
an evolutionarY sYsteM For  
design eXPloration

PATRICK H. T. JANSSEN 
National University of Singapore

abstract: This paper reports on the development of a multi-objective evolutionary devel-
opmental design environment, called EDDE. The goal of the system is to make it easier for 
designers to use evolutionary techniques to explore design possibilities. The system 
consists of a generic evolutionary core into which a set of design specific scripts need to 
be plugged in. The system uses a web based client-server architecture that can either be 
run on a single computer or on multiple computers in parallel. Initial experiments have 
shown the system to be effective in evolving designs.

keywords: Generative, evolutionary, genetic, search, optimisation, simulation

résumé : Cet article présente le développement d’un environnement de conception évolutive, 
multi objectif, appelée EDDE. Le but du système est de faciliter l’usage de techniques évolutives 
par les concepteurs pour explorer les possibilités de conception. Le système se compose d’un 
noyau générique évolutif dans lequel une série de scripts spécifiques doivent être connectés. Le 
système utilise une architecture WEB client-serveur qui peut être exécutée sur un seul ordinateur 
ou sur plusieurs ordinateurs en parallèle. Les premières expériences ont démontré que le système 
est efficace dans la conception évolutive

mots-clés : Génératif, évolutif, génétique, recherche, optimisation, simulation

T. Tidafi and T. Dorta (eds) 
Joining Languages, Cultures and Visions: CAADFutures 2009 
© puM, 2009

CAAD Futures 2009_compile.indd   259 27/05/09   10:46:08



260 P. H.t. Janssen

1. INTRODUCTION

Evolutionary design systems are loosely based on the neo-Darwinian model 
of evolution through natural selection. A population of individuals is main-
tained and an iterative process applies a number of evolutionary steps that 
create, transform, and delete individuals in the population. 
Each individual has a genotype representation and a phenotype expression: 
the genotype representation encodes information that can be used to create a 
model of the design, while the phenotype expression is the actual design model. 
The phenotypes are evaluated, and based on these evaluations individuals is 
assigned relative fitness values. By repeatedly breeding the fittest individuals, 
the population is able to evolve and adapt to satisfy the objectives set by the 
designer. Breeding involves creating new genotypes from parent genotypes 
using ‘genetic operators’ such as crossover and mutation. 

The evolutionary process replaces the traditional process of design explo-
ration, in which typically only a small number of options will be considered. 
The advantage of the evolutionary system is that it is able to cyclically develop 
and evaluate large populations of design variants. This approach has proved to 
be well suited to design processes that are typically divergent and exploratory 
(Frazer and Connor 1979; Graham et al. 1993; Frazer 1995; Bentley 1999; 
Bentley and Corne 2002; Rosenmann 1996; Shea 1997; Coates et al. 1999; Funes 
and Pollack 1999; Sun 2001; Janssen 2004).

This paper presents a multi-objective evolutionary developmental design 
environment, called EDDE, created with the aim of making it easier for design-
ers to use evolutionary algorithms. The paper consists of the following sections: 
section 2 introduces evolutionary design research, section 3 consists of an 
overview of EDDE; section 4 reports on initial experiments carried out using 
EDDE; and section 5 draws conclusions and discusses future work.

2. EVOLUTIONARY DESIGN RESEARCH

Evolutionary design encompasses a wide range of research areas exploring how 
design variability and design evolvability is affected by the fundamental evo-
lutionary steps of development, evaluation, survival, and reproduction.

This has led to many evolutionary design systems differing significantly 
from more canonical genetic algorithms. In some cases, researchers have been 
experimenting with novel types of evolutionary steps, testing out new variants 
for the rules used to perform the evolutionary steps. Other researchers have 
focused on the overall structure of the evolutionary algorithm, and have been 
inventing variants that are better suited to particular types of problems. 

Two key evolutionary steps that are particularly relevant to the design 
domain are the developmental step and the evaluation step. With canonical 

CAAD Futures 2009_compile.indd   260 27/05/09   10:46:08



261an evoLutionarY sYsteM for desiGn exPLoration

genetic algorithms, the process of fitness evaluation consists of a four sub-
processes: 1) the genotype is mapped to a set of parameters, 2) the parameters 
are used to generate a phenotype, 3) the phenotype is used to perform a set of 
evaluations, and 4) the evaluations are used to calculate the fitness. Many 
researchers have found it useful to explicitly define the phenotype and the 
evaluations as distinct from the fitness. This is especially the case in the design 
field where the phenotype represents the actual design, and evaluations repre-
sent design performance.

The development step creates a phenotype for each new genotype. In many 
cases, this process is a straightforward mapping process. In other cases, the 
developmental process may be much more complex. In the design domain, this 
process may involve an iterative rule based growth processes from which the 
phenotype will emerge. Various researchers have argued that the inclusion of 
an explicit developmental step is advantageous. (Frazer 1979, Angeline 1995, 
Bentley 1999, O’Neill and Ryan 2000, Janssen 2004) 

The evaluation step produces an evaluation for each new phenotype. The 
evaluations are created by assessing the performance of the phenotype with 
respect to a particular objective. In the design domain, these evaluations may 
consist of very complex types of calculations that simulate the performance of 
the design of a period of time under different conditions. Since these evalua-
tions will need to be performed thousands of times for different design variants, 
the evaluation step will often become the main bottleneck in the speed of 
execution of the evolutionary algorithm.

3. OVERVIEW OF EDDE 

A multi-objective evolutionary developmental design environment has been 
implemented, called EDDE, and is available under an Open Source BSD license 
at http://www.evo-devo-design.net. EDDE is that latest version of a number of 
previous evolutionary systems that have been developed and tested. It has been 
implemented in the Python programming language.

3.1. EDDE Design Goals

EDDE has been design with one main goal in mind: to make it easier for 
designers to use evolutionary design exploration tools. When considering the 
various hurdles that designers are facing, then the two most important are the 
complexity of the software and the speed of execution. 

•	 Evolutionary	design	systems	typically	have	to	be	custom	made	for	each	new	
design scenario. This is because most existing evolutionary systems are 
typically not flexible enough, and therefore severely limit the types of design 
that can be evolved. Implementing a custom made evolutionary systems 

CAAD Futures 2009_compile.indd   261 27/05/09   10:46:08



262 P. H.t. Janssen

using programming libraries is typically too complex as it requires advanced 
programming and other computational skills.

•	 Evolutionary	design	systems	typically	have	computationally	demanding	
design evaluation routines that may invoke advanced analysis and simula-
tion software. Evaluating designs can therefore be relatively slow when 
compared to other domains, which means that the overall execution time 
can be prohibitively slow – sometimes measured in days.

EDDE aims to overcome these two hurdles by creating an evolutionary 
system that is both flexible and fast. It should be noted from the outset that this 
is not an easy task, as is highlighted by the well known No Free Lunch theorem, 
which states that any two optimization algorithms are equivalent when their 
performance is averaged across all possible problems. EDDE attempts to side-
step the No Free Lunch theorem by using a software architecture that can be 
run in parallel on multiple computers.

3.2. The evolutionary process

Evolutionary algorithms differ significantly from one another in how the evo-
lutionary process is defined. Two key differences are the evolution mode and 
the control structure.

The evolution mode refers to how the evolutionary steps process individuals 
in the population. In nature, the evolutionary steps are applied in parallel. At any 
moment in time, some organisms may be in the process of being born, others may 
be in the process of living, and yet others may be in the process of dying. This 
natural evolutionary process may be described as an asynchronous evolution 
mode, in that the life-cycles of the individuals in the population are not synchro-
nised. Most evolutionary algorithms use a synchronous evolution mode. In this 
case, individuals in the population are processes in a synchronised manner, with 
each evolution step being applied to the whole population in turn. The synchro-
nous application of all the evolutionary steps to the individuals in the population 
is described as a generation. 

The control structure refers to how the evolutionary steps are controlled. 
In nature, the evolutionary process is an emergent phenomenon that arises as 
a result of the behaviour of individual organisms. The evolutionary steps are 
applied locally and independently from one another. This is referred to as a 
decentralised control structure. Most evolutionary algorithms use a centralised 
control structure, whereby the application of the evolutionary steps to indi-
viduals in the population is centrally orchestrated. 

3.2.1. The EDDE evolutionary algorithm

In the case of EDDE, the evolutionary process uses an asynchronous evolution 
mode in combination with a decentralised control structure. The system is 

CAAD Futures 2009_compile.indd   262 27/05/09   10:46:08



263an evoLutionarY sYsteM for desiGn exPLoration

implemented using a client-server architecture: the server maintains a popula-
tion of designs, and clients carry out the evolutionary steps by downloading 
individuals from the server, processing these individuals, and then uploading 
the results back to the server. The server does not control any of the evolution-
ary steps - instead, it passively waits to be contacted by the clients that execute 
the evolutionary steps. 

This approach results in a population consisting of a mix of design variants 
at four different life stages: 1) at the first stage, an individual only has a genotype; 
2) at the second stage, it will have gained a phenotype; 3) at the third stage it 
will have gained a set of performance scores; 4) and finally at the fourth life 
stage it will have survived one or more attempts to kill it. 

Each of the clients requires design variants at a particular life stage. It is the 
responsibility of the server to ensure that each client is sent design variants at the 
appropriate life stage, referred to as ‘candidates’. When the server receives a request 
from one of the clients, it will first identify all possible candidates in the popula-
tion and will then randomly select the required number of design variants from 
these candidates and send them to the client.

One consequence of using a decentralised approach is that the population 
size will naturally tend to vary over time. The change in the population size 
will depend on the rate at which the reproduction client adds new design vari-
ants to the population and the rate at which the survival client culls design 
variants. If some form of control were not applied, the population size would 
be unlikely to remain stable. The server therefore controls the size of the 
population by selectively rejecting requests from either the reproduction and 
survival clients at appropriate times. 

3.2.2. Comparison with other evolutionary algorithms

The great majority of evolutionary algorithms use a synchronized evolution 
mode in combination with a centralised control structure. The four main types 
are genetic algorithms, evolution strategies, evolutionary programming, and 
genetic programming. Of these, genetic algorithms are the best known. The 
synchronised mode encompasses three more specific approaches commonly 
referred to as the generational, elitist and steady-state evolution modes.

The asynchronous decentralised approach used by EDDE seems to be very 
rare – in fact, a review of the literature did not discover any other evolutionary 
systems using this approach. A number of systems were found to use asynchro-
nous centralized architectures, (Cantu-Paz 1997, 1998; Alba and Troya 1999; 
Nowostawski and Poli 1999), while others were found to use other specialised 
types of architectures such as the distributed peer-to-peer models (Chong and 
Langdon 1999; Arenas et al. 2002). 

The asynchronous decentralised approach has been taken to ensure that 
EDDE is both scalable and robust. First, an asynchronous evolutionary process 

CAAD Futures 2009_compile.indd   263 27/05/09   10:46:08



264 P. H.t. Janssen

allows the evolutionary steps to be executed in a totally parallelized manner. 
This can significantly reduce the execution time and is highly effective in situ-
ations where the development and evaluation steps are costly. This is especially 
pertinent for evaluation clients, since the simulation or analysis of the perfor-
mance of a building design can be time consuming. Second, a decentralised 
control structure in combination with a client-server model allows client 
computers to be easily added and removed from the evolutionary process. The 
architecture is robust in that it can cope with failure of client systems in a 
graceful manner.

In addition, it should also be noted that the asynchronous decentralised 
approach is actually a superset of many other more conventional approaches, 
such as generational, elitist, and steady-state GAs. Within EDDE, these more 
conventional types of evolutionary algorithm can be run simply by setting up 
the design schema in the appropriate way.

3.3. Customizing EDDE

A key concept in the proposed evolutionary design approach is an algorithmic 
model developed by a designer that has both built-in variability as well as 
built-in constraints. This algorithmic model is referred to as the ‘design schema’ 
and the designer creating the schema is referred to as the ‘schema author’.

3.3.1. Design schemas

The design schema captures the essential and identifiable character of a varied 
family of designs. It encompasses those characteristics common to all members 
of the family, possibly including issues of aesthetics, space, structure, materials 
and construction. Although members of the family of designs share these 
characteristics, they may differ considerably from one another in overall orga-
nization and configuration (Janssen 2004).

Broadly, the schema based approach consists of two main stages:

•	 In	the	schema	codification	stage,	the	design	schema	is	encoded	in	a	form	that	
can be used by the evolutionary system. This involves creating a set of design 
specific schema scripts that can be executed by the evolutionary system.

•	 In	the	design	evolution	stage,	the	encoded	schema	is	used	by	the	evolutio-
nary system to evolve a population of design variants. This will result in a 
Pareto-optimal set of design variants, which can be explored for further 
design development.

 EDDE consists of a generic evolutionary core into which design-specific 
schema scripts can be plugged in. The generic evolutionary core performs 
all the tasks related to starting, stopping, and managing individual evolution-
ary runs. The design schema scripts perform the design-specific evolutionary 
steps. The five scripts are as follows (see Figure 1):

CAAD Futures 2009_compile.indd   264 27/05/09   10:46:08



265an evoLutionarY sYsteM for desiGn exPLoration

•	 The	initialisation	script	creates	a	new	population	of	individuals	with	geno-
types.

•	 The	development	script	appends	a	phenotype	model	to	each	individual.
•	 The	evaluation	scripts	append	one	or	more	performance	scores	to	each	

individual.
•	 The	survival	script	produces	a	verdict	on	who	survives,	and	who	has	to	die.
•	 Finally,	the	reproduction	script	produces	new	genotypes	from	parents	that	

have survived.

figure 1: the five types of scripts performing the evolutionary steps.  
the type of data that each script consumes and produces is shown by the labels on the left. 
two evaluation criteria are being considered, labelled as a and b. note that the output from 
one script does not link directly to the input to the next script - scripts are linked only 
indirectly via the population server – see figure 2.

3.4. Running EDDE

In order to run EDDE, the first step is to start the EDDE web server. The user 
can then log onto the web server using a standard browser and access EDDE’s 
graphical user interface, which allows various server management tasks to be 
performed.

One of the first tasks that will need to be performed is the pluging-in of 
the design schema. The user interface allows users upload schema zip files onto 
the server, and to start and manage multiple evolutionary runs. 

CAAD Futures 2009_compile.indd   265 27/05/09   10:46:09



266 P. H.t. Janssen

Once the EDDE server has been started and the schema uploaded, each of 
the client application must then be started. As a minimum setup, the whole 
system can actually be run on a single computer, in which case the computer 
will be acting as both a server and a client. Five client applications need to be 
started – one for each evolutionary step. Once the clients have been started, 
they will cyclically keep logging onto the server, downloading individuals at 
particular life stages, executing the scripts to generate new data for those indi-
viduals, and uploading them back to the server. Gradually, the population will 
evolve and adapt.

3.4.1. Running EDDE on multiple computers

In order to run EDDE on multiple computers, the same approach can be taken 
as above, except that the clients can be running on separate computers.

Once again, five client applications will need to be started – at least one for 
each evolutionary step. However, multiple clients can be assigned to steps that 
are particularly slow to execute, such as the development or evaluation steps 
(see Figure 2). Furthermore, these additional clients can be added and removed 
from the evolutionary process without requiring and changes to the server, 
even in the middle of an evolutionary run. This allows computing resources to 
be flexibly and efficiently allocated in environments where computers are used 
for multiple purposes such as design offices and research labs. 

figure 2: one population server and eight clients running on four computers.  
two evaluation criteria are being evaluated, labelled a and b. in the case of b, two computers 
are being used to process individuals in parallel, both performing the same evaluation.

CAAD Futures 2009_compile.indd   266 27/05/09   10:46:09



267an evoLutionarY sYsteM for desiGn exPLoration

4. AN EXAMPLE OF A EDDE SCHEMA

A number of simple example schemas have been developed in order to test 
and demonstrate the EDDE approach. Initially, a series of non-architectural 
cases were developed, using common optimisation problems from the research 
literature. These included the one-armed bandit problem, the water buckets 
problem, and the travelling salesman problem. These tests allow the function-
ality of EDDE to be tested, and confirmed that the system was actually suc-
cessful in evolving solutions.

Following these tests, a simple architectural example was then developed 
that allowed EDDE to be further tested, and to explore how other existing 
applications could be integrated into EDDE. This schema consisted of optimiz-
ing the size of a series of roof overhangs in order to minimize two conflicting 
objectives. This schema, referred to as the overhangs schema, is presented in 
more detail below. 

4.1. The Overhangs Schema Scripts

The problem defined by the overhangs schema is to optimise the size of a series 
of overhangs shading the windows in the walls of a small single-spaced concrete 
building, shown in Figure 3. The space is a 5 x 5 x 5 cubic meter space with an 
overhanging roof. The design objectives were to minimise both the annual 
energy consumption and construction cost. The Florida (USA) weather file 
was used to perform the evaluations.

4.1.1. Representations

The two most important representations used by the schema are the genotype 
representation, and the phenotype representation. 

The genotype representation consists of a list of four integers that represent 
the length that the overhangs project out over the windows. Since the maximum 
overhand was set to 2m, these numbers could range from 0 to 2000.

The phenotype representation consists of two 3D models of the buildings 
using different file formats, which are related to the two programs required by 
the schema. The Rhino3D CAD modeling program is used by the development 
script in order to generate a 3D model. The simulation program EnergyPlus is 
use by the evaluation script to calculate the annual energy consumption of the 
space. The first phenotype model is created as a 3dm file, the format used by 
Rhino3d. The second phenotype model is created as an idf file, the format used 
by EnergyPlus.

CAAD Futures 2009_compile.indd   267 27/05/09   10:46:09



268 P. H.t. Janssen

table 1. the five scripts performing the evolutionary steps. 

Script name Script description

Initialisation
script

For the initialization script, there is no input and the output consists of a 
population of 100 random genotypes, each consisting of a list of four random 
integers between 0 and 2000.

Develop-
ment
script

The development script first uses the Rhino3d api to call various CAD func-
tions in order to generate a detailed model of the building, including wall 
thicknesses and window openings. This model is saved as a 3dm file, to be 
used by one of the evaluation scripts. The development script then extracts 
coordinate data out of the Rhino3d model in order to produce a simplified 
model with additional parameters for the EnergyPlus simulation program. 
This model is saved as an idf file, which is a text based EnergyPlus input file. 

Evaluation
scripts

The script for evaluating the energy consumption first executes the Energy-
Plus simulation program, providing the idf file that it receives as part of the 
input phenotype, and when the simulation has completed, it reads the result-
ing output files. Based on the results in these files, it then calculates the 
annual energy consumption. The script for evaluating construction cost uses 
a simplified method that assumes that the construction cost will be propor-
tional to total volume of concrete. The script therefore uses the 3dm model 
that it receives as part of the input phenotype in order to calculate the volume 
of concrete.

Survival
script

For the survival script, the input consists of 20 design variants that have been 
fully evaluated. The script uses standard Pareto-ranking methods to rank 
design variants and to decide which should die and which should survive.

Reproduc-
tion

script

For the reproduction script, the input consists of 20 design variants that have 
been through the survival process, and the output consists of 20 new design 
variants. The script uses crossover and mutation operators to generate new 
genotypes from the parent genotypes. It does not perform any selection of 
the parents, but instead simply takes each pair of parents in turn.

figure 3. a 3d model of one of the design variants for the overhangs schema.

CAAD Futures 2009_compile.indd   268 27/05/09   10:46:09



269an evoLutionarY sYsteM for desiGn exPLoration

4.2. EDDE Graphs

The EDDE graphical interface includes a series of graphs that dynamically 
update during the evolutionary process to give feedback to the user about how 
evolution is progressing. There are three main types of graphs:

•	 Progress	graphs	plot	changes	in	the	overall	performance	scores	of	the	
population over time. For multi-objective schemas, multiple graphs will be 
displayed.

•	 Pareto	graphs	plot	fitness	values	for	a	selected	set	of	design	variants.	These	
graphs are therefore not time-based. These types of graphs allow the user 
to see the Pareto-front.

•	 Population	graphs	plot	the	number	of	design	variants	that	are	waiting	to	be	
processed by each script. These graphs allow users to see which evolutionary 
steps are taking the most time, and as a result where to add more computing 
power if it becomes available.

4.2.1. Pareto graphs

The Pareto graph for the overhangs schema is displayed in Figure 4. Each point 
in the graph represents one design variant. In total 10,000 design variants were 
evolved.

The graphs allow you to view what the design actually looks like. Hovering 
over a point in the graph with the mouse displays the image of the design on the 
right hand side as shown below. Clicking on a point in the graph downloads the 
3D model from the server and opens the model in the default application.

figure 4. the pareto graph for the overhangs schema, showing  
the roof plan of one of the solutions on the pareto front.

CAAD Futures 2009_compile.indd   269 27/05/09   10:46:09



270 P. H.t. Janssen

5. CONCLUSIONS AND FUTURE WORK

EDDE is a multi-objective evolutionary developmental design environment 
that aims to make it easier for designers to use evolutionary techniques in the 
design process. Initial experiments have show that EDDE is effective in evolv-
ing design variants. 

However, the overall speed of EDDE was slower than expected. Since the 
system supports parallelization, this could be overcome by adding more com-
puters, but it was felt that further improvements in performance could be made 
by changing the architecture of the system. 

Further testing revealed that a significant amount of time is taken up with 
reading and writing files. This is because the coupling between the system and 
the scripts is based on file input and file output. Each time a script is executed, 
the following steps occur: 1) the system provides the script with a set of input 
files; 2) the scripts reads the input files; 3) the scripts processes the data; 4) the 
script writes a set of output files; and 5) the system fetches the output files. The 
problem of file reading and writing is made worse by the fact that each file 
has to be read and written multiple times – by the script, the client, and the 
server. 

Various other problems were also identified, the most important being the 
lack of flexibility in how the schema is define. EDDE hard-codes the life-stages 
that an individual in the population will pass through, and the types of scripts 
that process individuals. This was found to be limiting in many situations. For 
simple problems, the hard-coded stages and script types were too complex, 
while for complex problems they were often too simple.

A new system is now under development that aims to overcome the limita-
tions and problems discovered with EDDE. The overall concept of the system 
is the same, but the underlying architecture has fundamentally changed. In 
particular, the coupling between the scripts and the system now no longer relies 
on file reading and writing, and the life stages and script types are now no 
longer hard coded. 

ACKNOWLEDGEMENTS

This research was supported under Australian Research Council’s Discovery 
Projects funding scheme (project number DP 0880813). The research assistants 
working on the project were Jamshid Arshadi, Graham Stratton, Richard Pen-
man, Danny Bishop, and Kong Guan Tan.

CAAD Futures 2009_compile.indd   270 27/05/09   10:46:09



271an evoLutionarY sYsteM for desiGn exPLoration

REFERENCES

Alba, E. and Troya, J.M., 1999, A Survey of Parallel Distributed Genetic Algorithms, COM-
PLEXITY, 4(4):31–51.

Angeline, P.J., 1995, Morphogenic Evolutionary Computations: Introduction, Issues and 
Examples, in J. McDonnell, B. Reynolds, and D. Fogel, (eds), Evolutionary Programming 
IV: The Fifth Annual Conference on Evolutionary Programming, pp 387–401, MIT Press.

Arenas, M.G., Collet, P., Arenas, M.G., Collet, P., Eiben, A.E., Jelasity, M., Merelo, J.J., Paechter, 
B., Preuß, M., and Schoenauer, M., 2002, A Framework for Distributed Evolutionary 
Algorithms, in J.J. Merelo Guervos, P. Adamidis et al. (eds), Parallel Problem Solving from 
Nature - PPSN VII, volume 2439 of Lecture Notes in Computer Science, pp. 665–675, 
Springer-Verlag.

Bentley, P.J. (ed.), 1999, Evolutionary Design by Computers, Morgan Kaufmann Publishers, 
San Francisco, CA.

Bentley, P.J. and Corne, D.W. (eds), 2002, Creative Evolutionary Systems, Academic Press, 
London, UK.

Caldas, L., 2001, An Evolution-Based Generative Design System: Using Adaptation to Shape 
Architectural Form, Doctoral dissertation, Massachusetts Institute of Technology.

Cantu-Paz, E., 1997, A survey of Parallel Genetic Algorithms, in Calculateurs Paralleles, 
Reseaux et Systems Repartis, 10(2):141-171.

Cantu-Paz, E., 1998, Designing Efficient Master-Slave Parallel Genetic Algorithms, in J. Koza, 
W. Banzhaf, J. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. Fogel, D.E. Goldberg, 
H. Iba and R. Riolo (eds), Genetic Programming: Proceeding of the Third Annual Confer-
ence, San Fransisco, CA. Morgan Kaufmann.

Coates, P., Broughton, T. and Jackson, H., 1999, Exploring Three-Dimensional Design Worlds 
Using Lindenmayer Systems and Genetic Programming, in P.J. Bentley (ed.), Evolutionary 
Design by Computers, Morgan Kaufmann Publishers, San Francisco, CA., pp. 323-341.

Frazer, J.H., 1995, An Evolutionary Architecture, AA Publications, London.
Frazer, J.H. and Connor, J., 1979, A Conceptual Seeding Technique for Architectural Design, 

in Proceedings of International Conference on the Application of Computers in Architectural 
Design and Urban Planning (PArC79), pp.  425–434, Berlin, AMK.

Funes, P. and Pollack, J., 1999, Computer Evolution of Buildable Objects, in P.J. Bentley (ed.), 
Evolutionary Design by Computers, Morgan Kaufmann Publishers, San Francisco, CA., 
pp. 387-403.

Graham, P.C., Frazer, J.H. and Hull, M.C., 1993, The Application of Genetic Algorithms to 
Design Problems with Ill-Defined or Conflicting Criteria, in R. Glanville and G. de Zeeuw, 
(eds), Proceedings of Conference on Values and, (In) Variants, pp. 61-75.

Janssen, P.H.T., 2004, A Design Method and a Computational Architecture for Generating and 
Evolving Building Designs, Doctoral dissertation, School of Design Hong Kong Polytech-
nic University (submitted October 2004).

Janssen, P.H.T., Frazer, J.H. and Tang, M.X., 2005, Generative Evolutionary Design: A Frame-
work for Generating and Evolving Three-Dimensional Building Models, in Proceedings 
of the 3rd International Conference on Innovation in Architecture, Engineering and Con-
struction (AEC 2005).

Nowostawski, M. and Poli, R., 1999, Parallel Genetic Algorithm Taxonomy, in L.C. Jain (ed.), 
Proceedings of the Third International Conference on Knowledge-Based Intelligent Informa-
tion Engineering Systems (KES’99), pp. 88-92, Adelaide, IEEE Press.

CAAD Futures 2009_compile.indd   271 27/05/09   10:46:09



272 P. H.t. Janssen

Chong, F.S. and Langdon, W.B., 1999, Java Based Distributed Genetic Programming on the 
Internet, in W. Banzhaf, J. Daida et al. (eds) Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO’99), pp. 1229, Orlando, FL, Morgan Kaufmann.

O’Neill, M. and Ryan, C., 2000, Incorporating Gene Expression Models into Evolutionary 
Algorithms, in A. Wu (ed.), Proceedings of GECCO 2000 Workshop on Gene Expression, 
pp. 167-173, San Francisco, CA, Morgan Kaufman Publishers.

Rasheed, K.M., 1998, GADO: A Genetic Algorithm for Continuous Design Optimization, 
Doctoral dissertation, Department of Computer Science, Rutgers University, New Bruns-
wick, NJ, Technical Report DCS-TR-352.

Rasheed, K.M. and Davidson, B.D., 1999, Effect of Global Parallelism on the Behaviour of a 
Steady State Genetic Algorithm for Design Optimization, in Proceedings of the Congress 
on Evolutionary Computation (CEC’99), vol. 1, pp. 534-541, IEE Press.

Rosenman, M.A., 1996, An Exploration into Evolutionary Models for Non-Routine Design, 
in AID’96 Workshop on Evolutionary Systems in Design, pp. 33-38.

Shea, K., 1997, Essays of Discrete Structures: Purposeful Design of Grammatical Structures by 
Directed Stochastic Search, Doctoral Dissertation, Carnegie Mellon University, Pittsburgh, 
PA.

Sun, J., 2001, Application of Genetic Algorithms to Generative Product Design Support Systems, 
Doctoral Dissertation, School of Design, Hong Kong Polytechnic University.

CAAD Futures 2009_compile.indd   272 27/05/09   10:46:09


