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1 INTRODUCTION 

This paper describes three design models that make use of generative and evolutionary 

systems. The models describe overall design methods and processes. Each model defines a 

set of tasks to be performed by the design team, and in each case one of the tasks requires 

a generative or evolutionary design systems. The architectures of these systems are also 

broadly described. 

Generative design systems are used to generate large numbers of design alternatives that 

differ significantly from one another. These systems define a complex growth process that 

transforms an encoded seed into a design. By making small modifications to either the 

transformation process or the seed, alternative designs can be generated.  

Evolutionary design systems are used to evolve designs that are adapted to their 

environment. These systems are loosely based on the neo-Darwinian model of evolution 

through natural selection. Such systems consist of a cyclical process whereby whole 

populations of designs are continuously being manipulated in order to ensure that the 

population as a whole gradually evolves and adapts. 

The following three models are presented: 

 The first model proposes the use of a generative design system that invokes a set of 

architectural concepts that have been captured and codified by the designer. The 

system generates designs in response to an environment. Capturing and codifying 

architectural concepts allows the system to generate designs that embody these 

concepts. The designer can generate alternative designs by making small 

generative modifications. This is called the concept-seeding model. 

 The second model proposes the use of an evolutionary design system that has a 

generative system embedded within it. The generative system generates alternative 

designs in response to an environment. However, in this case, the system does not 

use any codified architectural concepts. The generative system is used to generate 

designs, with the evolutionary system being used to manipulate and evolve the 

generative modifications. This is called the generative-evolutionary model 

 The third model combines the previous two models. This model also proposes the 

use of a generative-evolutionary system. The embedded generative system 

however takes the concept-seeding approach and invokes a set of codified 

architectural concepts to generate designs. This allows the generative-evolutionary 

system to evolve alternative designs that all embody the codified concepts. This is 

called the combined model. 
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2 CONCEPT SEEDING MODEL 

Most designers employ a methodology that is highly personalised. However, when the 

designer’s body of work is taken as a whole, this methodology can also be seen as being 

highly generic. It is part of their working method and hence characterises their ‘style’ by 

which they are known. With an artist this style maybe a clearly recognisable graphic 

technique, as with say the drawings of Beardsley, a painting technique, such as the 

impressionists, or perhaps a distinctive choice of palette, say Titian. With architects and 

designers, the same is true. In some cases the style is also immediately recognisable from 

visual clues such as the work of Gaudi or Mackintosh. But often the style is more 

organisational or procedural or concerned with more abstract space and form such as with 

the work of Frank Lloyd Wright, although even with Wright the large roofs and low eaves 

of his early houses are an immediate stylistic give away.  

This personalised but generic methodology is an abstract conception of what is common to 

all designs. Inside the designer’s office, this methodology often becomes formalised. It is 

common to find sets of standard details in architects’ offices that serve to economise in 

time, ensure details are well tested, but also to ensure a consistency of detailing and to 

reinforce the house style. In many offices this extends to design procedures, approaches to 

organisation and so forth. The same is true of industrial designers where again stylistic 

characteristics such as details, colour, preferred materials give economy, consistency, 

quality control and identifiable house style. Again the design office may have other 

characteristics that make it identifiable such as concentration on certain building types or 

product markets, or it may be more abstract characteristics such as particular interest in 

social or user centred concerns. Even these more abstract concepts can make the designer 

immediately recognisable, at least to fellow professionals, and often to the interested 

public. These characteristics even extend into areas of fashion, jewellery and accessories 

where particular designer labels are immediately recognisable on the street. The 

identifying characteristics often go through changes during the development of the 

designers, sometimes with abrupt changes as with Le Corbusier, but usually a continuous 

progression can be seen. The stylistic characteristics can continue with an office, studio or 

company, long after the death of the original designer. 

2.1 The concept seeding approach 

If the architectural concepts developed by designers could be captured and codified in a 

generic form, then a generative system might be able to invoke them to generate designs 

that embody the architectural concepts. This approach of capturing and codifying 

architectural concepts is referred to as concept seeding  (Frazer 1974, 1979).  

2.1.1 The concept seeding model 

Figure 1 summarises the concept seeing model. The model identifies certain tasks to be 

performed by the design team, with each task requiring certain inputs and resulting in 

certain outputs. The inputs and outputs are depicted in boxes, where the tasks are depicted 

without boxes.  

The concept-seeding model defines three tasks: codifying generative concepts, codifying 

architectural concepts and generating designs. First, a set of generation rules are defined 

that can develop the concept seed into a design. Second, a concept seed is defined that 
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captures certain architectural concepts. Third, designs are generated in response to the 

design environment (which includes both the context and the criteria). This last task 

requires a generative system. 

The tasks that the model identifies should not be assumed to be mutually independent. In 

most cases, the generation rules and the concept seed would actually be developed in 

parallel. 

 

Figure 1: The concept-seeding model. 

Codifying the architectural concepts can be done historically by analysis as manifest by 

endless attempts to recapture the nature of the paintings of Mondrian or the villas of 

Palladio. The success varies depending on the sensitivity of the re-creator. Often the 

results are crass particularly in the case of trying to create new works by dead artists. 

Mondrian would be horrified to see what some programmers might think would pass as 

his work. Often the help of the living designer can be involved. In the case of our work 

with Cedric Price and Walter Segal, the architects were alive and were involved in the 

capture process. Walter Segal is now dead but we still have the concept seed for his timber 

housing system captured for perpetuity in the software (Frazer 1982). 

2.1.2 The concept seeding system 

Figure 2 summarises the system required by the concept seeding model. In this case, 

information that is defined separately from the system is depicted in boxes, whereas 

information that is embedded within the system is shown without boxes. 

The concept seeding system is, in itself, not a cyclical system. The system generates a 

single design proposal from a single seed in response to the design environment. However, 

the assumption is that the designer will explore a wide range of design possibilities by 

making small generative modifications to either the concept seed or the generative rules. A 

cyclical process guided by the designer therefore results. 
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Figure 2: The concept seeding system 

2.2 1968: Reptile System 

The first attempted to realise this approach was the Reptile System, developed by Frazer 

from 1968 onwards (Frazer 1974). The Reptile system was developed as a folded plate 

space-frame system that was capable of creating a wide variety of enclosures from just 

two basic structural units. These units can be orientated in 18 different ways relative to 

each other resulting in over three hundred combinatorial possibilities. 

Drawing a Reptile enclosure by hand was very tedious, and as a result a computer program 

was developed. Initially in 1967, a program was developed to aid in the process of 

drawing the enclosures and creating perspective views. At this stage, the computer 

hardware, in terms of speed and memory, but also in terms of graphical output 

capabilities, was extremely limited. Much of the programming effort therefore focused on 

optimising how these enclosures were stored and manipulated. However, the program was 

soon enhanced with additional features, and by 1971 a generative program was developed 

that was able to semi-automatically generate complete Reptile enclosures. 

 

Figure 3: The two structural units. 

The location and orientation of units are specified by four integers.  The first two integers 

specify the location on a two dimensional grid with 60 axes; the third integer describes 

depth or level of the unit in the structure, and the fourth integer specifies the orientation of 

the unit. This whole description of the unit in space was originally packed into one word 

of the Cambridge Atlas Titan with a pointer to the next unit in the chain. This is define as 

the genetic code script. 

The basic data structure is set up and manipulated by a series of machine code subroutines 

and functions. These allow the descriptions of the units to be retrieved, deleted or updated, 

and additional units to be inserted into the chain.  

The seed is a minimal closed configuration of the units which includes units in all possible 

orientations but not necessarily all possible combinations. The development of a building 

is initialised by seeding the data structure with a description of the units making up the 

selected seeds with the units chained from the top of the seed downwards in a clockwise 

direction.  

This initial seeded data structure is then manipulated by a series of Fortran subroutines 
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which enable the seed to be grown, stretched, sheared, until the required building from is 

produced. Figure 4 (Frazer 1974). 

The particular configuration of the units in the seed has a significant effect on the final 

over all building form.  The information about the type and orientation of the starting unit 

and those adjacent to it in the data chain will vary from seed to seed and this will affect the 

choice in the program of procedure for infilling units in the data chain. This is analogous 

to the difference between the transition rules in Cellular Automata and the initial 

configuration (often referred to as the seed). In this early and restricted version of the 

program only two seeds were ever used, the knot (containing 42 units) and the other, the 

star (containing 72 units).  

 

Figure 4: Building forms growing from two different seeds 

during the epigenetic process. 

 

Figure 5: Plan of building generated from star seed. 
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2.2.1 Generalised version 

A generalised, but still component based version of the program was later developed. The 

program required two kinds of information, first, the conceptual model of the building 

information in its minimal coded configuration and second, a description of the actual 

components and details for the output stage. 

The item description in the seed is not necessarily a building component but is more 

usually an assembly of components in a key configuration such as a corner or change of 

direction.  The item is again located by just one point and this point is usually taken as a 

change in surface direction to facilitate daylight and similar calculations. 

2.2.2 Extended version 

The concept of cultivating the seed to produce different buildings has been extended to the 

concept of mutating details of the seed to produce variants to overcome the great increase 

in environmental variety encountered with more general purpose building construction. 

Individual mutations of the assemblies can be developed interactively and stored as 

variants which are referred to by an additional set of digits in the item description on the 

data chain. 

As with the Reptile program all the necessary information for the creation of new items in 

the data chain is derived from the type, location and orientation of the item in the seed and 

those adjacent to it in the chain at the point where a move or change is to be made. An 

important feature of the program is that it only takes account of dimensional co-ordination 

if this is essential to the concept. It does not rely on modular co-ordination or a grid but 

computes the distances between locating points of items in the chain, to determine 

modules appropriate to the construction being considered. 

In operation the configuration of the minimal construction or seed is compared with the 

user’s requirements for a particular building, and the seed is grown, stretched, deformed 

and pruned, until it conforms to these requirements. For the same set of building 

requirements many forms of building may be possible even from the same seed and also 

the same form of building can be produced by several different cultivation routines. The 

seed is compared with the brief for the building and the data structure is modified in two 

ways.  First the quantifiable and specific parts of the brief are dealt with as far as possible 

in the form of optimisation routines. Alternative strategies for cultivating the seed are 

automatically evaluated and the program adjusts itself on a simple heuristic basis to adopt 

those tactics that have proved most successful in previous attempts. Second, the user 

evaluates a series of solutions produced by the first technique in terms of non-quantifiable 

criteria, including aesthetic judgements. The program can either learn to adapt to the 

aesthetic prejudices of a particular user, or the types of solution can be classified in terms 

of formal or aesthetic characteristics, which could then be requested by the user (Frazer 

1979). 

3 GENERATIVE-EVOLUTIONARY MODEL 

The generative-evolutionary approach is described in An Evolutionary Architecture 

(Frazer 1995) as an attempt to achieve in the built environment the symbiotic behaviour 
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and metabolic balance that are characteristic of the natural environment. The generative-

evolutionary model therefore proposes the evolutionary process of nature as the generating 

process for architectural form. The profligate prototyping and awesome creative power of 

natural evolution are emulated by generating virtual architectural designs, which respond 

to changing environments. Successful developments are encouraged and evolved. 

Architecture is considered as a form of artificial life, subject, like the natural world, to 

principles of morphogenesis, genetic coding, replication and selection (Frazer 1995). 

Such evolutionary systems consist of a cyclical process whereby whole populations of 

designs are continuously being manipulated. A generative system uses code-scripts of 

instructions in order to produce computer models of alternative designs. These designs are 

used to simulate the development of prototypical forms that are then evaluated on the basis 

of their performance in a simulated environment. By mutating and manipulating the code 

scripts, new forms are generated. Very large numbers of evolutionary steps can be 

processed in a short space of time and the emergent forms are often unexpected.  

3.1.1 Typical evolutionary model 

Most engineering applications of the evolutionary approach are interested in convergence 

on an optimal solution in response to clearly defined computable criteria for selection. 

Typically, such systems predefine an existing design and those parts that are thought to 

require improvement are parameterised.  

Figure 6 summarises the typical evolutionary model. This model identifies two tasks: 

codifying the parametric model and evolving designs. First, mapping rules that specify 

how the parameters should be mapped to the parametric model, and the evaluation rules 

that specify how the model should be evaluated are defined. Second, designs are evolved 

in response to the environment.  

 

Figure 6: The typical evolutionary model 

3.1.2 Typical evolutionary system 

Figure 7 summarises the typical evolutionary system. A mapping rules produces the 

design from an encoded set of parameter values by inserting the values into the parametric 

model. The evolutionary system evolves these parameter values. We define this as 

convergent evolution by natural selection. 
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Figure 7: The typical evolutionary system 

Although this approach has been very successful, the variability of the design alternatives 

that are produced is very limited. Since the designs are all based on the same parametric 

model, the designs will all have the same overall organisation and configuration. As a 

result, these programs are seriously limited in their ability to evolve new designs.  

3.1.3 Convergent and divergent evolution 

Convergent evolution by natural selection is not the only possibility. In the Origin of 

Species, Darwin talks first of the technique of artificial selection as practised by the 

racehorse or dog breeder. In our model artificial selection by the designer or user opens up 

the opportunity to demonstrate preference. It can be useful as a means of dealing with ill-

defined selection criteria, particularly user centred concerns. It also provides the 

opportunity for the designer to use their experience and intuition to jump to faster results.  

Nature also relies on divergence to keep a varied gene pool active to cope with sudden 

changes such as the increasing success of a predator or change in the environment. So to, 

our model provides for divergent evolution for the generation of alternative ideas. This 

gives a matrix (Figure 8) of four possible combinations of natural/artificial selection and 

convergent/divergent evolution  (Dawkins 1986, Simms 1991, Graham 1993, Frazer 1995). 

 

Figure 8: Matrix of four possible types of evolution. 
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These evolutionary methods are frequently based on techniques such as the application of 

genetic algorithms developed by John Holland (Holland 1975). Holland saw the genetic 

algorithm as a direct analogy with the evolutionary processes of nature. It is useful to 

remind ourselves that his original book was most appropriately titled “Adaptation in 

Natural and Artificial Systems ” (Holland 1975). The process of natural selection can 

generate a wealth of alternative experiments, and the better ones survive. There is no one 

solution, there is no optimal solution, but there is continuous experiment. Holland did 

therefore not see the genetic algorithm as a convergent system. Holland illustrates 

applications in genetics, economics, game-playing, pattern-recognition, control and 

function optimisation and the central nervous system.   

3.2 Generative-evolutionary approach 

A generative-evolutionary system replaces the mapping step with a generative step. (See 

Figure 7 and Figure 10.) This generative step consists of an embedded generative system. 

Dawkins described such an approach in his book The Blind Watchmaker (Dawkins 1986), 

where he develops a simple demonstration of a generative-evolutionary system that 

allowed two-dimensional insect-like structures to be evolved by artificial selection.  

This approach requires that the generative rules be described in a genetic code. The code is 

then mutated and developed into a series of design models in response to a simulated 

environment. The models are then evaluated in the simulate environment and the code of 

successful models is selected. The selected code is then used to reiterate the cycle until a 

particular stage in the development a model is selected for prototyping in the real world.  

The generative-evolutionary approach does not require the embedded generative system to 

incorporate the idea of concept seeding. Instead, the generative rules that are developed 

tend to be very general, and are not intended to reflect particular architectural concepts. 

However, all such rules contain biases and constraints, and as a result the forms produced 

may nevertheless all share certain characteristics. 

3.2.1 The generative-evolutionary model 

Figure 9 summarises the generative-evolutionary model. The model identifies two tasks: 

codifying the generative concepts and evolving designs. First, generation and evaluation 

rules are defined. The generation rules generate designs from encoded code-scripts and the 

evaluation rules evaluate the design that are generated. Second, designs are evolved in 

response to the design environment. This second task requires a generative-evolutionary 

system.  
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Figure 9: The generative-evolutionary model. 

3.2.2 The generative-evolutionary system 

Figure 10 summarises the system required by the generative-evolutionary model. Initially, 

a population of code scripts is created. The evolutionary process then consists of four 

steps. First, designs are generated from the genetic code scripts through some form of 

epigenetic development in an environment. Second, designs are evaluated by simulating 

and analysing their performance within their environment. Third, the most successful are 

selected. Fourth, the selected code scripts are transformed by genetic operators such as 

crossover and mutation. These four steps then repeat. At some point the process may be 

stopped.  

 

Figure 10: Generative-evolutionary system. 

3.2.3 The role of the environment 

An important aspect of this approach is that the generative system generates designs in 

response to an environment. The environment consists of the design context and the 
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design criteria. The generative rules may require information about the context and criteria. 

This allows the developmental process that ‘grows’ a design to be an adaptive process. 

This adaptive process determines successive structural modifications in response to the 

environment and measures the performance of different structures in the environment. The 

adaptive process produces a sequence of structures from a set of operators. Information 

obtained from the environment influences the selections made. This contrasts with systems 

that use a mapping process. Mapping processes perform simple non-adaptive 

transformations that do not interact with the environment in any way. 

3.3 1995: The Interactivator 

On the 25th January 1995, a generative-evolutionary experiment was launched to involve 

global participation in the evolution of a virtual environment. The experiment was at the 

centre of the exhibition entitled An Evolutionary Architecture being the work of Frazer, 

his wife and their students at the Architectural Association and the School of Design and 

Communication at the University of Ulster. It proposed the evolutionary model of nature 

as the generating process for architectural form.  

The model proposed a generative-evolutionary system that was accessible via the Internet 

with the intention of encouraging wide participation thus creating biodiversity in the 

genetic design pool on which the model is dependent. Janssen was involved in developing 

a special demonstration version, known as The Interactivator. Although the theoretical 

system has been simplified, all the key elements are represented. Participation in the 

evolution of the model could be achieved either in the exhibition or in virtual form on the 

Internet. 

The system is based on the sequential evolution of a family of cellular structures in an 

environment. Each cellular structure begins development from a single cell inheriting 

genetic information from its ancestors. Each cell in the cellular structure contains the same 

chromosomes, which make up the genetic code. The cells divide and multiply based on the 

genetic code script and the environment with each new cell containing the same genetic 

information.  

3.3.1 Chromosome encoding 

The data structure used to represent the cellular growth is based on a universal state space 

or iso-spatial data structure where each cell in the world has a maximum of 12 equidistant 

neighbours and can exist in one of 4096 states, the state of a cell being determined by the 

number of spatial arrangements of its neighbours. 

The local environment of a cell in the world can thus be coded in a 12 bit binary string. 

For example, the string type (110110000110) would spatially represent a cell with six 

neighbours in particular positions. 

Chromosomes control the growth and development of the cellular structure. A typical 

chromosome consists of the following 5 parts: 

( patrick@velcro.demon.co.uk (1011010*11**) (000011011010) 1 192.5 ) 

 origin of chromosome condition action flag strength  

The five parts are decoded as follows: 
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 Origin of chromosome: The Internet address site from where the chromosome is 

received. 

 Condition: The local environment of a cell (* being a don’t care situation) 

 Action: The state of the cell in the next generation. 

 Flag: Whether a chromosome is dominant or recessive. 

 Strength: Fitness of the chromosome with respect to the environment. 

3.3.2 Developmental processes 

The developmental process of each member of the family consists of three parts – cellular 

growth, materialization and the genetic search landscape and is based on Goldberg’s 

simple classifier system. A genetic algorithm is used to ensure that future generations of 

the system learn from the previous ones as well as provide for biodiversity during the 

evolutionary process. The three developmental processes each consist of cyclical 

processes.  

 Cellular growth: Chromosomes are generated by either being sent in by a remote 

user, an active site or as a function of selection, crossover and mutation within 

cellular activity and are maintained in a main chromosomal pool. The physical 

environment determines which part of the main chromosomal pool becomes 

dominant. The local environment of each cell then determines which part of the 

genetic code is switched on. The cell then multiplies and divides in accordance 

with that genetic code (Figure 11 and Figure 12). 

 Materialization: As cellular division takes place, unstable cells are generated. In 

the next generation this leftover material creates a space of exclusion within the 

cellular space. This space of exclusion interacts with the physical environment to 

create a materialization. Boundary layers are identified in the unstable cells as part 

of their state information and an optimised surface is generated to skin the structure. 

This material continues to exist throughout the evolution of the model and will 

initially affect the cellular growth of future generations (Figure 13 and Figure 14). 

 Genetic search landscape: The selection criteria are not defined but are an 

emergent property of the evolutionary process, and is based on the relationship 

between the chromosomes, cellular structure and the environment over time. A 

genetic search landscape is generated for each member graphically representing the 

evolving selection criteria. Form, or the logic of form, emerges as a result of 

travelling through this search space (Figure 15). 

Once chromosomal stability has been achieved, the parent cellular activity is terminated. 

The final cellular structure, the materialization and the genetic search space are posted out. 

A daughter cellular activity is then initiated from a single cell. The fittest chromosome 

from the parent generation are bred using selection, crossover and mutation and combined 

with the new list of dominant chromosomes from the main chromosome pool to form a 

new chromosome set for daughter generation. 
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Figure 11: Cellular growth process. 

 

Figure 12: A sequence of cellular growths. 
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Figure 13: Materialisation process. 

 

Figure 14: A sequence of materialisations. 
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Figure 15: Genetic search process. 

4 COMBINED MODEL 

Combining the concept seeding model with the generative-evolutionary model result in a 

new type of model that integrates the advantages of both previous models. Such an 

approach was first proposed by Frazer in 1992 (Frazer 1990), and was further developed 

in the book An Evolutionary Architecture (Frazer 1995). 

The concept seeding model allows designs to be generated that embody particular 

architectural concepts. However, the model does not use an evolutionary system, and as a 

result it is up to the designer to discover the generative modifications that produce the 

most suitable design. The generative-evolutionary model allows designs to be evolved that 

are adapted to their environment in complex ways. However, the designs do not embody 

any architectural concepts and therefore tend to be highly abstract. The combined model 

synthesises these two previous models, thereby allowing designs to be evolved that  - as 

well as being adapted to their environment – also embody particular architectural concepts. 

4.1 The combined approach  

The combined model evolves the generative modifications that, in the case of the concept 

seeding model, the designer was required to make manually. These modifications 

introduced small changes to either the concept seed or the rules that transformed that seed. 

Representing these modifications as code-scripts allows an evolutionary system to evolve 

the modifications. The generative modifications encoded within the code-scripts are used 

to generate designs, these designs are then evaluated, and based on such evaluations new 

populations of modifications are created. This approach requires the range of valid 
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generative modifications to be rigorously defined. Such a rigorous definition is required in 

order to allow rules to be developed that can autonomically create new generative 

modifications. 

Such a combined model is applicable to a wide range of architectural concepts and 

geometries, all conceived as generative systems susceptible to development and evolution, 

all possessing the quality characterised by Viollet-le-Duc as ‘style’: ‘the manifestation of 

an ideal established upon a principle’. 

4.1.1 The combined model 

Figure 16 summarises the combined model. The model defines three tasks: codifying 

generative concepts, codifying architectural concepts and evolving designs. First, as with 

the previous model, generation and evaluation rules are defined. However, in this case, the 

generation rules must generate designs from the seed rather than from the code-script. 

Second, the concept seed is defined that codifies a set of architectural concepts. Third, the 

design alternatives are evolved in response to the design environment. This last task 

requires a generative-evolutionary system that includes concept seeding. 

 

Figure 16: The combined model. 

4.1.2 The combined system 

Figure 17 describes the system required by the combined model. The system is similar to 

the generative-evolutionary system previously described. However, in this case, the 

embedded generative system generates designs from concept seeds. The generated designs 

will therefore embody the set of architectural concepts codified by the seed. The code-

scripts encode the generative modifications. These modifications will make small changes 

either to the concept seed itself or to the generative rules that transform the seed. These 

generative modifications result in different designs being produced and evaluated. The 

generative modifications that result in designs with the highest fitness scores are then 

selected. The genetic operators are then used to create a new population of generative 

modifications, which will be used to generate a new population of designs, and so forth.  
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Figure 17: The combined system. 

Within the area of generative-evolutionary design system, the concept seeding idea 

constitutes an important departure from the traditional research direction. Most researchers 

developing divergent evolutionary systems see any constraints and biases as negative side 

effects that must be minimised (although they can never be completely eliminated). The 

concept seeding approach, on the other hand, amplifies the constraints and biases, but at 

the same time ensures that they reflect the design ideas developed by the design team. The 

constraints and biases are therefore seen a positive rather than a negative phenomena. 

4.2 2003: Janssen’s model and system 

Various aspects of the combined model have been demonstrated in isolation. For example 

a wide variety of generative systems using concept seeding have been developed. 

However, a comprehensive demonstration of the combined model has not yet been 

achieved. Janssen is currently developing such a demonstration. In addition, Janssen has 

further developed and refined Frazer’s combined model (Janssen 2003a, 2003b).  

4.2.1 Janssen’s combined model 

Broadly speaking, Janssen’s model follows the pattern developed in Frazer’s combined 

model. However, some fundamental modifications have been introduced. These 

modifications focus on two areas: the nature of the codified concepts and the structure of 

the overall model. 

First, the idea of capturing and codifying the architectural concept has been refined in a 

number of ways. The aim of developing an architectural concept is to be able to use this 

concept in order to create a variety of designs. However, Janssen has defined ‘variety’ 

more precise definition by using a distinction made in evolutionary biology between 

diversity and disparity (Jaanusson 1981, Runnegar 1987, Gould 2000). Diversity refers 

designs that differ in the proportions and dimensions of their parts, but that share the same 
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overall organisation and configuration of parts. Disparity refers to designs that have a 

fundamentally different organisation and configuration of parts.  

The architectural concept must contain enough flexibility and adaptability to allow 

disparate designs to be created. The architectural concept should therefore not predefine 

the overall organisation and configuration of the designs, but should instead focus on 

defining the parts of the design and their interactions and overlaps. These parts, 

interactions, and overlaps might be thought of as defining the character of the designs 

without specifying their overall form. Janssen therefore refers to the set of architectural 

concepts to as the character schema.  

The codifying of the character schema also differs from the Frazer model. In the Frazer 

model, the architectural concepts are codified in the form of a concept seed, but it is not 

clear to what extent this architectural concept affects the encoding of the other rules such 

as the developmental and mapping rules. In the new model, the codifying of the character 

schema is seen to affect all the evolutionary rules and data structures, including the 

developmental and mapping rules. The set of evolutionary rules and data structures are 

collectively referred to as the evolution schema. This evolution schema imbues the 

generative-evolutionary design system with biases and constraints that reflect the ideas 

developed by design team. 

The second area that Frazer’s combined model has been modified is its overall structure. 

The two tasks of Frazer’s combined model – codifying concepts and evolving design – are 

still present in a modified form, sandwiched between two new tasks. At the beginning, 

Janssen has added a task that focuses on the development of the character schema; at the 

end, he has added a task that focuses on the development of a detailed design proposal. 

These four tasks have been grouped into pairs to create two phases: the schema 

development phase and the design development phase. (See Figure 18.) This split reflects 

two different levels of environment. On the one hand, the schema development phase 

creates a schema that is specific to a general category of environment, referred to as the 

niche environment for the schema. On the other hand, the design development phase 

creates a design that is specific to one particular environment, called the design 

environment. In both cases, the environment includes both the criteria that the design must 

satisfy and the context within which the design will exist. 

Splitting the design procedure into two phases in this way emphasises the fact that these 

two phases can be executed in very different ways. The first phase develops, and codifies 

the design character. This character will reflect the beliefs and preferences of the design 

team – called the design stance – and will be developed in response to the niche 

environment. This niche environment can be defined before any specific design 

environment has actually been found. As a result, this phase creates a generic design 

entity – the evolution schema – that can be reused many times within different projects.  

The second phase evolves and details a design proposal for a specific design project. The 

proposal will be adapted to a design environment for the project, which will include 

aspects such as the site, spatial requirements, performance targets, and a budget. This 

phase therefore creates a design entity that cannot be reused.  

Figure 18 summarises the Janssen model. 
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Figure 18: Janssen's model. 

4.2.2 Janssen’s combined system 

In addition to the overall model, Janssen has also developed a detailed hardware and 

software architecture for implementing a generative-evolutionary system. In order to 

overcome certain limitations, this architecture departs from the typical architecture of such 

systems in three key ways.  

First, the software architecture describes an evolutionary process that progresses in an 

asynchronous rather than a synchronous manner. Typical evolutionary systems create an 

evolutionary process where each individual in the population progresses through the 

various evolutionary steps in tandem with one another. With the asynchronous approach, 

individuals progress through the evolutionary steps irrespective of what other individuals 

in the population are doing.  

Second, the software architecture proposes a core generative-evolutionary system that is 

highly generic and that can therefore be reused to evolve a wide variety of designs. This 

generic core does not actually predefine any of the evolutionary rules and data structures 

required in order to create the evolutionary process. In order to use the system, the design 

team first customises the system by specifying the rules and data structures as a separate 

set of data files that the system can then access. Together these rules and data structures 

constitute the evolution schema, which is the codified version of the character schema. 

They imbue the system with the biases and constraints that will ensure that the system will 

generate and evolve designs that embody a particular type of character. 

Third, two additional evolutionary steps have been introduced: a validation step and a 

prediction step. The validation step allows the complex skeletal model produced by the 

generation step to be checked for inconsistencies and errors. The prediction step uses 

existing third-party simulation and analysis software in order to predict how the design 
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would perform if built. Previously this step was part of the evaluation step. However, 

decoupling the process of making predictions from the process of tallying these 

predictions is necessary if the predictions are to be performed in an asynchronous manner. 

Figure 19 summarises the software configuration of the generative-evolutionary system 

proposed by Janssen. Each evolutionary step downloads certain data from the population, 

applies the rules specified in the evolution schema, and then uploads the newly created 

data. 

 

Figure 19: Janssen’s generative-evolutionary software configuration. 

The hardware architecture identifies a set of software components and proposes a 

networked configuration for these components. These components make extensive use of 

a number existing software technologies and systems.  

Figure 20 summarises the hardware configuration proposed by Janssen. The architecture 

decomposes the system into a server program that maintains a population of designs 

within a database and a set of client programs that communicate with the server. The 

evolutionary steps are each performed by a separate client. Other clients include an 

initialisation client that allows the population to be initialised, and a visualization client 

that allows users to view a particular design in the population. 
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Figure 20: Janssen’s generative-evolutionary hardware configuration. 

The asynchronous evolutionary process means that any of the clients can be duplicated 

many times. For example, the prediction client running a particular simulation program 

can be duplicated, thereby allowing designs to be simulated in parallel. Furthermore, these 

clients can run on different operating systems, thereby facilitating the integration of third-

party CAAD simulation and analysis programs.  

5 CONCLUSION 

The approach so far described implies some changes in architects’ working methods. The 

generic approach adopted by many designers has to be made explicit, rigorous, and stated 

in terms which enable a concept to be expressed in genetic code. Ideally, the computer 

could deduce this information from normal work methods without any conscious changes 

being necessary. Architects have to be very clear about the criteria for evaluating an idea, 

and prepared to accept the concept of client- and user-participation in the process. The 

design responsibility changes to one of overall concept and embedded detail, but not 

individual manifestation. Overall the roles of the architect is enhanced rather than 

diminished as it becomes possible to seed far more generations of new designs than could 

be individually supervised, and to achieve a level of sophistication and complexity far 

beyond the economics of normal office practice.  
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