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Abstract. Parametric modelling is a term widely used to describe a 
range of modelling approaches. This paper proposes a taxonomy that 
distinguishes types of parametric modelling in the way they support it-
eration. A generalized parametric model is described and used as an 
analytical device to investigate how different parametric modelling 
methods provide for iteration over list structures. 
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1. Introduction  

Parametric modelling is a term widely used to describe a range of modelling 
approaches. There have been previous attempts at classifying parametric mod-
elling methods. Barrios Hernandez (2006) distinguishes parametric variations 
from parametric combinations (and parametric hybrid models). From a sys-
tems point of view, this distinction is uninformative as almost all currently 
available systems exhibit a hybrid approach in order to provide specific fea-
tures and capabilities of interest to the users. Monedero (2000) distinguishes 
variants programming, history-based (constraint) modelling, variational ge-
ometry, rule-based variants, and parametric feature-based design. Both vari-
ants programming and rule-based variants use a programming approach, the 
former imperative programming, the latter a form of logical programming. 
Variational geometry emphasizes the use of a constraint solver; parametric 
feature-based emphasizes the consideration of a concept of features. Most par-
ametric systems used in architecture would be classified as history-based 
modelling. 

Instead, we adopt a taxonomy that distinguishes types of parametric mod-
elling, based on the way they support iteration. This taxonomy offers a clear 
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and unambiguous way to classify different parametric modelling methods as 
well as the systems that implement these methods, without lumping most 
methods within the same category. The paper first describes a generalized par-
ametric model to be used as an analytical device to investigate different para-
metric modelling methods. In general, a parametric model consists of a col-
lection of modelling operations that are linked into a network that can be 
topologically sorted, that is, the order of execution of the modeling operations 
can be defined prior to execution. Therefore, we adopt a Directed Acyclic 
Graph (DAG) as a generalized representation of a parametric model. Next, we 
consider a taxonomy of parametric modelling methods based on different it-
eration methods within a graph, resulting in four types: object modelling, as-
sociative modelling, dataflow modelling, and procedural modelling. The final 
discussion relates parametric modelling to generative modelling using imper-
ative programming. 

2. Generalized Parametric Model  

We propose a Generalized Parametric Model (GPM), represented by a Di-
rected Acyclic Graph (DAG), as a means to analyse and compare different 
parametric modelling methods. The GPM is used as an analytical device and 
there is no suggestion that the systems being discussed were actually imple-
mented using such a DAG. Modelling methods that cannot be mapped into the 
proposed GPM are categorised as not being parametric modelling methods. 
This broader category will be addressed in the final discussion.  

A GPM graph consists of a set of nodes connected with directed edges. 
Nodes are distinguished as operation nodes and data nodes. The former repre-
sent general computational operations, both geometric and non-geometric. 
The latter represent the input and output data for the operations, either geo-
metric, non-geometric or a combination thereof. Edges connect operation 
nodes with data nodes and represent the flow of data from and to the opera-
tions. An example of a GPM graph is shown in Figure 1.  

Operation Nodes 

Operation nodes are typically implemented using an imperative programming 
language and, as such, can execute any complex procedure. The functionality 
of an operation node is constrained by the functions that can be invoked in the 
underlying modelling engine. Modelling engines may focus on different mod-
elling techniques, for example, spline-based modelling, polygon-based mod-
elling, and solid modelling. Some systems also include as operations advanced 
solvers that take problem descriptions as inputs and use iterative procedures 
to attempt to calculate a solution. Examples of solvers include particle solvers, 
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rigid body solvers, constraint solvers, and optimization solvers. This paper 
does not take into consideration these differences in modelling engines and 
instead focuses on the topology of the DAGs that can be defined.  

Each operation node can have multiple inputs and outputs. The inputs may 
include a set of parameters required for the operation, e.g., an ‘extrude’ oper-
ation may require a list of polygons as input data, as well as a direction vector 
and the extrusion distance.  

 

 
Figure 1: An example of a GPM graph. 

Data Nodes 

A data node may serve both as an output of one operation and as an input of 
another operation. The representational data structure used for data nodes may 
vary depending on the system. Three commonly used data structures are flat 
lists, nested lists (or multi-dimensional arrays), and topological data structures 
(such as hierarchical data (tree) structures). In some systems, the user may 
have no control over the data structure while in other systems users may be 
provided with operations and tools that enable them to construct customized 
data structures.  

Edges 

Edges represent the flow of data, connecting operation nodes with data nodes, 
and vice versa. The (directed) edges going into an operation represent the data 
sets consumed by this operation; the edge going out of an operation represents 
the data set produced by this operation. A data node with more than one edge 
leaving from it represents a data cloning operation; the respective inputs will 
be exact copies of each other.  
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Execution 

The execution of a GPM graph is assumed to be performed in a synchronous 
manner (Lee and Messerschmitt, 1987), with the order of execution defined 
by applying a topological sort algorithm to the graph. For any set of nodes, 
many valid orderings are possible, e.g., in Figure 1, the numbering of the op-
eration nodes indicates one possible ordering. Each time the graph is executed, 
the output data sets are reproduced. Changing the input data will trigger the 
re-execution of the graph, thereby generating new output data. In most sys-
tems, only operation nodes downstream of the changed data will be re-exe-
cuted.  

Iteration 

Due to the acyclic nature of the GPM graph, loops cannot be defined. How-
ever, this does not rule out iteration over lists of entities. Three broad types of 
iteration are defined: single-operation iteration, implicit multi-operation iter-
ation, and explicit multi-operation iteration (Figure 2). 

The simplest type of iteration is an iteration that applies the same operation 
simultaneously over multiple geometric entities. For example, if the input of 
an ‘extrude’ operation consists of a list of polygons, then the node may iterate 
over the list and extrude each polygon in turn. If the operation takes additional 
parameters, these parameters would all have a single input value. This type of 
iteration is referred to as single-operation iteration.  

The iteration becomes more complex if additional parameters may also be 
assigned multiple input values. For example, if the extrusion distances are also 
provided as a list, then the operation may iterate over both lists, performing 
some more complex type of data matching. This type of iteration is referred 
to as implicit multi-operation iteration. In general, it allows for the use of cus-
tom data structures consisting of nested lists in combination with data match-
ing algorithms that appropriately interpret these nested lists (Figure 2, top). 
The user must ensure that the data is structured in an appropriate manner in 
order to achieve the desired iterative behaviour. 

Explicit multi-operation iteration explicitly represents the iterative process 
using additional nodes with specialized semantics that modify the control 
flow. In current modelling systems, this is implemented in two ways: using 
data sinks or using recursion. With data sinks, two nodes with specialized se-
mantics are required: a ‘for each’ operation node iterates over a list and ex-
tracts one data item from the list at a time; a ‘sink’ data node collects the re-
sults from the application of one or more operations to each data item (Figure 
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2, middle). When all items in the list have been processed, the ‘for each’ node 
will trigger the ‘sink’ node, allowing downstream operation nodes to be exe-
cuted. This approach also allows ‘for each’ nodes to be nested. For example, 
one ‘for each’ node may iterate over a list of polygons, and a second may then 
iterate over the list of points in each polygon. 

 

 
Figure 2: Three different approaches for multi-operation iteration. 
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Explicit multi-operation iteration using recursion requires just one node 
with specialized semantics: a node that represents the current subgraph, called 
‘this’ node. When data is input into ‘this’ node, it is equivalent to re-executing 
the whole subgraph with new data. A recursive iterator splits an input list into 
a head and a tail using a ‘split’ operator (Figure 2, bottom). The head consists 
of a single data item, to which one or more operations are applied. The tail is 
a list containing the remaining data items, which is input into ‘this’ node. Fi-
nally, the output from the multiple operations is prepended to the result from 
‘this’ node. Note that a ‘switch’ operation is required in order to deal with the 
case when the tail is an empty list. 

3. A taxonomy of parametric modelling methods 

A taxonomy is proposed that divides parametric modelling into four broad 
categories, labelled as ‘object modelling’, ‘associative modelling’, ‘dataflow 
modelling’, and ‘procedural modelling’. The distinguishing factor for these 
modelling methods is how they support iteration. Object modelling does not 
support iteration and the graph is only implicitly defined. Associative model-
ling is defined as supporting single-operation iteration, dataflow modelling as 
supporting implicit multi-operation iteration, and procedural modelling as 
supporting explicit multi-operation iteration.  

Current parametric modelling systems support these three types of iteration 
to varying extents. Systems that allow the user to directly construct and ma-
nipulate the dependency graph are the most powerful. Such graph-based sys-
tems include Bentley’s GenerativeComponents and Rhino Grasshopper. Both 
of these systems support implicit multi-operation iteration using nested list 
data structures. Operations then iterate on the data in the nested lists using 
various data matching algorithms. Graph-based systems that additionally sup-
port explicit multi-operation iteration include Sidefx Houdini and Autodesk 
Dynamo. Both these systems support explicit multi-operation iteration. Hou-
dini supports iteration using data sinks. Dynamo supports iteration using re-
cursion.  

Scene-based systems and feature-based system allow the user to manipu-
late the dependency graph via various intermediary representations. These 
types of systems support single-operation iteration, but not multi-operation 
iteration. Scene-based systems have mainly been developed to support the an-
imation and movie industries. Examples include Autodesk Maya and Auto-
desk 3DS Max. Feature-based systems have mainly been developed to support 
mechanical engineering. Examples include Dassault Solidworks, Dassault 
Catia, and Autodesk Inventor. 
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More basic types of systems do not support iteration. Trimble SketchUp’s 
‘dynamic components’ exemplifies this object modelling approach. Dynamic 
components are groups of geometries with parameters (and inputs) defined. 
Operations can be added to repeat a part of a component, to add behaviour to 
a part or to define a spatial relationship between parts. 

3.2. ASSOCIATIVE MODELLING 

Graph-based systems are more closely aligned with the proposed GPM and 
the mapping from these systems to the GPM is relatively straightforward. 
However, for scene-based and feature-based systems, this is not the case. This 
section will focus on how the associative representations used in these types 
of systems can be mapped to GPM graphs. 

3.2.1. Scene-Based Systems  

Scene-based systems enable users to create scenes populated with objects. Ob-
jects are defined using sequences of modelling operations, referred to vari-
ously as ‘modifier stacks’ and ‘dependency graphs’. Figure 3 shows an exam-
ple of a scene-based model on the left, and the equivalent GPM graph on the 
right. 

When using scene-based systems, the two main modelling tasks are creat-
ing individual objects and creating the object scene hierarchy. The latter con-
sists of a hierarchical tree of geometric objects that are located in space using 
associated transformations, including translation, rotation, and scaling. Ob-
jects inherit the transformations of their parents.  

Each individual object is created using a sequence of modelling operations 
that are independent from the scene hierarchy. These sequences of modelling 
operations may also be linked to one another, thereby creating a dependency 
graph. The order of object creation in the dependency graph may differ com-
pletely from the order of the objects in the scene hierarchy 

Upon mapping the dependency graph into a corresponding GPM graph 
(Figure 3), the associated transformations from the scene hierarchy are added 
as operation nodes. The transformation parameters are mapped into data nodes 
providing inputs to these operations, in such a way as to replicate the object 
relationships defined in the scene hierarchy. 

3.2.2 Feature-Based Systems 

Feature-based systems enable users to create parametric models consisting of 
assemblies of parts. The parts are defined using feature trees, where each fea-
ture represents a modelling operation. Figure 4 shows an example of a feature-
based model on the left, and the equivalent GPM graph on the right. 
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When using feature-based systems, the two main tasks are creating indi-
vidual parts and creating assemblies of the parts. In an assembly, parts are 
located by defining relationships with other parts, where relationships consist 
of constraints and joints. A 3D solver is then used in order to search for con-
figurations that satisfy these relationships.  

 

 
Figure 3: An example model from a (general) scene-based system and the corresponding 

GPM graph. 

Each individual part is created using a sequence of modelling operations, 
or features. Typically, three types of features can be defined: sketched fea-
tures, placed features, and work features. Sketched features are operations that 
generate geometry from 2D or 3D drawings, called ‘sketches’. These sketches 
are either linked to one of the planes in the origin coordinate system or are 
linked to a plane in the geometric model. Sketches can include various con-
straints, and a solver is used in order to modify the drawing to satisfy the con-
straints. Placed features are operations that modify the existing geometry in 
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some way. Lastly, work features are operations that create construction geom-
etry that is not included in the final output for the part. 

 

 
Figure 4: An example model from a (general) feature-based system and the corresponding 

GPM graph. 

Parts can also be linked to one another by creating ‘derived parts’. A de-
rived part is a part that derives some of its geometry from the geometry in 
another part. This interlinking of parts allows the equivalent of a dependency 
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graph to be created. However, the feature-based systems do not typically pro-
vide an explicit representation of this dependency graph; instead, the depend-
ency graph needs to be inferred from the various part trees. 

Mapping the assembly tree and the part trees into a corresponding GPM 
graph (Figure 4) requires the various part trees to be combined into a single 
graph. For each sketched feature, a data node and solver is inserted into the 
graph. The assembly tree is then mapped into a set of relationships and a 3D 
solver in the graph. The relationships define a set of constraints and joints 
between the geometric objects. The solver is then used to position the objects 
is such a way so that the relationships are all satisfied.  

4. Discussion 

We have adopted DAG to represent a Generalized Parametric Model (GPM), 
as a means to analyse and compare different parametric modelling methods. 
However, there is at least one type of parametric modelling that we have omit-
ted in our taxonomy, parametric modelling through imperative programming. 
One reason is that imperative programming cannot be mapped into a GPM 
graph, simply because imperative programming supports loops and thus can-
not be represented through an acyclic graph. Another reason is the fact that 
imperative programming is inherently parametric (Gürsel Dino, 2012, p. 210) 
and, as such, casting imperative programming as a parametric modelling 
method is rather uninformative. Nevertheless, if we were to include it in our 
taxonomy, an additional category called ‘generative modelling’ could be de-
fined at the same level as parametric modelling. 

5. Conclusion 

We have adopted a taxonomy based on how parametric modelling methods 
support iteration, as it offers a clear and unambiguous way to classify different 
parametric modelling methods as well as the systems that implement these 
methods, without lumping most methods within the same category. 
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