characterisation of design as a search problem is argued to be a serious
misconception. Instead it is proposed that evolutionary design systems should be seen as generative processes that
are able to evaluate their own output. Thirdly, a generic framework for generative evolutionary design systems is
presented. Fourth, the generative process is introduced as a key element within this generic framework. The role of
the environment within this process is fundamental. Finally, the direction of future research within the evolutionary
design paradigm is discussed with possible short and long term goals being presented.

Keywords: design, evolution, generative, environment, search

Tools for Design

A new phase of design tool is now under development.
The use of the term ‘tool’ is not in the dismissive sense
implied by the phrase ‘a computer is just a tool’ [1].
This dismissive attitude might have been justified when
applied to the first phase of design tools that automate
processes otherwise carried out by hand. The second
phase, consisting of analysis tools that can simulate
and measure the performance of design, made this atti-
tude questionable. However, the third phase will make
it totally inappropriate. These third phase tools are de-
scribed as active as opposed to passive in that they will
become an integral part not only of the manual design
process but also of the cognitive design process. The
task of these software tools is not only to analyse and
evaluate, but also to generate and explore alternative
design proposals. Such tools will free designers from
‘design fixation’ and the limitations of conventional
wisdom, thereby allowing them to explore a huge num-
ber of possible proposals for a design problem [2].

Passive design tools play a relatively minor role in the
cognitive design process. This minor role has allowed
the traditional pre-computer design methodology to be
adhered to. In this methodology, the design-makers are
at the centre, controlling all aspects of the design pro-
cess. The design-makers mediate any interaction be-
tween the design and the eventual design-users and be-
tween the design and the design tools. The proposed
active tools on the other hand will initiate a new design
methodology. This new methodology will relocate the
tools at the centre of the design process. The design-
users, the design-makers and also the tool-makers all
participate in the creation of the design. However, in
this new methodology, it is the active tools that me-
diate between these participants and the design. The
tool-makers play a stronger role in defining the designs
types towards which the tools are biased. The design-
makers use these biased tools to explore possible de-
signs. Finally, the design-users are empowered to alter
and experiment within the boundaries set down by the
design-makers.
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These new tools will be contrivances that will en-
hance and extend the ‘imaginative jump or creative
leap’ from one design proposal to the next. “Design
as seen from the designer’s perspective is a series of
amazing imaginative jumps or creative leaps. But de-
sign as seen by the design historian is smooth pro-
gression or evolution of ideas that seem inevitable
with hindsight. It is a characteristic of great ideas
that they seem self evident and inevitable after the
event. But the next step is anything but obvious for the
artist/creator/inventor/designer stuck at that point just
before the creative leap. They know where they have
come from and have a general sense of where they are
going, but often do not have a precise target or goal” [3].

Why Evolution?

It is often presumed that, in order to automate any part
of the design process, one must start with a cognitive
theory of how humans design. This is based on the as-
sumption that humans offer the only example of a suc-
cessful design system. However, alternative successful
design systems do exist. One such system is biological
evolution in nature, which has been evolving biological
designs that far exceed any human designs in terms of
complexity, performance and efficiency. Evolutionary
programs use biological evolution in nature as a source
of inspiration, rather than a phenomenon to be accu-
rately modelled. There are a number of reasons why the
choice of the evolutionary model is more appropriate.

Firstly, a cognitive theory of design presupposes an
underlying general theory of cognition. Such a theory
is, to say the least, an extremely distant goal. Con-
versely, the theory of evolution is well established and
the field of evolutionary computation has benefited
from a large amount of interest and research.

Secondly, the aim behind creating design tools is
not to duplicate or mimic existing traditional design
processes. Rather, the aim is to create innovative tools
that challenge the design process, allowing designers
to work in ways that were previously not possible. The
tools to be developed reject the traditional architectural
methodology “on the grounds that, first, the present
architectural design process is fundamentally unsatis-
factory in any known form and not worth imitating
and, second, imitating the human process is unlikely
in any case to represent the most imaginative use of a
machine” [4].

Thirdly, the evolutionary process in nature is an
extraordinarily impressive design system. “From the

near-perfection of the streamlined shape of a shark to
the extraordinary molecular structure of a virus, every
living thing is a marvel of evolved design. Moreover, as
biologists uncover more information about the work-
ings of the creatures around us, it is becoming clear
that many human design around us existed in nature
long before they were thought of by any human, for
example: pumps, valves, heat-exchange systems, opti-
cal lenses, sonar” [5].

Finally, evolutionary systems have proved to be ex-
tremely well suited to design problems. Rather than
analysing one or even several proposals for a given
design problem, the evolutionary system is, at any one
time, considering whole populations of proposals. This
parallel approach allows the system to legitimately ar-
bitrate its own generative process.

Search, Search Spaces and Fitness Landscapes

Initially, evolutionary systems in design focused on op-
timisation of problems for which near optimal solutions
were already well known. The question of improving
the design is then characterised as a search problem.
This idea of searching among a selection of candidate
solutions gives rise to the search space concept [6].
This concept encompasses some notion of distance be-
tween candidate solutions. An algorithm for searching
this space is a method for choosing which candidate
solutions to test at each stage of the search. In most
cases the next candidate solution(s) to be tested will
depend on the results of testing previous sequences;
most useful algorithms assume that there will be some
meaningful relationships between ‘neighbouring’ can-
didate solutions—those close together in the space. As
a consequence of the search space concept, the idea of
a fitness landscape arises naturally. A fitness landscape
is a representation of the space of all possible solutions
along with their fitnesses. It is referred to as a landscape
because the fitness values can form ‘hills’, ‘peaks’,
‘valleys’, and other features analogous to those found in
physical landscapes. The task of the evolutionary sys-
tem is to home in on the highest peaks in this landscape.

A large number of search algorithms have been de-
veloped in order to try and search as efficiently and
thoroughly as possible. Hill-climbing is one of the best
known. This algorithm utilises the iterative improve-
ment technique whereby, each iteration, a new solu-
tion is searched for in the neighbourhood of the cur-
rent solution. This is known as a point-to-point search
since, at any one time, only a single point is being
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processed. However, such point-to-point search algo-
rithms are susceptible to stagnation at local peaks and
have difficulty searching rugged fitness landscapes. In
order to overcome these drawbacks, numerous alterna-
tive algorithms were introduced. The most successful
alternatives discarded the point-to-point search strategy
in favour of a parallel strategy, whereby whole popu-
lations of solutions are considered at any one time.
Evolutionary algorithms, being based on the intrinsi-
cally parallel process of natural evolution, have conse-
quently gained the reputation as being a very efficient
and robust type of parallel search algorithm.

Design is Not a Search Problem

The idea that computers might become active intelli-
gent tools is not new. As a result of the growing com-
puter capabilities since the 1960’s automated design
engendered a great number of expectations. Unfortu-
nately, most of these expectations were not met. With
hindsight, it seems clear that machine intelligence had
been overestimated and the complexities of the design
processes had been underestimated. In many cases, de-
signing was characterised as a problem of searching
for an optimal design solution in a space of all possible
designs.

The search process requires four preparatory steps to
be taken prior to the actual searching of the space. First
the problem must be clearly specified. A precise prob-
lem specification will delineate the boundaries of the
search space. Second, the search space must be mean-
ingfully structured. Structure ensures that neighbour-
ing solutions are related to each other in some meaning-
ful way, which in turn will allow the search procedure
to make rational ‘guesses’ as to where the next best
solution might be. Third, a fitness function must be
defined. The fitness function must be able to compare
all solutions found in any region of the search space.
Fourth, a search procedure must be defined to search
the space. Once these four preparatory steps have been
taken, then the search can begin. However, the design
process is incompatible with the first three steps.

First, during the design process, the problem spec-
ification does not remain static. Design problems are
well known to be under-defined in that the problem
specification provides only a very small part of the in-
formation required for a solution to be found. As a re-
sult, design will typically be a cyclical process whereby
the search for solutions will continuously redefine the
problem specification. Second, the structuring of the

space of possible designs will also not remain static
during the design process. The structuring of any search
space will invariably impose a strong bias on the types
of solutions that can be found. Design processes con-
tinually explore and manipulate such biases in con-
junction with the gradual cyclical development of a
design proposal. Third, the direct comparison of all
possible design proposals is impossible. Although al-
ternatives in the same region of the space of possible
designs can be compared to one another, distant al-
ternatives will stem from radically different roots and
will therefore not be comparable in any straightforward
manner.

A typical design problem creates an ill-defined, un-
structured and vast multidimensional design space.
Metaphors such as search and search spaces aim to
elucidate the design process. However, they do not ac-
curately reflect the reality of the design process and
thereby actually result in further confounding the is-
sue. “This is why it is misleading to talk of design as
a problem solving activity—it is better defined as a
problem finding activity. This has been very frustrat-
ing for those trying to assist the design process with
computer based, problem solving techniques. By the
time the problem has been defined it has been solved.
Indeed the solution is often the very definition of the
problem” [7].

The Library of Babel, described by Jorge Luis
Borges [8] allows one to conceptualise such vast search
spaces. This is an imaginary library of all possible
books that are 410 pages long. There are 251312000

books in this library, a figure which is astronomically
larger than the number of particles in the visible uni-
verse. The philosopher Daniel C. Dennett exploits the
concept of the Library of Babel in order to mentally pic-
ture the vastness of such search spaces. “Imagine travel-
ling in a spaceship through the Moby Dick galaxy of
the Library of Babel. This galaxy itself is vastly larger
than the whole universe itself, so no matter what direc-
tion you go in, for centuries on end, even if you travel
at the speed of light, all you see are virtually indistin-
guishable copies of Moby Dick . . . David Coperfield is
unimaginably distant in this space” [9]. Through this
visualisation, he brings into question the applicability
of many of our usual ideas about location, about search-
ing and finding and other such mundane and practical
activities.

As Dennett points out, if one is to work within
such vast spaces it is essential to realise the difference
between what is possible in principle and what is
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possible in practice. Thus, although it is in principle
possible to exhaustively search such spaces, practically
it is impossible. A key concept in what is practical is
the idea of distance from the region that has already
been conquered within the vast universe of possible de-
signs. This region represents what actually exists and
is in itself huge but is nevertheless vanishingly small in
relation to the whole design universe. What counts as
possible will be anything that can be obtained by travel-
ling from this conquered region outwards. The resulting
notion of possibility will have an important property:
some designs will be more possible than others—that
is nearer in the multidimensional universe, and more
accessible, easier to get to.

A more accurate metaphor for elucidating the design
process might be evolution in nature. It is clear that nat-
ural evolution has not been a search process that found
the optimal organisms, species and ecosystems that we
find today in a vast space of possible designs. This is re-
flected by the fact that if the process were repeated, the
chances of it discovering the same organisms, species
and ecosystems would be infinitesimally small [10].
Instead, the course of natural evolution has been the
result of combination of history and accident. When
John Holland first conceived of un-natural evolution,
it was seen as a direct analogy with natural evolution
[11]. The evolutionary design paradigm presented re-
instates the direct analogy between natural evolution
and un-natural evolution.

Natural Evolution

The evolutionary process acts through selection, trans-
mission and variation (Universal Darwinism) [12]. In
nature, large populations of organisms individually re-
produce to generate new offspring. Natural selection
ensures that more successful creatures are more likely
to reproduce. Transmission ensures that the offspring
inherit some features of their parents. Variation ensures
that offspring also have some entirely new features.
Thus, although the evolutionary process is not explic-
itly specified anywhere, when these three ingredients
are present the process of evolution can emerge. Fur-
thermore, this process can emerge regardless of the
medium, be it biological, computational, cognitive, etc.

Within a biological medium, each organism is grown
from an encoded set of instructions, known as the geno-
type, into a fully developed organism, known as the
phenotype. An organism’s genotype consists of a set
of genes, where a gene can be thought of as a group

of manufacturing instructions. This process of growing
the phenotype from the genotype is known as an em-
bryogeny and is a key element in understanding the in-
terplay between selection, transmission and variation.

Transmission and variation both act at the level of the
genotype. Transmission occurs through sexual repro-
duction, whereby a ‘copy and paste’ mechanism com-
bines genetic material from both parents and transfers
it to the offspring. Variation occurs through errors in
this copying process. Natural selection, however, acts
at the level of the phenotype. Only those organisms
whose phenotype is well suited to the current environ-
ment will survive long enough to be able to reproduce.

Thus, those organisms that have phenotypes that are
unfit will not reproduce and therefore their genes will
not survive. On the other hand, organisms that are fit
will reproduce thereby allowing their genes to survive,
possibly long after the organism has already died. The
key point is that selection, transmission and variation
are able to edit the genes of a whole species to produce
a revised set of genes specifically suited to the current
environment. In the resulting population, the frequency
of genes that are able to construct fit individuals will
have increased.

Un-natural Evolution

The evolutionary systems mirrors this process. A popu-
lation of alternative designs is maintained. Natural se-
lection is simulated with more successful designs hav-
ing a higher chance of selection for reproduction. The
process of reproduction will then generate new designs
that inherit some features from their parent designs and
have some entirely new features.

A wide range of evolutionary algorithms exist. The
four main types are genetic algorithms [13], evolution-
ary programming [14], evolution strategies [15] and ge-
netic programming [16]. Of these, genetic algorithms
are the best known and probably the most widely used.
Genetic algorithms were developed by Holland and his
students as a way of formally studying the phenomena
of adaptation as it occurs in nature. He presented the
genetic algorithm as an abstraction of biological evolu-
tion [17]. The algorithm maintains a population of in-
dividuals where each individual consists of a genotype
and a phenotype. By using a kind of natural selection
together with genetics-inspired operators of crossover,
mutation and inversion the algorithm is able to move
from one generation of to the next. Each generation
some individuals will die off and others will be born.
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Those individuals that die off will, on average, have
phenotypes that find themselves in the lower levels of
the fitness landscape, whereas those that are born will,
on average, have phenotypes that find themselves up
in the higher levels, towards the peaks. Thus the popu-
lation is continuously edited ensuring that each new
generation will have a slightly higher average fitness
than the previous one.

For any given problem, many evolution programs
can be defined. Such programs will range from being
very domain independent, referred to as ‘weak’ meth-
ods, to very domain specific, referred to as ‘strong’
methods. Classical genetic algorithms fall into the cat-
egory of weak methods. Although they must have a do-
main specific mapping from the genotype to the pheno-
type, a domain specific phenotype representation and
domain specific fitness criteria, other parts of the al-
gorithm are totally domain independent. Three funda-
mental elements of this domain independent core of
the genetic algorithm are the selection process, the ge-
netic operators and the genotype representation. Weak
evolution programs, such as the classical genetic algo-
rithm, have certain advantages over other stronger al-
ternatives. Since they make few assumptions about the
problem domain, they enjoy wide applicability. The
ruthless abstraction and simplification of these algo-
rithms has also allowed a strong theoretical foundation
to be laid down [18, 19] .

However, a number of researchers in various spe-
cialised fields, including design, have found that most
real-world problems can not be handled with the clas-
sical genotype representation and the corresponding
genetic operators. The representation consists of fixed
length binary strings and the genetic operators consist
of binary crossover and binary mutation. When applied
to complex problems, these representations and opera-
tors do not allow the knowledge within the domain to be
succinctly described. In order to overcome this hurdle,
stronger assumptions must be made about the prob-
lem domain [20]. Thus, whereas genetic algorithms
require key elements to remain domain independent,
evolutionary systems in fields such as design will typi-
cally allow them to become more complex specialised
domain specific components.

One area that has lately been becoming gradually
more complex is the mapping process from genotype
to phenotype. The use of genetic algorithms in opti-
misation problems required only a straightforward di-
rect mapping from the binary string to the parameter
being optimised. However, in attempting to capture a

wide range of alternatives, evolutionary systems are
now employing highly complex problem specific de-
velopmental processes. In evolutionary design systems,
this process takes the form of a generative process that
starts with encoded design code scripts and decodes
them into fully developed design proposals [21, 22].

The Generative Evolutionary Paradigm in Design

The cognitive process of design can be understood as a
wetware contrivance created by natural evolution that
increases travel distance in design universe. Thus, indi-
viduals whom are in possession of this cognitive wet-
ware contrivance are able to explore regions of the de-
sign universe otherwise unreachable. These wetware
contrivances have created numerous hardware con-
trivances such as the pencil and the drawing board in or-
der to make travel in design universe even more daring.
Furthermore, software contrivances such as CAD pro-
grams or even evolutionary design systems will further
enhance and extend the regions of the design universe
that can be reached. Thus these software systems take
their place alongside other wetware and hardware con-
trivances as instruments for undertaking vanishingly
diminutive assaults on the vast design universe [23].

The proposed generic framework for a evolutionary
design system is shown in Fig. 1 and consists of four

Figure 1. Diagram showing four main phases of the evolutionary
cycle.
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main phases; start, generate design proposals, make
performance predictions and create populations. The
framework drops the biological references and instead
refers to the genotype as the code script and the phe-
notype as the design proposal. In the start phase, var-
ious representations are defined and populations are
initialised. The generate phase creates a population
of design proposals from a population of code scripts
through a form of development or growth within an en-
vironment. The prediction phase simulates each design
proposal in the environment and then evaluates its per-
formance. In the create population phase a new code
script population is created by copying and transform-
ing the most successful code scripts from the previous
population. This new code script population then be-
comes the start of the next cycle.

Environments

Any evolutionary system must operate within some
sort of pre-existing universe. The laws and meta-
representations of this universe remain unaffected
throughout the evolutionary process. In the natural
world the laws are analogous to fundamental physi-
cal laws and the meta-representations are analogous
to molecular chemistry. They define a kind of meta-
environment, within whose constraints the evolution-
ary process must proceed. Stuart Kauffman describes
this as a collaboration. “The actual morphologies of
organisms must also be viewed as a collaboration be-
tween the self-ordered properties of physicochemi-
cal systems together with the action of selection. Oil
droplets are spherical in water because that is the low-
est energy state. . . . The genomes capacity to generate a
form must depend on very many physicochemical pro-
cesses constituting a panoply of developmental mech-
anisms beyond the sheer capacity of the genome to
co-ordinate the synthesis of specific RNA and protein
molecules in time and space. Morphology is a marriage
of underlying laws of form and the agency of selection”
[24].

In un-natural evolutionary systems this non-
evolvable meta-environment is traditionally much
more specialised that in its natural counterpart. For
example, the meta-environments for optimisation sys-
tems include a complete (usually implicit) specification
of the overall structure of the design. In such simpli-
fied systems there is no potential for the evolution of
the design; only certain parameter values can evolve.
Evolutionary design systems, on the other hand, aim

to be more generic in that they employ complex rep-
resentational schemas that allow a much wider vari-
ety of designs to be evolved. Such systems will com-
monly rely on a generative process that takes an en-
coded code script and expands this to a decoded design.
Thus, compared with optimisation systems the meta-
environments of evolutionary design systems need to
be more abstract and generalised.

The generative process is in essence a simulation of
an invented meta-environment. This meta-environment
has been designed such that, when a code script of a cer-
tain representation is placed within it, it will ‘take root’
and grow into a design proposal. The importance of
the environment within this process must be stressed.
Consider the example of the acorn and the oak tree.
The environment can affect the generative process in
three main ways. Firstly, the environment can affect
the way that the code script grows into the design. For
example, a tree might grow towards the area with most
daylight. Secondly, the environment can affect the de-
signs chances of reproducing. For example, in a for-
est were most trees are short, a tall tree might have
greater chances of survival and therefore also have
greater chances of ‘reproducing’. Lastly, the relative
success of a particular species within a particular en-
vironment can change that environment. For example,
in a forest of short trees, a particular species of tall
tree might do rather well and might eventually come to
dominate the forest, thereby drastically changing the
environment.

Those aspects of developmental processes that are
due to external influences rather than internal genetic
influences, are referred to as epigenetic factors. Evo-
lutionary design systems tend to disregard epigenetic
factors, instead focusing purely on the genetic factors.
In such a scenario, the environment within which the
development takes place is totally independent from the
environment within which the proposed design must
compete [25]. For example, when a hen lays an egg,
the interior of the egg can be described as the environ-
ment in which embryogenesis occurs. Subsequently,
once the egg hatches, it is the outside world that be-
comes the environment in which the chick must live.
However, within the domain of design, the environ-
ment of the outside world plays a fundamental part
in assessing the appropriateness of the proposed de-
sign. To disassociate the developmental process from
the environmental influences is to deny the evolution-
ary process a valuable symbiotic interaction between
the environment and design proposals.
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The Generative Process

In nature a one-dimensional genetic code is able to
specify a three dimensional animal. An organism’s
shape and that of its tissues derive from the shapes of
collections of cells of a variety of types. The ‘genetic
program’ controls cell differentiation during the devel-
opment of the adult from the fertilised ovum. Different
cell types arise and differentiate and, ultimately, in a
human, form several hundred cell types. Each cell in
the human body contains essentially the same genetic
instructions. These instructions include the structural
genes coding for about 100,000 different proteins. The
shapes of these proteins confers properties and func-
tions on them; for example certain shapes might allow
them to fit together with other proteins to form cell
structures, while others might allow it to bind to chem-
icals and change the speed with which they react [26].

The question that remains is what controls the ex-
pression and repression of genes? Kauffman describes
this as follows “Cell types differ because different sub-
sets of genes are ‘active’ in different cell types. . . . The
expression of gene activity is controlled at a variety
of levels, ranging from the gene itself to the ultimate
protein product. It is this web of regulatory circuitry
which orchestrates the genetic system into coherent or-
der. That circuitry may comprise thousands of molec-
ularly distinct interconnections” [27].

Computational models of generative processes face
similar questions. How can complex structures emerge
using only relatively small quantities of initial data?
Such models typically attempt to develop rising levels
of organisation through the creation of self organis-
ing complex systems. These systems encode rules that
will self-organise to produce a morphology. Further-
more, they often employed fractal like iterative growth
processes in order to attempt to replicate the types of
forms found in nature. Two types of model will be com-
pared; accretive growth models and Lindenmayer sys-
tems. The accretive growth models simulate exogenous
mechanisms of growth in that components of the grow-
ing structure communicate through the surrounding
space. Thus the rules that control the generative process
are assumed to reside within the meta-environment. In
contrast L-systems simulate endogenous control mech-
anisms, which rely on information flow within the de-
veloping structure. In this case, the rules are assumed to
reside in the structure itself. Nature employs both these
strategies. “In nature, endogenous and exogenous con-
trol mechanisms are often combined. For example, the

development of a tree is affected by the genetically con-
trolled formation of apices, the flow of water, nutrients,
and phytohormones through the branching structure,
and the plant response to the environmental factors,
such as the shading and crowding of branches” [28].

Historically, the first model of morphogenesis was
proposed by Alan Turing in 1952. He presented a
reaction-diffusion model for the chemical basis of mor-
phogenesis. The model is based on substances called
morphogens, that are made responsible for pattern for-
mation. A system of partial differential equations de-
scribes changes in morphogene concentrations while
the substances diffuse and react in space and over time.
The reaction-diffusion model assumes that the medium
on which the reaction diffusion originally takes place,
be it a surface or a line, does not grow. One of the first
computer models of growing biological structures was
proposed by Eden [29]. The simulation takes place in a
square grid. A single initial particle is placed in the cen-
tre of this grid. The subsequent particles are attached,
one by one, to randomly chosen points to the border of
the structure formed in the previous steps. Ulam [30]
proposed extension of Eden’s model, using a formalism
known as the cellular automaton. A cellular automaton
consists of cells, arranged in a (usually) square grid,
and communicating with each other. Ulam assumed
that new cells can be added on the border of the struc-
ture formed so far only if these cells do not collide
with each other or with the previously added cells. The
development of the resulting branching structure, he
called Maltese crosses.

In 1968, Lindenmayer invented a formalism that
yields a mathematical description of plant growth
known as an L-system. L-systems are remarkably com-
pact. An L-system consists of a specialised cell and a
description of how new cell types can be generated
from old cell types. The seed cell is known as an ax-
iom, and for a particular L-system, all growth starts
from the same axiom. The description of how to grow
new cell types from old cell types are known as produc-
tion rules. The rules specify a simple rewriting scheme
that involves taking the axiom and substituting as many
of the symbols as we can, as specified by the rules. After
performing the substitution on the axiom, we will have
another string of symbols. We can apply the substitu-
tion rules to this result to get a third string of symbols,
and so on. By itself the string means absolutely noth-
ing, but in the context of a device that can interpret each
symbol as a simple instruction, the string can represent
the building plan for a fractal structure.
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The two types of growth model represent two possi-
ble methods of interaction between the generative pro-
cess, the environment and the meta-environment. The
accretive growth models rely on the meta-environment
to store the growth rules and rely on the environment for
exogenous communication. The Lindenmayer system
also relies on the meta-environment for storing the pro-
duction rules. However, the environment is not utilised
for communication, instead relying on an endogenous
mechanism.

Evolving Evolvability

In nearly all cases, evolutionary systems do not al-
low the rules and representations themselves to evolve.
However, in nature, the DNA framework, within which
the evolutionary process is currently operating, was not
created prior to starting the evolutionary process. The
rules and representations of the DNA framework them-
selves evolved from the RNA framework. The reasons
for its preferability are clear: by being double stranded,
the DNA rules and representations permitted a system
of error correcting enzymes, which could repair copy-
ing errors in one strand by reference to its mate. This
made the creation of longer more complicated genomes
possible [31].

Computational systems that allow for the evolution
of the rules and representations that define the individ-
ual designs thus aim to become even more generic.
These systems allow evolution to directly influence
both the generative and transformative processes. The
predictive process, on the other hand, can only ever be
indirectly influenced by evolution. Within the genera-
tive process, the evolvable elements might include the
representation of the code script. Within the transfor-
mative process, the code script transformation opera-
tors might be evolved. However, the predictive process
is only affected by changes in the evaluation environ-
ment. Thus, although the evolutionary process can not
influence this environment directly, it can affect the
evaluation environment for any one species by influ-
encing the evolution of other, competing, species.

The key step in attempts in allowing evolutionary
systems to take control of these rules and representa-
tions is to include their definition in the code script. For
example, the Lindenmayer generative process could be
used within an evolutionary system. The code script of
such a system could then either be restricted to defining
the initial starting seed or it could additionally define
the production rules by which that seed is going to

grow. The latter system would obviously allow a much
wider range of designs to be generated. However, in
order for the evolutionary system to attain the level of
control found in nature, not only the production rules
but also the language within which these rules are writ-
ten needs to be stored within the code script. But this
implies that one of the representations to be defined
in the code script is the code script representation it-
self! In order to unravel this seeming contradiction,
the evolutionary process must be seen as a sequence
of historical events. In Nature, for evolution to be able
to influence the ‘language’ in which a code script is
written, two consecutive steps must take place. First, a
species must evolve with the propensity to be able to
interpret some new, hitherto non-existent, type of code
script ‘language’. Second, that same species must fur-
ther evolve so that, rather than passing down its code
script to the next generation in the old ‘language’, it
is now able to produce and pass down code written in
the new ‘language’. Only in this way can the new code
script get a hold since the creation of any new code
script ‘language’ that precedes the mechanisms to in-
terpret that ‘language’ is sure to never proceed past the
embryonic stage.

For evolutionary systems to be able to come any-
where near the awesome creative power of evolution in
nature, similar meta-representational schemas would
have to be created. In theory, such systems might then,
given enough time, generate unfathomable designs in-
comprehensibly well adapted to the most complex en-
vironments. However, the creation of such generic sys-
tems is extremely complex and fraught with problems.
At present, evolutionary systems are relatively simple
and attempts at including the simplest representational
evolvability is proving to be a serious challenge. Fur-
thermore, even if the creation of such a generic system
was feasible, time is a critical factor. Nature has had
billions of years to create the complexity of organisms,
species and ecosystems. Within an evolutionary sys-
tem, billions of years must be compressed to hours.
Despite the seeming unfeasibility of these grandiose
goals, the creation of practical evolutionary software
systems that are able to exploit a highly constrained
version of the creativity displayed by natural evolution
are becoming feasible. Within this context, two avenues
of future development seem to present themselves; one
short term and one long term.

In the short term various non-evolvable rules and rep-
resentations can be explored. These rules and represen-
tations are analogous to the ‘design schemas’ used by
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most designers. “Most designers employ a methodol-
ogy highly personalised yet can often be generic when
the designer’s body of work is taken as a whole. It is
part of their working method and hence characterises
their ‘style’ by which they are known. With an artist
this style maybe a clearly recognisable graphic tech-
nique, as with say the drawings of Beardsley, a paint-
ing technique, such as the impressionists, or perhaps
a distinctive choice of palette, say Titian. With archi-
tects and designers, the same is true. In some cases the
style is also immediately recognisable from visual clues
such as the work of Gaudi or Mackintosh. But often
the style is more organisational or procedural or con-
cerned with more abstract space and form such as with
the work of Frank Lloyd Wright, although even with
Wright the large roofs and low eaves of his early houses
are an immediate stylistic give away. This personalised
but generic methodology can be described as a design
schema in that it is an abstract conception of what is
common to all designs” [32]. These design schemas
can be relatively domain specific, thereby allowing for
certain concrete and immediately useful results to be
achieved.

Within the vast universe of possible designs, de-
sign schemas are abstract formulations that attempt
to cover certain regions of the already conquered re-
gion but also to influence the assaults on the as yet
unconquered regions. This balance between covering
what exists today and influencing what might exist to-
morrow can be clarified by considering the two ex-
tremes that tend to be adhered to today. On the one
hand, the representational schemas commonly utilised
in optimisation algorithms warily advance the fron-
tier of the conquered region by the smallest possi-
ble amount. On the other hand, the so called generic
representational schemas utilised in some exploration
algorithms foolishly attempt to advance the frontier
far into the unknown. Design schemas propose a dif-
ferent strategy that is neither totally rigid nor totally
flexible.

In the long term, these new insights gained from
work on specialised schema can be utilised to start ex-
perimenting with the implementation of highly con-
trolled meta-representational schemas. These meta-
representations will not discard the design schema,
rather they will allow for the evolution of the schemas
themselves. Such experimentation may some day be-
come the basis for the development of evolutionary
systems that are able to go beyond the limitations of
human imagination.

Conclusion

An evolutionary paradigm has been presented as a basis
for creating active design tools that are able to generate
and explore alternative design proposals. The genera-
tive process within an environment has been argued to
be a key component of any such tools. Intrinsic proper-
ties of the generative processes are believed to lead to
much more complex morphologies than those achiev-
able with direct mapping.

However, a number of constraints upon the evolv-
ability have been discovered. The Darwinian process
of mutation, recombination and selection is not uni-
versally effective in improving complex systems like
computer programs or chip designs. For adaptation
to occur, these systems must posses “evolvability”.
“Among the earliest experiments in evolutionary com-
putation, Friedberg [33] attempted to evolve function-
ing computer programs by mutating and selecting the
code but found that mutations effectively randomised
the behaviour of the programs, and adaptive evolu-
tion was impossible. . . . It became understood that the
mutation/selection process is not universally effective
in producing adaptation if favourable mutations can
not be produced. . . . In contrast to Friedberg’s results,
Koza [34] succeeded in designing computer programs
that perform well on complex tasks by recombining
branches of parse trees for the programs. . . . . The dif-
ference between Friedbergs and Koza’s systems was in
the representation of the computer programs and the
way genetic operators act on them” [35].

In Nature, organisms are built up by the process of
growth. A mutation, if it has to change the shape of
an organism, will normally do it by adjusting the pro-
cess of embryonic growth. The kind of mutations that
are available for natural selection to work on will de-
pend upon the kind of embryological process that the
species possesses. Dawkins describes how one embry-
ology might be better than another. “Some types of
embryology may, in some sense, be ‘better’ at evolv-
ing than others. The kinds of variations thrown up
by some types of embryology may be more evolution-
arily promising than the kinds of variations thrown up
by other embryologies. Certain kinds of embryology
may be prone to vary in certain ways; other kinds of
embryology tend to vary in other ways. And some of
these ways may be, in some sense, more evolution-
arily fruitful than others” [36]. The success of any
evolutionary design system will depend on how read-
ily the generative process allows evolution to emerge.
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The factors that influence this dependence are yet to be
unravelled.
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