
A design method and computational
architecture for generating and evolving

building designs

Patrick Hubert Theodoor Janssen

School of Design

The Hong Kong Polytechnic University

A thesis submitted in partial fulfilment

of the requirements for the

Degree of Doctor of Philosophy

October 2004

ii

Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of
my knowledge and belief, it reproduces no material previously published
or written, nor material that has been accepted for the award of any other
degree or diploma, except where due acknowledgment has been made in
the text.

(Signed)

(Name of student)

iii

iv

Abstract

The aim of this thesis is to contribute to the development of a practical
evolutionary design approach — incorporating both design methods and
software systems — that would allow a design team to evolve designs
that they find surprising and challenging. This thesis has developed an
overall framework that supports such an evolutionary design approach.

Genetic and evolutionary algorithms and software systems attempt
to harness the power displayed by natural evolution. These algorithms
and systems have been successfully employed during the design process
in a number of different design fields. However, they have been limited to
tackling a very narrow range of well-defined engineering problems. Typ-
ically, the evolutionary system is used to optimise certain parameters
within a predefined parametric design. Due to a number of fundamental
problems, the evolutionary approach has had limited success in evolv-
ing the overall configuration and organization of complex designs. This
thesis investigates and proposes how these problems can be overcome for
building design.

The primary problem to be overcome is generating designs that in-
corporate an appropriate level of variability, which is referred to as the
variability problem. This affects both the performance of the evolutionary
system and predictability of the types of designs that are produced. In an
ideal system, performance is high and predictability is low. However, due
to the variability problem, this is difficult to achieve. If design variability
is very restricted, then performance may be high but predictability will
also be high. If design variability is very unrestricted, then predictability
may be low but performance will also be low. In order to evolve surpris-
ing and challenging designs, a system is required that both performs well
and evolves unpredictable designs.

The proposed generative evolutionary design framework allows the
design team to restrict design variability by specifying the character of
designs to be evolved. This approach is based on the notion of a design
entity that captures the essential and identifiable character of a family of
designs. This design entity is called a design schema. The design team
encodes the design schema as a set of rules and representations that can
be used by the evolutionary system. The system can then be used to
evolve designs that embody the encoded character.

The framework consists of two parts: a design method and a com-
putational architecture. The design method consists of two phases: a
generalization phase to develop and encode the design schema, and a
specialization phase to evolve a specific design by using the encoded
schema. In the first phase, the design team develops the schema with a
type of design project in mind. However, the specific project does not
yet need to be known. In the second phase, the schema is applied to
a specific project and designs are evolved and adapted to the context
and constraints of the project. One key advantage of this design method

v

vi

is that the encoded design scheme can be re-applied to many different
projects.

Two key requirements for the design method are that it should be
conservative and synergetic. It should be conservative in that it should
only deviate from existing design methods and processes where absolutely
necessary. In practice, many designers follow a design process similar to
the schema based process - a personal architectural character is cultivated
during a lifetime of work and adapted for particular projects. This makes
it easier for design teams to adopt the proposed method. The second key
requirement is for a synergetic design method. It should be synergetic in
that the contrasting abilities of the design team and the computational
system should be exploited in a way that is mutually beneficial. The
design team focuses on the creative and subjective task of developing
and encoding the design schema, and the computational system is used
for the repetitive and objective task of evolving alternative design models.

The second part of the framework is the computational architecture.
This architecture specifies a system that can be used to run the evolution-
ary process. Its two key requirements are scalability and customizability.
The architecture should be scalable in that the performance of the evo-
lutionary system should not degrade unacceptably when used to evolve
large and complex designs. Scalability is achieved by using a parallel
computational model that reduces execution time, in combination with
a decentralised control structure that improves the robustness of the sys-
tem. The architecture should be customisable in that it should allow the
design team to change and replace the evolutionary rules and representa-
tions. Customizability is achieved by breaking the system down into two
parts: a generic core and a set of specialised components. The generic
core does not need any modification by the design team and can be re-
used within any project. The specialised components, on the other hand,
have to be specified by the design team. These components include a set
of routines that encapsulate the rules and representations that constitute
the encoded schema.

The feasibility of the proposed generative evolutionary design frame-
work is supported by a demonstration of the process of encoding the
design schema. A design schema is introduced that defines the character
of a family of design. A crucial aspect of encoding such a schema is the
creation of a set of rules and representations for generating alternative
design models with an appropriate level of variability. The demonstra-
tion focuses on these generative rules and representations. A generative
process is developed that can generate a variety of three-dimensional
models of buildings that differ in overall organization and configuration
but that share the schema character. This generative process is used to
define generative rules and representations that are implemented as a set
of Java programs. These programs are then used to generate a popula-
tion of three-dimensional models of building design, thereby allowing the
character and variability of the designs to be verified. The feasibility of
the encoding process is successfully demonstrated.

Publications and Conferences

Patrick Janssen, John Frazer and Ming-Xi Tang (2005). Generative Evo-
lutionary Design: A system for generating and evolving three-dimensional
building models. Submitted to The Third International Conference on
Innovation in Architecture, Engineering and Construction (AEC 2005).

Patrick Janssen, John Frazer and Ming-Xi Tang (2005). A design method
and computational architecture for generating and evolving building de-
signs. Submitted to The Tenth Conference on Computer Aided Architec-
tural Design Research in Asia, (CAADRIA 2005).

Patrick Janssen, John Frazer and Ming-Xi Tang. Evolutionary Design
Exploration Systems. In Proceedings of the World IT in Construction
Conference (INCITE2004), Langkawi, Malaysia, 18-21 February 2004,
pages 79–84.

John Frazer and Patrick Janssen (2003). Generative and Evolutionary
Models for Design. In Communication and Cognition: Organic Aesthet-
ics and Generative Methods in Architectural Design, 36(3 & 4):187–215.

Patrick Janssen, John Frazer and Ming-Xi Tang (2003). Evolution Aided
Architectural Design: An Internet based evolutionary design system. In
E-Activities in Design and Design Education - Proceedings of the 9th
EuropIA International Conference (EIA 2003), Istanbul Technical Uni-
versity, Turkey, 8–10 October 2003, pages 163–172.

Patrick Janssen, John Frazer and Ming-Xi Tang(2003). Evolution Aided
Architectural Design: A method of designing sustainable buildings. In
Sustainable Environment: Quality Urban Living - Proceedings of The
Third China Urban Housing Conference, The Chinese University of Hong
Kong, 3–5 July 2003, pages 425–432.

John Frazer, Xiyu Liu, Ming-Xi Tang and Patrick Janssen (2002). Gen-
erative and evolutionary techniques for building envelope design. In Pro-
ceedings of the 5th Generative Art Conference (GA2002), Politecnico di
Milano University, Italy, 11–13 December 2002, pages 3.1–3.15

Patrick Janssen, John Frazer and Ming-Xi Tang (2002). Evolutionary
Design Systems and Generative Processes. In The International Journal
of Artificial Intelligence, Neural Networks, and Complex Problem-Solving
Technologies, March/April 2002, 16(2):119–128.

Patrick Janssen, John Frazer and Ming-Xi Tang (2001). Generative and
Evolutionary Processes in Design. In On Growth and Form: The Engi-
neering of Nature, ACSA East Central Regional Conference, University

vii

viii

of Waterloo, Canada, October 5–7, 2001.

Patrick Janssen, John Frazer and Ming-Xi Tang (2001). Generating-
predicting soup: A conceptual framework for a design environment. In
Proceedings of the Sixth Conference on Computer Aided Architectural
Design Research in Asia, (CAADRIA 2001) University of Sydney, Aus-
tralia, 19–21 April 2001, pages 137–148.

Patrick Janssen, John Frazer and Ming-Xi Tang (2000). Evolutionary
Design Systems: A Conceptual Framework for the Creation of Genera-
tive Processes. In Proceedings of the 5th Design Decision Support Sys-
tems in Architecture and Urban Planning (DDSS 2000), Nijkerk, The
Netherlands, August 22–25, 2000, pages 190–200.

Cristiano Ceccato and Patrick Janssen (2000). GORBI: Autonomous
Intelligent Agents Using Distributed Object-Oriented Graphics. In Pro-
ceedings of the 18th Education and Research in Computer Aided Architec-
tural Design in Europe Conference (eCAADe 2000), Weimar, Germany,
22–24 June 2000, pages 297–300.

Patrick Janssen (1999). An Embryonic Growth Process for Spatial Mor-
phology. Masters Thesis, Department of Cognitive Science and Intelli-
gent Computing, Westminster University, London, UK.

Acknowledgments

Special thanks go to my supervisor, Professor John Frazer and my co-
supervisor Dr. Tang MingXi for their continuous encouragement, sup-
port, and guidance.

This Ph.D. was undertaken in the Design Technology Research Centre
(DTRC), School of Design, Hong Kong Polytechnic University. As such,
it was part of a more general DTRC research initiative. Generative and
evolutionary design was an active focus area, with a number of Ph.D.
projects being undertaken. I would especially like to thank two fellow
Ph.D. students, Chan Kwai Hung and Sun Jian, for their generous input.

The ideas developed in this Ph.D. first germinated in 1995 while I was
completing my Diploma in Architecture at the Architectural Association,
in John and Julia Frazer’s Diploma Unit 11. During this time, I worked
closely with Manit Rastogi. These ideas were also further developed while
working with Gianni Botsford on a number of commercial projects.

Finally, I would like to thank my wife, Jacqueline Elfick, for the stim-
ulating discussions throughout this research, and for her general support
and patience in my endeavour to undertake this project.

ix

x

Contents

Certificate of Originality iii

Abstract v

Publications and Conferences vii

Acknowledgments ix

Contents xiv

List of Figures xvii

I Overview 1

1 Introduction 5
1.1 Overview of problem . 5

1.1.1 Overview of evolutionary design 5
1.1.2 Problem identification 12

1.2 Overview of research . 15
1.2.1 Research objectives 15
1.2.2 Research proposition 17
1.2.3 Significance and potential benefits 22
1.2.4 Research methodology 25

1.3 Overview of thesis . 30

II Review of related work 31

2 Design process 35
2.1 Introduction . 35
2.2 Design methods . 36

2.2.1 Design methods movement 36
2.2.2 Designing as a subjective process 38

2.3 The role of the computer 40
2.3.1 The changing role of the computer 40
2.3.2 Computers as design support medium 40

2.4 The role of the designer 42

xi

CONTENTS xii

2.4.1 Problems and solutions 42
2.4.2 Personal and idiosyncratic input 44
2.4.3 Design preconceptions 46

2.5 Design ideas . 49
2.5.1 The dominance of initial design ideas 49
2.5.2 Types of initial design ideas 51

2.6 Summary . 53

3 Generative techniques 55
3.1 Introduction . 55
3.2 Parametric approach . 56

3.2.1 Overview . 56
3.2.2 Variational based parametric technique 57
3.2.3 History based parametric technique 60

3.3 Combinatorial approach 62
3.3.1 Overview . 62
3.3.2 Algebra based combinatorial technique 62
3.3.3 Template based combinatorial technique 63

3.4 Substitution approach 65
3.4.1 Overview . 65
3.4.2 Grid based substitution technique 67
3.4.3 Shape based substitution technique 70
3.4.4 Context-free versus context-sensitive substitution

approaches . 75
3.5 Summary . 77

4 Evolutionary computation 79
4.1 Introduction . 79
4.2 General architecture . 80

4.2.1 Synchronous architecture 80
4.2.2 Asynchronous architecture 87

4.3 Synchronous evolutionary algorithms 91
4.3.1 Canonical genetic algorithm 91
4.3.2 Other common synchronous algorithms 96

4.4 Rules and representations 98
4.4.1 Genotype representation 99
4.4.2 Developmental step 101
4.4.3 Reproduction, evaluation and selection rules . . . 105

4.5 Summary . 110

5 Evolutionary design 111
5.1 Introduction . 111
5.2 GADO . 113

5.2.1 Overview . 113
5.2.2 Demonstrations 117

5.3 GS . 118
5.3.1 Overview . 118

xiii CONTENTS

5.3.2 Demonstrations 120
5.4 GADES . 122

5.4.1 Overview . 122
5.4.2 Demonstrations 125

5.5 Concept-seeding . 126
5.5.1 Overview . 126
5.5.2 Demonstrations 130

5.6 Epigenetic design . 134
5.6.1 Overview . 134
5.6.2 Demonstrations 136

5.7 Summary . 140

III Research proposition 143

6 Design method 147
6.1 Introduction . 147
6.2 Overview of method . 148

6.2.1 Structure of method 148
6.2.2 Schema conception stage 150
6.2.3 Schema encoding stage 155

6.3 Key requirements . 162
6.3.1 A conservative method 162
6.3.2 A synergetic method 165

6.4 Summary . 168

7 Computational architecture 169
7.1 Introduction . 169
7.2 Key requirements . 170

7.2.1 A scalable system 170
7.2.2 A customisable system 174

7.3 Overview of architecture 179
7.3.1 Individuals . 179
7.3.2 Specialised components 182
7.3.3 Generic core . 184
7.3.4 Interactions between components 190

7.4 Implementation strategies 193
7.4.1 Language and technologies for the generic core . . 193
7.4.2 Language and technologies for representing indi-

viduals . 195
7.4.3 Language and technologies for specialised compo-

nents . 197
7.5 Summary . 200

8 Demonstration 201
8.1 Introduction . 201
8.2 Overview . 202

CONTENTS xiv

8.2.1 Schema conception stage 202
8.2.2 Schema encoding stage 204

8.3 Developmental routine 206
8.3.1 Overview . 206
8.3.2 Generative steps 209

8.4 Implementation . 216
8.4.1 Overview . 216
8.4.2 Other routines not implemented 218
8.4.3 Results . 220

8.5 Summary . 222

IV Conclusions 225

9 Conclusions and future work 229
9.1 Contributions . 229

9.1.1 Summary of objectives 229
9.1.2 Variability problem 230
9.1.3 Design method 231
9.1.4 General architecture 234
9.1.5 Detailed architecture 236
9.1.6 Controlled variability 238
9.1.7 Summary of main contributions 238

9.2 Future work . 239
9.2.1 Short term . 239
9.2.2 Long term . 240

9.3 Conclusions . 241

Glossary 243

Bibliography 245

List of Figures

1.1 General parametric evolutionary method. 11
1.2 General generative evolutionary method. 12
1.3 The schema-based evolutionary design method. 19
1.4 Computational architecture for generative evolutionary de-

sign system. 21
1.5 Systems development research process, proposed by Nuna-

maker et al. (1991). (Diagram is redrawn from (Nuna-
maker et al., 1991).) . 29

2.1 The stages of the typical 1960’s design process. 44
2.2 Broadbent’s adaptation of the typical 1960’s design process. 45
2.3 Broadbent’s design process modified to account for the

dominance of the designers preconceptions. 46

3.1 Main inputs and outputs for the parametric approach. . 57
3.2 Optimization of yacht hull using a genetic algorithm. From

Frazer (1995b, p. 61). 59
3.3 An example of a set of rules and the corresponding forms.

From Todd and Latham (1999). 60
3.4 Some examples of forms generated using the Xfrog software. 61
3.5 Main inputs and outputs for the combinatorial approach. 62
3.6 A house represented as a collection of four-inch cubes.

From Mitchell (1990, p. 41). 65
3.7 Main inputs and outputs for the substitution approach. . 66
3.8 Generative sequence by Thomas Quijano and Manit Ras-

togi. From Frazer (1995b, p. 92-93). 69
3.9 Generative sequence by Stefan Seemüller. From Frazer

(1995b, p. 46-47). 70
3.10 Generation of the Koch curve. 71
3.11 Three space-frame designs for an air plane hanger roof.

From Shea (1997, p. 122–124). 73

4.1 General evolutionary architecture for algorithms using the
synchronous evolution mode. 81

4.2 The three representations of an individual in an evolution-
ary algorithm. 81

4.3 Comparing the generational, elitist and the steady-state
evolution modes. 84

xv

LIST OF FIGURES xvi

4.4 Synchronous global parallel architecture. 86
4.5 General evolutionary architecture for algorithms using the

asynchronous evolution mode. 90
4.6 Asynchronous global parallel architecture. 91
4.7 The representation of an individual, consisting of a binary

string genotype and a real valued fitness. 94

5.1 Optimization of supersonic aircraft 116
5.2 Alternative facade solutions generated by GS for one block

of the School of Architecture in Oporto by Álvaro Siza.
From (Caldas and Norford, 2001). 121

5.3 Alternative building forms generated by GS. Top row is
viewed from the south west, and the bottom row is viewed
from the north-east. From (Caldas, 2001, p. 256). 122

5.4 Examples of clipped stretched cubes used in the spatial
partitioning representation in GADES. From (Bentley, 1996,
p. 56) . 124

5.5 Examples of sports car designs at different stages of evo-
lution. From (Bentley, 1996, p. 205) 126

5.6 Examples of table designs. From (Bentley, 1996, p. 173) 127
5.7 The evolutionary concept-seeding design method. 129
5.8 The two basic structural units of the Reptile System. . . 130
5.9 Enclosures growing from two different seeds 131
5.10 Plan of building generated from star seed 131
5.11 Output from evolutionary system using the evolutionary

concept-seeding method. 132
5.12 The Interactivator: the process of cellular division and

multiplication. 138
5.13 The Interactivator: the materialization of left-over cellular

material. 139

6.1 The rules that encode the design schema. 162
6.2 A design process used by some designers. 164

7.1 General decentralised evolutionary architecture. 173
7.2 Conceptual diagram showing the division between the generic

core and the specialised components. 175
7.3 The main components of the proposed architecture. . . . 180
7.4 The structure of an individual in the population, and the

four states an individual may be in. 181
7.5 Sub-representations of a partially evaluated individual. . 182
7.6 Input and output of individuals for evolution routines. . 185
7.7 Flow diagram of the main actions performed by the evo-

lution modules. 186
7.8 Flow diagram showing the main loop for the population

module. 187
7.9 Flow diagram showing the response of the population mod-

ule to a get-request. 188

xvii LIST OF FIGURES

7.10 Flow diagram showing the response of the population mod-
ule to a post-request. 190

7.11 Individual represented using a single tree structure with
various sub-trees. 196

8.1 A set of generated designs. 203
8.2 The parts of the encoded schema that have been imple-

mented and demonstrated. 205
8.3 The eight generative steps used to generate the design

models. 207
8.4 The transformation of the grid into a design. 208
8.5 Terminology used to describe entities within the grid. . . 208
8.6 Eight generative steps. 210
8.7 Positioning of the grid within the site boundary. 211
8.8 Possible positions for the stairwell. 213
8.9 Interior elevation of four possible window types. 215
8.10 Inputs and outputs for the initialization routine. 218
8.11 Inputs and outputs for the developmental routine. 218
8.12 Inputs and outputs for the visualization routine. 219
8.13 First design example. 221
8.14 Second design example. 222
8.15 Third design example. 223

LIST OF FIGURES xviii

Part I

Overview

1

3

Part one consists of an introduction chapter that gives an overview
of this thesis. First, the evolutionary design approach is introduced and
certain key problems are identified. The main research objectives are
then defined and an outline is given of the research proposition. Finally,
methodological issues are discussed.

4

Chapter 1

Introduction

Contents

1.1 Overview of problem 5

1.1.1 Overview of evolutionary design 5

1.1.2 Problem identification 12

1.2 Overview of research 15

1.2.1 Research objectives 15

1.2.2 Research proposition 17

1.2.3 Significance and potential benefits 22

1.2.4 Research methodology 25

1.3 Overview of thesis 30

1.1 Overview of problem

1.1.1 Overview of evolutionary design

The evolutionary process in nature is an extraordinarily impressive de-
sign system. Natural designs far exceed human designs in terms of com-
plexity, performance and efficiency. Evolutionary design systems aim to
automate a part of the design process by using natural evolution as a
model.

Rather than analyzing one or even several design alternatives, evolu-
tionary systems consider whole populations of alternatives. This parallel
approach of the evolutionary process has proved to be well suited to de-
sign processes that are typically divergent and exploratory. The field of
evolutionary design has benefited from a large amount of interest and
research (Frazer, 1995b; Bentley, 1999a; Bentley and Corne, 2002).

The aim behind creating such systems is not to duplicate or mimic
an existing conventional design process. Rather, the aim is to create an
alternative design approach that allows designers to work in ways that
were previously not possible (Frazer and Connor, 1979).

5

1.1. OVERVIEW OF PROBLEM 6

Evolution in nature

In nature, the behaviour of individual organisms results in the population
as a whole evolving and adapting to the environment. Each individual
organism exists simultaneously in two related forms: as a genotype and
as a phenotype. A genotype consists of a set of genes (the organisms
DNA), where a gene can be thought of as a piece of information that can
trigger a certain developmental process to unfold. The phenotype is the
fully developed organism.

The life-cycle of an organism may be broken down into three inter-
related and overlapping steps: reproduction, development and survival.
Together, these steps result in the continuous cyclical process of life
and death that drives the evolution and adaptation of the population
as whole. The three evolution steps may be described as follows:

• The reproduction step involves creating new child genotypes from
existing parent genotypes. For example, in sexual reproduction new
genotypes may be created by crossover and mutation. Crossover
interchanges sections of the genes from the parents. Mutations
change particular genes as a result of copying errors during the
process of creating the new genotype.

• The developmental step involves creating a complete organism —
the phenotype — from a new genotype. Under the appropriate en-
vironmental conditions, the genes in the genotype will trigger a set
of developmental processes, which will result in the gradual growth
of an organism. In some cases, this growth process takes place in a
highly controlled environment such as the mother’s womb. In other
cases, the growth process is exposed to the exterior environment,
such as a plant growing from a seed.

• The survival step involves large populations of organisms competing
— either individually or in groups — for limited resources in the
environment. Organisms that are successful in this competition
for resources tend to survive longer, and those that survive longer
are likely to reproduce more often than organisms that die early.
As a result, their genes become more common in the population.
Survival is commonly characterised as a process of natural selection,
whereby the environment kills certain organisms, thereby ‘selecting’
the remaining organisms for reproduction.

For each individual organism, these steps occur more or less sequen-
tially: first an organism is conceived; then the organism grows from a
seed or egg into the fully developed organism; and finally, if it survives,
it may have a chance of reproducing.

Evolutionary algorithms

Universal Darwinism (Dawkins, 1983) suggests that the process of evo-
lution can emerge regardless of the medium, be it biological, compu-

7 CHAPTER 1. INTRODUCTION

tational, cognitive, or through some other form. Within the computa-
tional medium, evolutionary algorithms have been highly successful in a
many domains and for a wide variety of problem types. Mitchell (1999,
p. 15-16) lists optimization, automatic programming, machine learning,
economics, immune systems, ecology, population genetics, evolution and
learning, and social systems as domains where evolutionary algorithms
have been successfully applied. Beasley (2000) gives an overview of their
application in planning, design, simulation and identification, control and
classification.

Evolutionary algorithms are in some way analogous to the process
of natural evolution. Such algorithms create a cyclical process in which
a population of individuals is continuously manipulated to ensure that
the population gradually evolves and adapts as a whole. Each individual
in the population may represent a variety of entities, including a set of
parameters in an equation, a solution to a problem, or a design that
fulfils certain requirements.

These algorithms tend to include representations and steps that mir-
ror (in highly simplified form) their natural counterparts. The genotype
representation is a highly encoded version of the entity being evolved and
the phenotype representation is a decoded version of the genotype. The
reproduction step creates new genotypes; the development step trans-
forms genotypes into phenotypes; and the survival step allows some phe-
notypes to survive.

Each evolution step requires a set of rules and representations. The
representations specify a data-structure to be used to represent a par-
ticular aspect of an individual, such as the genotype or phenotype. The
rules specify how one representation may be transformed into another
representation. For example, the reproduction rules may specify how to
transform two parent genotypes into one child genotype, and develop-
mental rules may specify how to transform a genotype into a phenotype.

Evolutionary algorithm: An algorithm loosely based on the neo-
Darwinian model of evolution through natural selection. A popu-
lation of individuals is maintained and an iterative process applies
a number of evolution steps that create, transform, and delete in-
dividuals in the population. Individuals are rated for their effec-
tiveness, and on the basis of these evaluations, new individuals are
created using ‘genetic operators’ such as crossover and mutation.
The process is continued through a number of generations with
the aim of improving the population as a whole.

Evolutionary algorithms differ from natural evolution — and from
one another — in the type of evolution steps that they use. Evolution-
ary algorithms have an additional step: they use an evaluation process
to assess the performance of each individual in the population. In na-
ture, the process of evaluation is implicitly part of the survival step. The

1.1. OVERVIEW OF PROBLEM 8

evaluation of an organism remains positive as long as the organism does
not die. With evolutionary algorithms, evaluation must be performed ex-
plicitly. This evaluation must ascertain how well the individual performs
with respect to one or more objectives. For each objective, an evaluation
score is calculated and stored as part of the individual. Another addi-
tional step that is commonly used is the selection step. These steps will
be discussed in more detail in chapter 4.

Evolutionary algorithms differ significantly from the natural model in
numerous other ways. Two key differences are the evolution mode and
the control structure:

• The evolution mode refers to how the evolution steps process in-
dividuals in the population. In nature, the evolution steps are ap-
plied in parallel. At any moment in time, some organisms may be
in the process of being born, others may be in the process of living,
and yet others may be in the process of dying. This natural evo-
lutionary process may be described as an asynchronous evolution
mode, in that the life-cycles of the individuals in the population are
not synchronised. Most evolutionary algorithms use a synchronous
evolution mode. In this case, individuals in the population are pro-
cesses in a synchronised manner, with each evolution step being
applied to the whole population in turn. The synchronous applica-
tion of all the evolution steps to the individuals in the population
is described as a generation.

• The control structure refers to how the evolution steps are con-
trolled. In nature, the evolutionary process is an emergent phe-
nomenon that arises as a result of the behaviour of individual or-
ganisms. The evolution steps are applied locally and independently
from one another. This is referred to as a decentralised control
structure. Most evolutionary algorithms uses a centralised control
structure, whereby the application of the evolution steps to indi-
viduals in the population is centrally orchestrated.

Evolution mode: The way in which the evolution steps process indi-
viduals in the population. The two main evolution modes are the
synchronous mode and the asynchronous mode. With the syn-
chronous mode, the evolutionary process stops and waits for the
processing of all individuals by one evolution step to be completed
- before proceeding onto the next evolution step. With the asyn-
chronous evolution mode, evolution steps process individuals or
small groups in the population as soon as they become available.

9 CHAPTER 1. INTRODUCTION

Control structure: The way in which evolution steps are controlled.
Two main control structures are centralised control and the de-
centralised control. With centralised control, a cyclical process in-
vokes and applies evolution steps to individuals in the population.
With decentralised control, the evolution steps are autonomous
processes that manipulate individuals in the population.

A wide range of evolutionary algorithms exist that use a synchronised
evolution mode in combination with a centralised control structure. The
four main types are genetic algorithms (Holland, 1975; Goldberg, 1989;
Jong, 1993; Whitley, 1994), evolution strategies (Rechenberg, 1973; Bäck,
1996), evolutionary programming (Fogel, 1963, 1995), and genetic pro-
gramming (Koza, 1992). Of these, genetic algorithms are the best known
and most widely used. These algorithms will be discussed in more detail
in chapter 4 (see section 4.3 on page 91).

Evolutionary design

In the design domain, evolutionary algorithms are used to create pop-
ulations of alternative designs (Frazer, 1995b; Bentley, 1999d,c, 2000b;
Bentley and Corne, 2002; Dasgupta and Michalewicz, 1997). The indi-
viduals being manipulated by the algorithm represent possible designs.
Each design has a genotype representation and a phenotype representa-
tion. The genotype representation encodes information that can be used
to create a model of the design, while the phenotype representation is the
actual design model. This design model may be evaluated with respect
to certain design objectives, which may require information about the
environment in which the design is to be implemented and used.

Evolutionary design: A design approach that relies on evolutionary
software systems to aid in the process of designing. Such a system
employs evolutionary algorithms to evolve whole populations of
design alternatives. The software may be used to evolve complete
designs or parts of designs.

Two types of evolutionary design may be broadly identified: paramet-
ric evolutionary design1 and generative evolutionary design. Parametric
evolutionary design is usually used late in the design process and focuses
on the optimization of design solutions to well-defined design problems.
An existing design is defined and parts that require improvement are
parameterised2. The evolutionary system evolves the parameter values.

1Some researchers refer of parametric evolutionary design as evolutionary design
optimization.

2A parameter is a value that is assigned to a variable.

1.1. OVERVIEW OF PROBLEM 10

Such systems are generally described as convergent search systems that
search the parameter space for an optimal or satisficing set of parame-
ter values. Examples of parametric evolutionary design include (Rasheed,
1998; Rasheed and Davison, 1999; Dasgupta and Michalewicz, 1997; Cal-
das, 2001, 2002).

Parametric evolutionary design: A design approach that uses an
evolutionary system to search for optimal or satisficing design so-
lutions to well defined design problems. The overall design is
predefined and those parts thought to require improvement are
parameterised. This results in a parametric model into which val-
ues for parameters can be inserted to create alternative design
solutions. The evolutionary system uses a set of fitness functions
or objective functions to evolve an optimal or satisficing set of
parameters.

Generative evolutionary design, on the other hand, may be used early
on in the design process and focuses on the discovery of surprising or
challenging design alternatives for ill-defined design tasks. A generative
process is created that uses information in the genotype to generate al-
ternative design models. The evolutionary system will tend to evolve a
divergent set of alternative designs, with convergence on a single design
often being undesirable or even impossible. Such systems are sometimes
described as divergent systems or exploration systems. Examples of gen-
erative evolutionary design systems include (Frazer, 1990, 1992; Graham
et al., 1993; Frazer, 1995b,c; Frazer et al., 1995b; Bentley, 1996; Rosen-
man, 1996b,a; Baron et al., 1997, 1999; Coates et al., 1999; Frazer et al.,
2000; Funes and Pollack, 1999; Rosenman and Gero, 1999; Sun et al.,
1999; Rosenman, 2000; Sun, 2001; von Buelow, 2002; Jackson, 2002).

Generative evolutionary design: A design approach that uses an
evolutionary system to evolve surprising or challenging design al-
ternatives, for ill-defined design tasks that embody multiple and
conflicting objectives. Some kind of growth process is used to gen-
erate design alternatives that vary significantly from one another.
The system then relies on either human judgement or evaluation
algorithms to evolve a population of design alternatives.

With regard to the types of designs produced, the main difference
between these two approaches relates to the variability of designs. With
the parametric approach, design variability is low. Since the designs
are all based on the same parametric model, the designs will all have
the same overall organization and configuration. With the generative
approach, the variability in designs can potentially be much greater.

11 CHAPTER 1. INTRODUCTION

Figure 1.1: General parametric evolutionary method.

The difference in design variability is related to how the developmen-
tal step is implemented. With the parametric approach, the developmen-
tal step is fairly straightforward and is based on a parametric model of
the design. The parameters are encoded in the genotype and a design
model is produced by applying the parameter values to the parametric
model. This is generally referred to as a mapping process. In the case of
generative evolutionary design, the developmental step expands a com-
pact genotype into a complex phenotype using a non-linear generative
procedure. For example, the genotype may still contain a set of param-
eter values, but rather than being applied to a static model, they are
applied to a set of growth rules that that generate design models. This
type of process is referred to as a generative process.

For both approaches, a similar design method can be identified that
involves two main stages: codifying concepts and evolving designs. With
the parametric approach, the first stages involves codifying a set of map-
ping rules and a set of evaluation rules based upon the parametric model.
With the generative approach, the first stage involves codifying gener-
ative rules and evaluation rules based on a set of generative concepts.
For both the parametric and generative approaches, the second stage
involves evolving alternative designs using on these rules. In addition,
the evolutionary process may require information about the design envi-
ronment, which must be encoded in an appropriate format. In general,
this information is usually only used by the evaluation process. Some
researchers have also proposed that in the case of the generative evolu-
tionary design, the generative process may develop designs in response
to the environment. Figure 1.1 and figure 1.2 on the following page show
the main stages of the parametric and generative approaches.

Of these two approaches, the parametric approach is the more com-
mon and well developed. However, the generative approach is potentially
much more powerful. A number of experimental generative evolutionary
systems have been developed in several different design domains. This
research will focus on the generative evolutionary design approach.

1.1. OVERVIEW OF PROBLEM 12

Figure 1.2: General generative evolutionary method.

1.1.2 Problem identification

Architecture is a design domain where the application of evolutionary
design could be highly beneficial. In the past, the parametric approach
has been successfully used to fine-tune a single aspect of a design at a
detailed design stage. However, being able to evolve the overall design
of a building early on in the design process would result in a much wider
range of potential benefits. For this to be possible, the design models
being evolved would need to vary significantly from one another, and as
a result the generative approach would need to be used.

Primary problem

A number of experimental generative evolutionary design systems have
been developed and these systems have had some success. These systems
use a variety of generative techniques to produce designs, such as shape
grammars, L-systems, and cellular automata. These techniques will be
discussed in more detail in chapter 3.

Examples of generative evolutionary design systems include the fol-
lowing:

• Baron et al. (1997, 1999) have explored systems that evolve forms
consisting of aggregations of elementary particles, called voxels. A
grid of voxels is defined and the genotype then encodes that state
of each voxel in the grid.

• Rosenman (1996b,a, 2000); Rosenman and Gero (1999) have devel-
oped a number of systems for evolving two-dimensional orthogonal
plans for buildings. Plans are generated using a set of shape gram-
mar growth rules that make small modifications to an existing plan.
The genotype encodes the selection and application of rules.

• von Buelow (2002) have developed an evolutionary system for evolv-
ing structural trusses. The topology of the truss is defined by a
connectivity matrix, and the geometry is define by the positions

13 CHAPTER 1. INTRODUCTION

of the joints. The genotype encodes both the topology matrix and
the joint positions.

• Shea (1997, 2001, 2004) has developed as system for optimising
space frame structures. (The system developed by Shea does not
actually use an evolutionary algorithm. Instead, an optimization
technique called simulated annealing is used.) The structures are
generated using a set of shape grammar growth rules that add,
replace and modify structural members.

• Coates et al. (1999); Jackson (2002) have experimented with evo-
lutionary systems that use L-Systems to generate forms. The L-
System is used to generate both two-dimensional and three-dimensional
forms. The genotype encodes the rules used by the L-System.

• Bentley (1996, 1999b) has developed an evolutionary system for
evolving solid object designs. Objects are represented as a set of
non-overlapping solid primitives. The genotype encodes the po-
sition and shape of these primitives. The system uses a set of
evaluation routines to evaluate designs.

• Frazer (1992); Graham et al. (1993); Frazer (1995b,c); Frazer et al.
(1995b) have developed a variety of evolutionary systems that evolve
three-dimensional forms. Forms are generated using cellular au-
tomata rules. The genotype encodes the cellular automata rules.

Many of these systems are capable of generating complex forms that
vary in overall organization and configuration. However, none of these
system are capable of evolving three-dimensional forms that resemble
buildings.

The fundamental problem with the forms generated by these systems
relates to design variability. The generative and evolutionary process is
not restricted and constrained in a way that ensures that building de-
signs are produced. So far, it has been emphasised that the variability
cannot be overly restricted. But, equally important is that variability
should not be completely unrestricted. When the output is highly unre-
stricted, the process of evaluating the models may become complex, or
even impossible.

The evaluation step must perform a relative assessment of the design
models in the population at any one time. This assumes that all de-
sign models can be meaningfully compared to one another. When the
variability of design models is highly unrestricted, three main problems
related to evaluation can be identified:

• First, when variability is unrestricted, the majority of models gen-
erated will be chaotic forms that cannot be interpreted, either by

1.1. OVERVIEW OF PROBLEM 14

the designer or the computer, as a design 3. One option is for the
evolutionary system to identify the models that can be interpreted
as designs and to discard any chaotic models. This becomes a ma-
jor task in itself. In many cases, the proportion of actual designs in
the background noise of chaotic forms is so small that it becomes
impossible for the evolutionary process to take hold.

• Second, the comparison of designs employing different architectural
concepts and languages requires subjective judgements to be made.
Whether one design is better than another becomes a matter of per-
sonal taste, and as a result such judgements cannot be performed
by the computer. One option is to allow the designer to interact
with the evolutionary system so that they may selectively ‘kill’ any
designs that do not reflect their personal design ideas and beliefs.
This will become an onerous task for the designer since only a small
proportion of the designs will reflect their ideas and beliefs.

• Third, the analysis and simulation of designs that vary in unre-
stricted ways is problematic. Typically, analysis and simulation
programs require designs to be specified as complex representations
that use high-level semantic concepts to describe a design. For ex-
ample, representations typically include spaces, walls and floors or-
ganised in precise arrangements. Conversely, generative programs
that generate unrestricted variability describe designs using basic
low-level geometric primitives. The task of inferring high-level se-
mantic constructs from low-level geometric primitives is complex,
if not impossible.

Despite these problems, some researchers have actively pursued the
development of evolutionary systems capable of evolving designs that
vary in highly unrestricted ways. The main motivation behind this highly
generic approach is the desire to avoid restrictive processes that may ex-
clude the best designs. For example, concerning generative evolutionary
design systems, Bentley (1999b, p. 42) writes: “phenotype representa-
tions are typically quite general, capable of representing vast numbers of
alternative morphologies (this is in contrast to representations for opti-
mization, which can only define variations of a single form).” He later
states that this approach “overcomes potential limitations of ‘conven-
tional wisdom’ and ‘design fixation’ by evolving forms without the use
of knowledge of existing designs or design components.” Although this
argument cannot be ignored, the problems identified earlier in relation to
the evaluation step must also be considered. Developing a highly generic

3The distinction between forms that are designs, and those that are not — between
designs and chaotic forms — is not based on the quality of designs, but is instead a
much coarser distinction between those forms that may be understood to be a design
— whether good or bad — and those that, due to their random and chaotic nature,
simply defy any kind of understanding.

15 CHAPTER 1. INTRODUCTION

representation that does not exclude the best designs is of little use, if it
results in the evolutionary process being severely hindered.

The main problem is finding a compromise between an evolutionary
design system that is overly restrictive but performs well, and one that
is highly unrestricted but performs poorly. This problem is referred to
as the variability problem.

Other related problems

The variability problem suggest that the variability of designs should
be restricted in some way. This results in an evolutionary system that
is limited to evolving certain types of designs. This restriction leads
to a second, related problem, which has been called the style problem
(Bentley, 1999b). The style problem relates to the re-usability of the
system. In particular, when the variability of designs is restricted in
some way, this may result in all designs having a particular ‘style’, which
in turn will result in an evolutionary system with low re-usability since
only a small number of designers are likely to approve of the style.

If re-usability is low, each design team will be required to develop
their own evolutionary system that incorporates restrictions on design
variability that they approve of. This situation is clearly undesirable
because most design teams do not have the resources, including time
and expertise, to develop such systems. An approach must be found that
both maximises the re-usability of the evolutionary system and allows the
variability of designs to be restricted.

1.2 Overview of research

1.2.1 Research objectives

The overall goal of this research is to contribute to the development
of a practical generative evolutionary design approach that would allow
the design team to evolve the overall configuration and organization of
buildings.

Primary research objective

In order to achieve the overall goal set out above, the primary objective
is to develop a framework for the application of the evolutionary de-
sign approach that allows the variability problem to be overcome. This
framework is referred to as the generative evolutionary design framework.

The framework consists of two parts: a design method and a compu-
tational architecture.

• The design method broadly defines a design procedure for using
generative evolutionary design. One of the tasks defined by the
design method is the task of evolving alternative designs. (Other
tasks will be discussed below.)

1.2. OVERVIEW OF RESEARCH 16

• The computational architecture specifies the structure and organi-
zation of the software and hardware components for a generative
evolutionary design system. Such a system would be used for the
task of evolving alternative designs.

Design method: A semi-formalised design process that explicitly pre-
scribes a way of designing a type of product. The process is struc-
tured as a set of tasks to be carried out by the designer or design
team, possibly in some specific order. A design method is a con-
jecture of a potentially useful design process. It is useful to the
extent that its application will lead to products that embody cer-
tain design qualities that are seen to be beneficial or desirable.

Computational architecture: An implementation plan of how sig-
nificant software and hardware components of a computer system
are structured and organised. This includes the functions and in-
teractions of different components. Communication protocols and
data formats may also be defined.

Other related objectives

In order for the generative evolutionary design framework to be effec-
tive, both the design method and the computational architecture need
to fulfil certain key requirements. The design method should fulfil two
requirements:

• The design method should be conservative in that it should, wher-
ever possible, conform to existing design processes used by designers
in practice. It should only deviate from existing design processes
when it is essential to the success of the evolutionary approach.
This conservative approach minimises the changes that are neces-
sary on the part of the design team, and thereby renders it more
acceptable.

• The design method should be synergetic in that the contrasting
abilities of the design team and the computational system should
be exploited in a way that is mutually beneficial. Through corre-
lated action, the human designers and the computational system
should be able to achieve results that would otherwise not be pos-
sible if they were applied in isolation. Such a collaboration requires
a design method where the strengths and weaknesses of the human
designers complement the strengths and weaknesses of the compu-
tational system.

17 CHAPTER 1. INTRODUCTION

The computational architecture should also fulfil two requirements:

• The architecture should be scalable, allowing for the evolution of
large complex designs without performance being adversely affected.
In most cases, the developmental and evaluation steps are likely to
be the most computationally demanding. In order to avoid these
steps becoming a bottleneck, some form of parallelization will need
to be considered.

• The architecture should be customisable. Since generative evolu-
tionary design is a relatively new research field, researchers are
experimenting widely. Different researchers are likely to implement
the evolution steps in a number of different ways, and the architec-
ture should make the customization of the rules and representations
used by these steps as easy as possible.

1.2.2 Research proposition

The core concept upon which the generative evolutionary design frame-
work is based is the notion of a design entity that captures the essential
and identifiable character of a family of designs. This conceptualization
is defined as a design schema.

Design schema

The design schema focuses on a designers body of work, or their oeuvre.
An intrinsic aspect of a design schema is that it is specific to one designer
or design team. Related to this, is the idea that they embody a formative
potential. Design schemas are seen as synthetic rather than analytic and
may be used to generate a range of designs that all embody the character
of the schema. Designs that embody this character are described as being
members of the schema.

Design schema: A design conceptualization that captures the essen-
tial and identifiable character of a varied family of designs by
one designer or design team. It encompasses those characteristics
common to all members of the family, possibly including issues of
aesthetics, space, structure, materials and construction. Although
members of the family of designs share these characteristics, they
may differ considerably from one another in overall organization
and configuration. Design schemas are seen as formative design
generators; their intention is synthetic rather than analytic.

When a design schema is codified in a form that can be used by
an evolutionary system, it provides a way of overcoming the variability
problem. The encoded schema allows designs to be generated that differ
widely in overall organization and configuration while at the same time

1.2. OVERVIEW OF RESEARCH 18

precluding chaotic designs. The task of codifying the design schema in-
volves creating a set of rules and representations that define the evolution
steps. Each evolution step is characterised as a process that transforms
input data into output data. The rules define the transformations and
the representations define the formats for the input and output data.

Design environment and niche environment

The environment for a design is defined as encompassing both design con-
straints and design context. Examples of design constraints may include
the budget, the number of spaces, floor areas, performance targets and so
forth. The design context may include site dimensions, site orientation,
neighbouring structure, seasonal weather variations, and so forth.

Design environment: The constraints and context for a particular
design. The constraints describe the requirements that the build-
ing must fulfil and may include factors such as budget, spatial re-
quirements, and performance targets. The context describes the
building site and may include site conditions, neighbouring condi-
tions and weather conditions. The design environment covers all
those conditions that influence the success or failure of the design,
but that are not part of the design itself.

The design schema is not specific to one design. When a design
schema is created, the actual design environment may not yet be known.
However, the design schema cannot be created devoid of any reference to
the environment. Instead, the design schema may be developed with a
certain type of environment in mind, referred to as the niche environment.

Niche environment: A type or category of design environment, en-
compassing a range of possible constraints and a range of possible
contexts. If a specific design environment falls in such a environ-
mental niche set, this design environment is described as matching
or falling within the environmental niche.

The design schema concept therefore entails a distinction between
two different types of environment. The design schema is adapted to an
niche environment, whereas the design model is adapted to the design
environment.

The proposed design method

The design method is the first part of the framework. It breaks the
design process down into two sequential phases. In the first phase, a
design schema is developed that may be used to evolve designs for a

19 CHAPTER 1. INTRODUCTION

Figure 1.3: The schema-based evolutionary design method.

range of different projects. In the second phase, the schema developed
in the first phase is applied to a specific project and a detailed design
proposal is developed. Figure 1.3 shows the overall structure of the design
method. The first phase may be viewed as a generalization process, and
the second phase as a specialization process.

Each of the two phases is further broken down into two main stages:

• In the schema development phase, the design team develops a new
design schema that may be used in a range of different projects.
The two main stages are creating the design schema and encoding
the design schema. The first stage is a form of conceptual design,
where the design team develops an integrated set of design ideas
adapted to a niche environment. The second stage involves codify-
ing the schema in a format that is compatible with the evolutionary
system.

• In the design development phase, the design team develops a de-
tailed design for a specific design project. The two main stages
are evolving a set of alternative design models and developing one
of the designs into a detailed proposal. The first stage requires a
generative evolutionary design system for which a computational
architecture has been developed. This system uses the encoded

1.2. OVERVIEW OF RESEARCH 20

schema to evolve and adapt designs in response to the encoded de-
sign environment. The second stage involves developing a detailed
design proposal as in a conventional design process.

The schema development phase creates a design schema that is man-
ually adapted to an environmental niche by design team, whereas the
design development phase creates a design proposal that is automatically
adapted to the design environment by the evolutionary system. The en-
coded schema can be used in any project whose design environment falls
in the niche environment for which the schema was designed.

The design method is conservative in that the overall structure of the
design method is similar to a conventional design process commonly used
by designers in practice. Numerous studies have shown that designers
do not come to a design project with an empty mind but have a set of
strongly held preconceptions — including general philosophical beliefs,
cultural values, and specific design ideas — that they repeatedly apply in
different design projects. Such a design process is seen to share significant
similarities with the proposed design method.

The design method is synergetic in that it specifies a process where
the design team can focus on those tasks that are predominantly creative
and subjective, and where the computational system can be applied to
those tasks that are predominantly repetitive and objective. Developing
and encoding the design schema is seen as a creative and subjective task,
while generating and evaluating alternative designs is seen as primarily
a repetitive and objective task.

The proposed computational architecture

The computational architecture is the second part of the framework. The
architecture provides an implementation plan for a generative evolution-
ary design system. Such a system is required in the design evolution
stage of the proposed method discussed above. The system uses a set of
rules and representations that constitute the encoded schema.

Figure 1.4 on the facing page shows the most significant components
of the computational architecture. A single population is manipulated by
seven steps: an initialization and a termination step, four evolution steps
and a visualization step. The initialization and termination steps are used
to initialise and terminate the evolutionary process. The four evolution
steps consist of reproduction step, a development, an evaluation step and
a survival step. Each of these steps extracts a small number of individuals
from the population, processes these individuals, and either inserts the
resulting individuals back into the population or — in the case of the
survival step — deletes a number of individuals in the population. The
visualization step allows design models in the population to be visualised.

The architecture specifies a parallel implementation using a standard
client-server model in a networked computing environment. The server
manages the population of designs and performs the reproduction and

21 CHAPTER 1. INTRODUCTION

Figure 1.4: Computational architecture for generative evolutionary de-
sign system.

survival steps, while multiple client computers perform the developmental
and evaluation steps. The architecture supports scalability in two ways:

• First, an asynchronous parallel evolutionary process is used that re-
duces the execution time and is highly effective in situations where
the development and evaluation steps are costly. This is especially
pertinent for evaluation clients, since the simulation or analysis of
the performance of a building design can be time consuming.

• Second, a decentralised control structure is used with a client-server
model that results in a flexible and robust architecture. The archi-
tecture is flexible in that client computers can easily be added and
removed from the evolutionary process. The architecture is robust
in that it can cope with failure of client systems in a graceful man-
ner.

In order to support a high level of customizability, the architecture
breaks down the evolutionary system into two main parts: the generic
core and a set of specialised components. The generic core can be re-used
in any design project and does not require any modification. In order
to function, the generic core must invoke the services of the specialised
components. These components are completely customisable and must
be defined by the design team. Three types of specialised components
may be defined by the design team: routines, data-files and applications.

• Routines encapsulate the rules and representations used by the evo-
lutionary system. The design team must create a set of such rou-
tines that together constitute the encoded schema. The encoded

1.2. OVERVIEW OF RESEARCH 22

schema can be changed without requiring any changes to be made
to the generic core.

• Data-files encapsulate information about the design environment.
These data-files constitute the encoded environment. The data-files
can be changed and replaced independently of both the generic core
and the routines that define the encoded schema.

• Applications are existing software applications whose functionality
the design team may require, in particular for modelling, visualis-
ing and evaluating design models. The architecture supports the
integration of such applications in the evolutionary system. The
networked client-server models allows these applications to be exe-
cuted by clients running any operating system, as required by the
applications.

1.2.3 Significance and potential benefits

The schema based evolutionary design approach has a number of poten-
tial benefits over existing design processes. Three potential benefits are
highlighted: the first focuses on the ability to evolve designs for buildings
that consume less energy; the second focuses on encouraging experimen-
tation and innovation in the design process; the third focuses on allowing
the client to gain more control over the design process.

Low-energy architecture

Sustainability has recently become an important issue in many domains,
including building design. Sustainable development ensures that the
needs of the present are met without compromising the ability of fu-
ture generations to meet their own needs (WCED, 1990, p. 8). In or-
der to make development in a particular environment (either Earth as a
whole or some region of it) sustainable, the impact of humans on that
environment must be kept in certain limits (sometimes described as the
‘carrying capacity’ of that environment). The environmental impact can
be described by the following formula (Sylvan and Bennett, 1994, p. 47):

Environmental Impact = Population × Consumption × Technology

To reduce the environmental impact, the size of the human population
must be reduced, the consumption per member of the population must
be reduced, or improvements in technology must be made that reduce
the impact of consumption.

For the designers of buildings, one of the main ways of reducing the
environmental impact is by reducing the consumption element in the for-
mula. In particular, building designers can design buildings that are well
adapted to their environment, thereby reducing the energy consumed in
their operation and maintenance. This has been highlighted by Maver

23 CHAPTER 1. INTRODUCTION

and Petric (2003), who write: “Central to the concept of sustainability,
at least in the climatic region of northern Europe, is the issue of en-
ergy consumption. Leaving aside the energy embodied in the production
and transportation of the materials for building, the energy expended in
maintaining the building stock at acceptable levels of thermal comfort
accounts for more than half of the total energy budget.”

Maver and Petric (2003) then asks: “Better design; but how?” This
question highlights the fact that adapting a design of a building to its
environment is not straightforward. The ability of the human designer to
foresee the future consequences of the numerous and interrelated design
decisions made during the design process is limited, particularly when
considering design decisions made early on in the design process. The
complexity of the design task is typically so great that the designer will
need to rely on the rule of thumb and their gut feeling when it comes
to making early design decisions. The consequences of these decisions
will only become clear later in the design process when it is likely to
already be too late to explore alternative avenues. Even if further time
and resources are available, only a small number of alternatives could
ever be feasibly explored.

The schema based design approach uses an evolutionary system rather
than human designer to explore these different alternatives. Such a sys-
tem is inherently parallel in its mode of operation and is able to explore
large numbers of possible alternative designs. The evolutionary process
will ensure that the population of design models will gradually adapt
to the design environment in which they are being generated and evalu-
ated. (This approach has been explored by Caldas (2001); Caldas et al.
(2003); Caldas and Norford (2004) for parametric evolutionary design.)
By creating designs that are appropriately adapted to the environment,
the schema based design approach may help to reduce the consumption
per member of the population.

Experimentation and innovation

The design of a building is generally a one-off endeavour. Due to this one
off nature of building design, the costs of any project-specific experimen-
tation and innovation must all be borne by a single client. Frazer (1995b)
writes: “Construction remains labour-intensive: it has never made the
transition to a capital intensive industry with adequate research and de-
velopment capabilities. It has been left largely to individual architects to
take the risk of performing experimental and innovative prototyping in an
uncoordinated and romantic or heroic manner. The ensuing (inevitable)
failures have been catastrophic for both society and the architectural
profession.”

The schema based design approach provides an alternative focal point
for experimentation and innovation that is not project specific. The
design schema can be developed over a large number of projects. The
costs of any experimentation and innovation expended on developing

1.2. OVERVIEW OF RESEARCH 24

the design schema may be shared between multiple projects. This is
particularly relevant to design schemas that predefine a particular type of
structural and constructional approach, including defining specific types
of components and types of materials. In such cases, experimentation
and innovation may involve building and testing numerous prototypes
that explore these structural and constructional possibilities.

This approach to experimentation and innovation is similar to the
approach of mass-customization of consumer products. Mass customiza-
tion allows “the same large number of customers can be reached as in
mass markets of the industrial economy, and simultaneously they can
be treated individually as in the customised markets of pre-industrial
economies” (Davis, 1987, p. 169).

Client role

From a client perspective, the design process may sometimes be perceived
as somewhat opaque and mysterious. The schema design approach may
provide a model of client interaction that empowers the client to ex-
periment with the trade-off’s that commonly emerge when developing a
design.

This client interaction model focuses on the second phase the de-
sign development phase. This phase consists of model evolution and
detailed design. During model evolution, the client guidance would cen-
tre on complementing the largely quantitative predictions performed by
the evolutionary system with qualitative human judgements. During
detailed design, the client guidance might centre on making choices con-
cerning details and materials to be used, taking into account the cost
implications.

An important aspect of this guidance is that it may require little
professional and technical knowledge. The design team together with
the technical software consultants would develop the design schemas,
the standard details and configure the applications. The client could
choose (or purchase) a design schema from their favourite designer and
develop a design proposal with limited assistance from the design team.
For example, as is common when purchasing a new car, the client might
select from a predefined list the preferred types of accessories and interior
finishes to be applied to the skeletal model (with cost implications being
display back to the client).

During the 1970’s, the ABACUS unit at Strathclyde University fol-
lowed a similar approach, where programs were developed that allowed
the end users to create their own designs. In one experiment, teachers
were able to use specially developed software to create designs for nurs-
ery schools that were within budget and performed well at a technical
level (Aish, 1977). Frazer et al. (1980); Frazer (1982, 1995b) has also
developed a number of tangible interface system that allow prospective
building users to explore different design solutions.

Lawson (1997, p. 292) summarises this approach as “using the com-

25 CHAPTER 1. INTRODUCTION

puter to de-skill parts of the process to the point where it could be
conducted by non-experts. This illustrates one of the generic possibil-
ities offered to us by computer systems. They can sometimes be used
to reduce the expertise needed to carry out the task to the level of the
novice. In this case the skills needed to draw out a design were reduced to
assembling simple shapes on a computer screen allowing nursery school
teachers to produce designs which could be compared with those pro-
duced by experienced and skilled architects.”

1.2.4 Research methodology

In both the natural and cultural sciences, methodological pluralism4 has
led to the development of a vast variety of research methods. The ma-
jority of these can be described as descriptive research methods in that
they focus on describing the way the world is. This research is concerned
with contributing to the development of an evolutionary design approach
that does not yet exist. This research is inherently prescriptive and as a
result, research methods must be used that support this approach.

Many attempts have been made to develop prescriptive research meth-
ods5. Such research methods are common in design, engineering (Simon,
1981; Cross, 1993; Warfield, 1994; Cross, 2000) and computer science.
All these disciplines are predominantly prescriptive. However, for this
research, the methods developed in these disciplines are seen to be of
limited value, either because they do not directly address the issues in-
volved developing a computational system or because they tend to focus
only on the technical implementation aspects of the computational sys-
tem.

A research area with more appropriate types of research methods is
the relatively new field of Information Systems 6. Despite the fact that
design systems might fall outside what is commonly understood to be
an Information System, many of the research methods developed in this
field are in fact suitable to this investigation.

Research frameworks

Information Systems researchers have proposed a number of research
frameworks that include both descriptive and prescriptive research meth-
ods (Iivari, 1987; Nunamaker and Chen, 1990; Nunamaker et al., 1991;

4Methodological pluralism is the belief that there is not one correct research
method, but that there are many different methods for different purposes. (Mor-
gan, 1980; Polkinghorne, 1983; Hirschheim, 1985).

5Prescriptive research methods are described by a variety of terms including sys-
tems development, artefact building, and engineering type research.

6A common definition of the aim of Information Systems research is “the effective
design, delivery, use and impact of information technologies in organizations and
society” (Keen, 1987). The field is also known by a number of other names such as
Management Information Systems, Information Management and Informatics. These
names are largely synonymous; see (Davis, 2000)

1.2. OVERVIEW OF RESEARCH 26

Iivari, 1991; March and Smith, 1995; Järvinen, 1996; Iivari et al., 1998;
Järvinen, 1999, 2000).

Typically, such research frameworks describes a long term research
activity that will encompass a variety of individual research projects,
each focusing on a particular type of research. Such frameworks identify
specific research methods that are applicable during different stages of
research, some of which are prescriptive and some of which are descrip-
tive.

The frameworks differ in how the break down the research activity.
Generally they will include three key stages (in some cases broken down
into smaller stages): conceptualization, implementation and evaluation.

• The conceptualization stage includes the development of user meth-
ods, theoretical models and system architectures. Generally, this
stage does not encompass implementation although some experi-
ments and simulations may be performed to verify and demonstrate
the feasibility of the system. (For example, see experimentation, as
defined in Nunamaker et al. (1991).)

• The implementation stage includes both the development of proto-
type ‘proof-of-concept’ systems as well as the development of fully
articulated production systems aimed at the target users. Based on
the architecture developed in the previous stage, a detailed specifi-
cation for the implementation of the system will need to be devel-
oped.

• The evaluation stages includes performance testing, case studies,
field studies, and so forth. If the system being evaluated is a pro-
duction system, a realistic evaluation in the social and organiza-
tional context for which it was designed may be carried out.

A research project will tend to focus on one stage of the research and
will use the methods appropriate to that stage. The evaluation stage
tends to use descriptive research methods, whereas the first two stages
— conceptualization and implementation — typically rely on prescriptive
research methods.

Individual research projects are assumed to link together in complex
ways, thereby resulting in the long term research activity that covers the
various research stages. The outcome of some projects may require a
return to some earlier stage, while in other cases the output may become
the foundations for research in the next stage.

For example, one project may develop and implement a particular
prototype. If unexpected difficulties and constraints are encountered
during implementation, the next research project may need to return to
the conceptualization stage to modify the methods, models and architec-
tures. On the other hand if the implementation project was successful,
the next project may attempt to test and evaluate this prototype ac-
cording to a set of benchmarks and criteria. Nunamaker et al. (1991)

27 CHAPTER 1. INTRODUCTION

write that “development is an evolutionary process. Experiences gained
from developing the system usually lead to further development of the
system, or even the discovery of a new theory to explain newly observed
phenomena.”

Only projects that focus on the latter stages are able to realistically
evaluate a system. The output from individual projects at earlier stages
in the research activity need to be judged in some other way. Various
researchers have argued (March and Smith, 1995; Järvinen, 1999, 2000)
that the output from any project — including those focusing on the
development and implementation stages — should be judged based on
its value or utility to a community of users. They suggest that this
measure of usefulness should take into account the existing context and
environment in which the output is being put to use. An output that is
original in some way, is deemed to be research, provided that it has a use
that is seen to be of some importance. The research contribution lies in
the novelty of the output and in the persuasiveness of the claims that it
is effective. Actual performance evaluation is not required at this stage.

Systems development research process

Nunamaker et al. (1991) see systems development as a research strategy
that fits comfortably into the category of applied science, belonging to
the engineering, developmental and formulative types of research. The
development of a method or system is viewed as “a perfectly acceptable
piece of evidence (an artefact) in support of a ‘proof’, where proof is taken
to be any convincing argument in support of a worthwhile hypothesis.
System development could be thought of as a ‘proof-by-demonstration’.”

They describe a general research process through which a particular
concept will progress. This overall process may encompass a number of
individual research projects. Nunamaker et al. (1991) write that “a con-
cept with wide-ranging applicability will go through a research life-cycle
of the form: concept - development - impact.” Imagination and creativity
in the concept stage leads to experimental design and implementation re-
search in the developmental stage, which may eventually lead to research
into user productivity and acceptance in the impact stage.

The research process consists of five key research stages:

• The construction of a conceptual framework. Researchers should
justify the significance of the research question pursued. An ideal
research problem is one that is new, creative, and important in
the field. If the framework proposes new methods, techniques or
designs, researchers may elect to develop a demonstration that val-
idates the proposed methods, techniques or designs.

• The development of a system architecture. Researchers should
put the system components into perspective, specify the system
functionalities, and define the structural relationship and dynamic

1.2. OVERVIEW OF RESEARCH 28

interactions among system components. The system architecture
provides a roadmap for the system building process.

• The analysis and design of the system. Researchers should consider
and evaluate alternative approaches to implementation. A detailed
specification to be used as a blueprint for the implementation of
the system needs to be developed. Such a blueprint would need to
determine data-structures, databases and knowledge bases must be
determined.

• The building of the (prototype) system. Researchers should demon-
strate the feasibility of the design and the usability of the func-
tionalities by implementing a system. The prototype may also be
further developed into a product that can be transferred into an
organization. The building process can provide insights that may
be helpful in redesigning the system.

• The observation and evaluation of the system. Researchers should
test the performance and usability of the system, as well as observe
its impact on individuals, groups and organizations. The test re-
sults should be interpreted and evaluated based on the conceptual
framework and the requirements of the system defined in earlier
stages.

Figure 1.5 on the next page shows the overall process. A particular
research project is likely to focus on one stage, with the output from one
research project providing the foundations for the next one.

Scope of this research project

This research project focuses on the first three stages of the research
process defined by Nunamaker et al. (1991). For the first stage, a design
method is developed; for the second stage, a general system architecture
is developed; and for the third stage a detailed system architecture is
developed. The stages involving the implementation and evaluation of
the system are not included in this research.

The long term goal is to develop a user-friendly system with a compre-
hensive interface targeted at designers and architects. In order to achieve
this goal, the core evolutionary engine must first be implemented, tested
and evaluated. Such a process would no doubt result in a variety of
modifications and improvements to the core system.

The main outputs developed by this research are as follows:

• The design method for evolutionary design. This method provides
a design procedure for the design team to use the evolutionary
approach.

• The computational architecture for an evolutionary design system.
This architecture provides a plan for researchers to implement the
evolutionary system.

29 CHAPTER 1. INTRODUCTION

Figure 1.5: Systems development research process, proposed by Nuna-
maker et al. (1991). (Diagram is redrawn from (Nunamaker et al., 1991).)

Both the design method and the architecture are based on a number
of previous models, methods and systems. By comparative analysis, this
research highlights various aspects that are novel. In order to judge the
value or utility of these novel aspects, different users need to be consid-
ered. The eventual target users of an evolutionary system are a design
team that includes people with advanced computational skills. The de-
sign method is directed at these users. The computational architecture
is not directed towards designers, but towards fellow researchers and ex-
perimenters in the field of design computation, especially the field of
generative design.

The design method and the architecture should be judged based on
their value to their respective communities of users. In both cases, this
value is supported by a demonstration created to verify the feasibility of
design schema concept. This concept is seen as the core concept upon
which both the design method and the computational architecture are
based.

For the demonstration, an example of a design schema is first de-
scribed. This design schema defines a family of building designs that
share the same overall character. A generative process capable of pro-

1.3. OVERVIEW OF THESIS 30

ducing designs that embody this character is described. The process of
encoding the design schema using routines, data-files and applications is
described. Three of the routines — the initialization, developmental and
visualization routines — are implemented and a variety of designs are
generated.

In addition to the demonstration, various arguments are made in
this thesis to support the design method and the computational archi-
tecture. The key requirements identified earlier also emphasise value
and utility. For the computational architecture, the requirement for cus-
tomizability ensures that researchers are able to experiment with a wide
variety of evolutionary rules and representations, and the scalability re-
quirement ensures that researchers will be able to evolve large complex
building forms. For the design method, the conservative requirement re-
lates to minimising the changes the design team need to instigate, while
synergetic requirement relates to harmonising the working relationship
between the design team and the computational system.

Finally, three broad potential benefits of the evolutionary design ap-
proach have been identified: increased levels of adaptation to the environ-
ment; increased levels of experimentation and innovation; and increased
levels of client participation in the design process. These potential ben-
efits further emphasise the value of the overall approach.

1.3 Overview of thesis

This thesis is divided into four parts. Part one consists of this introduc-
tion.

Part two reviews work related to this research, and consists of four
chapters: chapter 2 gives an overview of research into the design process;
chapter 3 gives an overview of various generative techniques; chapter 4
gives an overview of evolutionary computation; and, chapter 5 describes
a number of evolutionary design systems.

Part three presents the main proposition made by this thesis, and
consists of three chapters: chapter 6 describes the evolutionary design
method developed in this research; chapter 7 describes the computational
architecture developed in this thesis; and, chapter 8 demonstrates the
process of encoding a design schema.

Part four presents conclusions and future work.

Part II

Review of related work

31

33

Part two consists of four chapters that discuss the main areas of
research upon which the generative evolutionary design framework is
based.

• Chapter 2 discusses the design process, and in particular methods
and theories related to this process. The importance and necessity
of design preconceptions in the design process are emphasised.

• Chapter 3 introduces a variety of techniques to generate three di-
mensional form. These techniques may be used to create the rules
and representations required by the developmental step.

• Chapter 4 reviews the field of evolutionary computation. The ma-
terial covered is not specific to the design domain. Two compu-
tational architectures are identified, and the most common algo-
rithms are discussed. The rules and representations used by these
algorithms are described.

• Chapter 5 describes a number of evolutionary design systems. Five
different systems are discussed, of which two are parametric and
three are generative.

34

Chapter 2

Design process

Contents

2.1 Introduction 35

2.2 Design methods 36

2.2.1 Design methods movement 36

2.2.2 Designing as a subjective process 38

2.3 The role of the computer 40

2.3.1 The changing role of the computer 40

2.3.2 Computers as design support medium 40

2.4 The role of the designer 42

2.4.1 Problems and solutions 42

2.4.2 Personal and idiosyncratic input 44

2.4.3 Design preconceptions 46

2.5 Design ideas . 49

2.5.1 The dominance of initial design ideas 49

2.5.2 Types of initial design ideas 51

2.6 Summary . 53

2.1 Introduction

This chapter introduces a variety of design methods and theories. It
consists of four main sections:

• In section 2.2, design methods are introduced. The overall ap-
proach and goal of creating such methods is discussed. Although
the design methods of the 1960’s aimed to provide a single ratio-
nal and objective procedure for designing, later methods allow for
subjectivity and ambiguity.

35

2.2. DESIGN METHODS 36

• In section 2.3, the role of the computer in the design process is dis-
cussed. Since the 1960’s, computers have gradually become more
prominent, but they have also become more subservient to the tra-
ditional design process. Recently, a number of researchers have
suggested that the computer is once again being used to support
more unconventional design processes.

• In section 2.4, the role of the designer in the design process is dis-
cussed. Research that emphasises the subjective and ambiguous
nature of design is discussed. In order to tackle any moderately
complex design task, the designer must introduce personalised and
idiosyncratic preconceptions. Two types of preconceptions are dis-
cussed: a general design stance and more specific design ideas.

• In section 2.5, research relating to how preconceived design ideas
are used in the design process is discussed. A number of different
theoretical frameworks are introduced.

2.2 Design methods

The process of designing has been described as an “imaginative jump
from present facts to future possibilities” (Page, 1966, quoted in Jones
(1970)). Throughout history, design methods have been invented with
the intention of rationalising and formalising this jump.

2.2.1 Design methods movement

Designing has often been characterised as a problem solving endeavour
where the problem consists of a list of constraints and requirements and
the solution fulfils these requirements. This approach culminated in the
design methods movement.

The term ‘design method’ is perhaps most closely associated with
attempts, after World War II and during the 1960s, to create a design
science (Cross, 2001). In particular, the design methods movement hoped
to create design methods that were based on science, technology and
rationalism. The design methods movement received much attention
from the design research community. It was part of a more general quest
to develop a design science.

Cross (2001) writes: “The concern to develop a design science thus led
to attempts to formulate the design method — a coherent, rationalised
method, as the ‘scientific method’ was supposed to be... So we might
conclude that design science refers to an explicitly organised, rational,
and wholly systematic approach to design; not just the utilization of
scientific knowledge of artefacts, but design in some sense as a scientific
activity in itself.” The quest for a design science was a major motivation
in defining design as a problem solving endeavour. In this sense, the quest

37 CHAPTER 2. DESIGN PROCESS

for a design science may be thought of as being the broad framework
which subsumes the design methods movement.

By framing design as a problem-solving enterprise, it became natu-
ral to talk of problem definitions, sub-problems, parameters, variables,
optimal solutions, and so forth. The two key proponents of the design
methods movement were Christopher Alexander and John Christopher
Jones.

First generation design methods

In the 1980 conference entitled Design : Science : Method, Broadbent
(1981) describes the design method developed by Alexander:

“Christopher Alexander... had developed a Design Method
which consisted of breaking the problem down into small
components, sorting these by computer into those which in-
teracted with each other and ‘solving’ the problems of each
group by drawing a diagram, a piece of design geometry by
which the conflicts were resolved between the components in
each group.

Initially, the ‘bits’ were ‘Misfit Variables’ - small statements
concerning the problem... He had had further thoughts by
1967 about the nature of the diagrams by which small plan-
ning ‘conflicts’ in the building could be resolved, such dia-
grams were now called The Atoms of Environmental Struc-
ture.

The ‘Atoms’ could be drawn because they resolved simple
conflicts of, say, people’s ‘tendencies’ to walk into a building
from a certain direction. These, for Alexander, were matters
of ‘fact’, which had nothing to do with feeling or opinion.
The designer’s task was to ‘resolve’ any ‘conflicts’ in such
‘tendencies’ by his ‘Atoms’ of geometry” (references omitted).

These early methods, developed during the 1960’s, were criticised for
being “mechanistic, over-simplistic, joyless, or as denying the essentially
creative nature of design” (Jacques, 1981), and soon became discred-
ited. By the early 1970s both Alexander and Jones had abandoned the
methods that they had pioneered a decade earlier. Broadbent (1981)
identifies the 1967 Symposium on Design Methods in Architecture as the
key turning point, with the symposium being organised to include spe-
cific confrontation between those “representing a mechanistic, quantified
view of design” and those “concerned, above all, with the ‘human-ness’
of human beings”.

Second generation design methods

As a result of these criticisms, a second generation (Rittel, 1973) of meth-
ods emerged that differed from the earlier methods in two important re-

2.2. DESIGN METHODS 38

spects: first, the idea of optimal design solutions was rejected in favour of
the notion of satisficing design solutions (introduced by Simon (1981));
and second, the idea of the omnipotent designer was rejected in favour of
the notion of user participation. Cross (1993) writes: “The first genera-
tion (of the 1960s) was based on the application of systematic, rational,
‘scientific’ methods. The second generation (of the early 1970s) moved
from attempts to optimise and from the omnipotence of the designer
(especially for ‘wicked problems’), towards recognition of satisfactory or
appropriate solution-types... and an ‘argumentative’, participatory pro-
cess in which designers are partners with the problem ‘owners’ (clients,
customers, users, the community).”

Despite the shift in approach, the second generation methods still
framed design as a problem solving endeavour and remained in the broader
design science framework. Although the approach had become less sim-
plistic and deterministic, designing nevertheless remained a question of
discovering a satisficing solution to the design problem using rational
means. Whereas first generation methods supposed that the omnipotent
architect was best placed to make such discoveries, the second generation
methods proposed the community as better placed to make such discov-
eries. Broadbent (1981) writes: “No one was to be an ‘expert designer’.
Designers had made a mess of things, and if they were to exist in the fu-
ture, they should be mere technicians, converting to physical form what
the community said it wanted.”

As a result many of the second generation methods were similar to
their first generation counterparts. For example, Alexander became dis-
illusioned with the computer (Alexander, 1971) — seeing the precision
required by the computer as being incompatible with creativity — and
subsequently modified his method to exclude the computer. The modi-
fied method was called A Pattern Language (Alexander et al., 1977), the
core of which consisted of 253 rules, called Patterns. Alexander defines a
Pattern as a “three-part rule, which expresses a relation between a cer-
tain context, a problem, and a solution” (Alexander et al., 1979). The
designer — who might actually be the client or the user rather than the
architect — would apply the Patterns to the design problem in a struc-
tured way to build up a new design solution. Broadbent (1981) described
Alexander’s modified method (Alexander et al., 1977, 1979) as follows:
“Having been transmuted once into ‘Atoms’ his ‘Misfit Variables’ then
became ‘Patterns’ of specific problems. Then they became parts of A
Pattern Language (1977)... Each Pattern consists of a general statement
— very like one of the old Misfit Variables — supported by photographs
and text. Most Patterns are summarised in the form of a diagram, very
like one of the old Atoms.”

2.2.2 Designing as a subjective process

Much of the research into design methods during the 1960s hoped to
create a design process that would somehow exclude all forms of subjec-

39 CHAPTER 2. DESIGN PROCESS

tivity, thereby disallowing any personal creativity and intuition. The idea
was that if the analysis of the ‘problem’ was sufficiently thorough, the
‘solution’ would emerge directly from the analysis. Furthermore, a objec-
tive procedure was sought that prescribed exactly how such a thorough
analysis might be performed.

In the 1970s, subjectivity was once again readmitted into the design
process. However, it was the users rather than the designers who were to
have a subjective input, and once again with this input ‘optimal’ designs
were to be created. Broadbent (1988) and Lawson (1972) have outlined
these developments and highlighted a series of fundamental flaws and
weaknesses.

In the 1980s, the rationalistic approach to design was almost com-
pletely rejected, with many designers instead focusing on symbolic form.
Jonas (1997) describes this as a kind of liberation: “They presented
themselves as sort of egocentric artists, which in fact was also a step
of liberation and emancipation from the burden of the great but un-
achievable aims and claims (to work for a better society) in the era of
functionalism”.

Inherent in the changing attitudes towards design methods over the
decades was a split between the rational techniques and more intuitive
techniques. Jones (1974) writes: “They all wanted a complete recipe...
Many people wanted this and perhaps all students wanted it all the time.
But I feel one should resist any such thing if one’s to continue living...
I found a great split had developed between intuition and rationality,
reason.”

Today, notions of creating ‘optimal’ designs are no longer realistic.
In Design in Architecture, Broadbent (1988, p. 463-464) writes “Gone
are the days when architects believed that, given sufficient analysis, they
could design the perfectly ‘functional’ building. They could never, in any
case because... there really is no such thing.” Throughout his book, he
emphasises that it is a mistake to try and establish a once-and-for-all
sequence which, when applied, would lead automatically to ‘optimum’
solutions.

Design methods are therefore understood to describe a much broader
category of methods, and may include methods that do not assume that a
rational approach to design is preferable. Some methods use random and
accidental techniques to generate new designs, with some designers even
resorting to ‘random drawings’ (Cross, 1999). For example, McLachlan
and Coyne (2001) discusses the role of accident in the design process, and
describes a design method used by Coop Himmelblau: “Himmelb(l)au
developed plan forms from a metamorphosed image of their own faces,
drawn over and over until the eyes became spaces in the city, and the
stripes on their shirts became lines of solid mass that gradually evolved
into built forms.” This is not to say that the methods developed by the
design methods movement are excluded, but rather that these methods
are seen as just one of many types.

2.3. THE ROLE OF THE COMPUTER 40

2.3 The role of the computer

2.3.1 The changing role of the computer

The use of computers in design has a short history; their use was first
seriously considered in the 1960’s, with the design methods movement.
During these early days, researchers has ambitious hopes for the role of
the computer might play in design. Computer programs were envisaged
that aimed to support design approaches that were new and challeng-
ing. Since then, computers have gradually become more prominent in
all aspects of life, including design. However, when the mechanistic ap-
proach to design became discredited, the computer also seems to have
been rejected. Like Alexander, many felt that computers were somehow
incompatible with creativity and humanity (Alexander, 1971). In de-
scribing Alexander’s new state of mind, Broadbent (1981) writes: “The
application of any method, particularly and computer methods, required
a precision of approach which simply destroyed the frame of mind from
which creative design could emerge. The act of designing required a
tranquillity which simply could not be achieved with the computer.”

Although computers have played an increasingly prominent role in
design, the nature of this role has changed. Whereas early computer
systems supported new ways of working, later systems were totally sub-
servient to the conventional design process. These new systems focused
on reimplementing manual tasks in digital form, with minimal disruption
to the design process as it existed. The computer no longer had a role in
the creative design process and was relegated to the support of manual
chores. A typical example is a drafting software that simply recreates
the drawing board methodology on a computer.

Recently, the role of the computer in the design process has once again
become ambitious. Today, a whole variety of tools and applications exist
to support design techniques that would have been inconceivable without
computers.

2.3.2 Computers as design support medium

Schmitt (1999) discusses the future of computer-aided design, and writes:

“Drafting is not the main purpose of computers in architec-
ture any more. The computer is constantly changing its role
and appearance, and becoming faster and more powerful in
supporting designers every year. It was once useful to com-
pare the computer to an electronic pencil or to a sophisti-
cated typewriter. At the end of the twentieth century, this
view would be a dangerous misrepresentation of the machine,
as it has moved into new areas of support. It can act as a
medium, and is in some cases, already a partner.”(Schmitt,
1999)

41 CHAPTER 2. DESIGN PROCESS

Schmitt (1999) discusses two distinct roles for the computer: the com-
puter as a mere tool (Frazer, 1991) and the computer as a design support
medium. The computer as a mere tool must “prove itself in eliminat-
ing previously human activities with less cost and higher quality.” The
computer as a design support medium “is an interactive counterpart, not
necessarily an intelligent being, but something that has knowledge and
capabilities to offer in the area that we are interested in.” Whereas the
computer as a mere tool tends to emulate existing office instruments,
the computer as a design support medium “simulates new design instru-
ments, unthinkable without the computer. These instruments can turn
into self-generating and self-referential systems.”

As examples of computers as mere tools, Schmitt lists “word proces-
sors, when seen as replacing typists; spreadsheets, when seen as replacing
calculators; CAD programs, when seen as replacing electronic pencils;
office automation systems, when seen as a collection of desktop activi-
ties; rendering programs, when only seen as a way to impress clients.”
For computers as a medium, Schmitt discusses a number of recent tech-
nologies under the following headings: ‘The Internet as an information
source for architects’, ‘Data Bases - Building Memories’, ‘Drawing and
Modelling’, ‘Simulation’, ‘Virtual reality’, ‘CSCW: a new kind of team
work’, ‘The Virtual Design Studio (VDS): Multiplying Time’, ‘Engineer-
ing Data Management Systems (EDMS)’ and ‘Facility Management’. In
each case, the use of these technologies in the design process is discussed.

Schmitt is highly critical of the role of computers as mere tools in
the design process. He argues that to design highly complex artefacts
with computer programs that simulate an electronic pencil makes little
sense. Instead, he urges designers to make the best use of the powerful
communication and simulation technologies that are now available. He
writes:

“If architects want to keep and to improve their role in the
building process in the future, they need to employ the com-
puter more effectively. This could include its use as a design
support medium that assists designers in areas where they
do not have sufficient knowledge or competence themselves.
The most obvious application for the computer as a medium is
interactive simulation. More advanced applications are com-
puter supported methods and agents.” (Schmitt, 1999)

Paradigms of computer-aided design

The idea of a machine as a partner is also proposed by Mitchell (1994).
Mitchell (1994) has identified three different paradigms, which he de-
scribes as designing as problem-solving, designing as knowledge-based ac-
tivity, and designing as social activity.

• Designing as problem-solving: This paradigm first emerged in the
1960’s with Herbert Simon’s book. The problem is formulated by

2.4. THE ROLE OF THE DESIGNER 42

specifying a domain of possible solutions, a test which can be ap-
plied to distinguish acceptable candidate solutions for unacceptable
ones, and the resources available for solving the problem. The prob-
lem is solved by searching for solutions. Many narrowly specialised
design sub-problems can be solved in this way. One practical ap-
proach is to divide the labour between the human and the com-
puter, which has led to the typical CAD systems and the use of the
computer as a ‘mere tool’.

• Designing as a knowledge-based activity: This paradigm emerged
in the 1980’s. A suitable formalism for the expression of design
knowledge was first required, which was used to create knowledge
bases that captured what successful designers knew. These knowl-
edge bases were used to solve design problems by applying auto-
mated reasoning procedures to the facts of the specific design situ-
ation combined with the facts and rules contained in these knowl-
edge bases. One approach for expressing design knowledge was to
use predicate logic. Another was to develop shape grammars (see
next chapter) that captured knowledge about how various physical
components could be combined. Mitchell highlights that the fun-
damental weakness of such systems is that the knowledge base can
never be complete and accurate. (See (Coyne et al., 1990).)

• Designing as a social activity: This is a more recent paradigm.
There are multiple agents, some are human and some are soft-
ware programs. Each agent has its own (not necessarily consistent,
comparable, or compatible) knowledge base and problem-solving
capabilities, and interacts over the network. These agents pro-
ceed by exchanging proposals, arguments and counter-proposals
and counter-arguments, and they seek to form consensus. They
import knowledge into the common pool, they construct some com-
mon intellectual ground, and they sometimes change each other’s
minds. There are conflicts, ambiguities, and misunderstandings
that they must resolve. Key requirements are efficient networks
and communication infrastructures.

Mitchell sees the last paradigm as the future of computer-aided de-
sign. In this paradigm, the computer is seen as a networked medium
consisting of a variety of software agents that can automate labourious
or difficult tasks.

2.4 The role of the designer

2.4.1 Problems and solutions

Today, the ‘design problem’ is widely regarded as ill-defined. (See, for
example, Cross (1999) in which the views of a large number of ‘expert

43 CHAPTER 2. DESIGN PROCESS

designers’ are discussed.) An ill-defined problem is one in which the re-
quirements do not provide sufficient information to enable a solution to be
found. Such problems require additional information to be discovered,
created and invented. Design problems, like most everyday problems,
tend to be ill-defined in an extreme way in that the additional informa-
tion is far greater that the information contained in the stated require-
ments. The process of discovering, creating and inventing the additional
information is an essential part of the design process. Archer (1979)
writes: “Some of the necessary further information may be discoverable
simply by searching for it, some may be generatable by experiment, some
may turn out to be statistically variable, some may be vague or unre-
liable, some may arise from capricious fortune or transitory preference
and some may be actually unknowable. In addition, once known, some
of the requirements may turn out to be incompatible with one another.”

In 1967 Churchman (1967) related how Professor Horst Rittel pro-
posed that a class of ill formulated complex social systems problems that
involved many decision makers, and whose ramifications were thoroughly
confusing, might be referred to as wicked problems. Design problems
have since also become known as a wicked problems (Lawson, 1994, p. 2)
. Churchman writes “The adjective ‘wicked’ is supposed to describe the
mischievous and even evil quality of these problems, where proposed ‘so-
lutions’ often turn out to be worse than the symptoms.” The wickedness
of the problem relates to the fact that the problem includes the task of
discovering, creating and inventing the additional information.

Archer (1979) describes the relationship between problem and solu-
tion as follows: “The first thing to realise is that ‘the problem’ in a design
problem, like any other ill-defined problem, is not that statement of re-
quirements. Nor is ‘the solution’ the means ultimately arrived at to meet
those requirements. ‘The problem’ is obscurity about the requirements,
the practicability of envisagable provisions and/or misfit between the
requirements and provisions. ‘The solution’ is a requirement/provision
match that contains an acceptably small amount of residual misfit and
obscurity.”

Some theorists have altogether rejected the idea design is about prob-
lem solving . For example, Glanville (1998) writes: “Other aspects (e.g.
solving a stated problem), although often understood as crucial, are not,
I maintain, central to the study of the design act, no matter how im-
portant. Problem solving is its own discipline. I am happy to leave it
to those interested.” In a footnote he adds: “Some postulate primitive
problem solving as a first venture towards design. History is as much a
construction as any other account. I do not deny problem- solving and
design coincide. But I insist design takes a space of its own.”

2.4. THE ROLE OF THE DESIGNER 44

Figure 2.1: The stages of the typical 1960’s design process.

2.4.2 Personal and idiosyncratic input

The typical 1960’s design process

The typical 1960’s design process consisted of five core stages: briefing,
analysis, synthesis, evaluation, and implementation. Figure 2.1 show
this typical process. Analysis, synthesis, and evaluation were the three
core stages that related directly to the process of designing and were
generally assumed to be applied multiple times at different scales. For
example, Jones (1970, p. 63-69) uses this typical structure1 to discuss the
design process. Jones writes: “These can be described in simple words
as ‘breaking the problem into pieces’, ‘putting the pieces together in a
new way’, and ‘testing to discover the consequences of putting the new
arrangement into practice”’.

Jones acknowledges that the synthesis stage cannot rely purely on the
analysis stage. Jones writes: “This is the stage when judgements and
values, as well as technicalities, are combined in decisions that reflect
the political, economic and operational realities of the design situation.
Out of all this comes the general character, or pattern, of what is being
designed, a pattern that is perceived as appropriate but cannot be proved
to be right” (Jones, 1970, p. 66).

The reference to ‘judgements and values’ suggests that some addi-
tional kind of input is required from the designer. But it is not clear what
kind of input this might be. The methods discussed by Jones indicate
that this input focuses primarily on redefining the problem. However, in
areas such as architecture, the input from the designer will be much more
dramatic and substantial. Most designers will impose a complex set of
personal beliefs, values and ideas onto the designs that they create.

1Jones (1970, p. 63-69) refers to analysis, synthesis and evaluation as divergence,
transformation, and convergence.

45 CHAPTER 2. DESIGN PROCESS

Figure 2.2: Broadbent’s adaptation of the typical 1960’s design process.

A modified design process

Broadbent (1988, p. 463-466) has developed a design model that includes
such inputs as preconceptions. Broadbent writes: “The presumption
behind much theorising of the ’60s was that somehow the Process would
generate the form. But it rarely happened like that for the obvious
reason that most architects approach most of their designing with certain
preconceptions concerning, not just the partie of the building type in
question but also, specifically, the style.”

He modifies the typical 1960’s design process and inserts ‘precon-
ception’ as an extra input (at right angles to the flow) into ‘synthesis’.
Broadbent writes: “Different architects, according to their ‘paradigmatic’
stance, will, given the same brief and even the same analysis come up
with quite a different syntheses: Modern, Post-Modern or whatever...
In other words whatever kind of analysis has been brought to bear that
architect, conditioned by the ‘paradigm’ in which he works, will bring
in sideways to the Process the kind of design he wanted to do anyway!”
Figure 2.2 shows Broadbent’s modified diagram.

The modified diagram would seem to be a more accurate depiction
of the design process in fields such as architecture. Nevertheless, Broad-
bent’s description of this process would suggest that the preconceptions
are actually more important than any analysis. In such a case, the pre-
conceptions would be the starting point for any design process, and these
preconceptions would be adapted to fit the design task, with the design
analysis coming in ‘sideways’.

This dominance of the preconceptions of the designer is confirmed
when a the work of most designer is analysed. In nearly all cases, the
same set of beliefs and values may be identified in all the designs, with
some designers repeatedly exploring the same specific design ideas. For
example, in an interview, Frank Gehry describes his design process as
follows:

2.4. THE ROLE OF THE DESIGNER 46

Figure 2.3: Broadbent’s design process modified to account for the dom-
inance of the designers preconceptions.

“I was not conscious that it (the Bilbao Guggenheim) had
something to do with what I did before until later because
you know, I’m just looking at what I see. I tend to live in
the present, and what I see is what I do. And what I do
is react. Then I realise that I did it before. I think it is
like that because you can’t escape your own language. How
many things can you really invent in your lifetime. You bring
to the table certain things. What’s exciting, you tweak them
based on the context and the people: Kerns, Juan Ignacio,
the Basques, their desire to use culture, to bring the city to
the river” (Bruggen, 1997, p. 33).

In order to account for the dominance of the preconceptions, the
typical 1960’s design process may be further modified. Figure 2.3 shows
the modified process.

2.4.3 Design preconceptions

When considering the nature of design preconceptions, two types of pre-
conceptions can be identified: a general design stance and a specific set
of design ideas.

• The design stance encompasses the broad beliefs and values that a
designer holds. Designer may have the same design stance through-
out their lifetime.

• The design ideas are related to the design stance, but are much
more specific to particular types of projects and environments.

Design stance

Broadbent (1988, p. 463-466) describes general types of preconceptions
as the designer’s paradigmatic stance. Such a stance may have been

47 CHAPTER 2. DESIGN PROCESS

developed over a number of decades and may encompass broad philo-
sophical beliefs, cultural values and perhaps some whimsical tendencies.
A client’s decision to employ a particular design team is likely to based
— at least in part — on the paradigmatic design stance of the design
team in question.

Lawson describes this design stance as a set of guiding principles.

“The designer does not approach each design problem
afresh with a tabula rasa, or a blank mind, as is implied
by a considerable amount of the literature on design meth-
ods. Rather, designers have their own motivations, reasons
for wanting to design, sets of beliefs, values, and attitudes.
In particular, designers usually develop quite strong sets of
views about the way design in their field should be practiced.
This intellectual baggage is brought by the designer into each
project, sometimes consciously and at other times rather less
so... Whether they represent a collection of disjointed ideas, a
coherent philosophy or even a complete theory of design, these
ideas can be seen as a set of ‘guiding principles’.” (Lawson,
1997, p. 162)

Lawson describes how these guiding principles may differ in content
from one designer to the next, and also how they are used in different
ways. In terms of content, Lawson lists six types of constraints that play
an important part in defining the guiding principles of a designer: client
constraints, user constraints, practical constraints, radical constraints,
formal constraints and symbolic constraints. The attitude of the designer
towards these constraints, may to a large extent define their guiding prin-
ciples. For example, classical architects such as Vitruvius, Renaissance
architects such as Palladio and Alberti, and modernist architects such as
Le Corbusier all developed a strong set of formal constraints, defined as
a set of geometric and proportional rules.

Rowe (1987) has developed a similar concept, that he refers to as a
designers theoretical position. The theoretical position consists of a set of
general arguments and principles that may be either explicit or implicit.
In some cases, the theoretical position is well defined, in other cases it is
more implicit and vague. Most theoretical positions in some way attempt
to address the question: “What is proper architecture?”.

Rowe creates an analytical framework to describe and compare dif-
ferent types of theoretical position. The framework frames a theoretical
position as a three stage argument that progresses from general state-
ments to specific types of architecture. The three stages are labelled
as orientation, architectural devices, and production. These stages are
described as follows:

• Orientation covers the critical stance and larger purpose of the
position.

2.4. THE ROLE OF THE DESIGNER 48

• Architectural devices refers to architectonic elements and leitmotifs
(for example, Le Corbusier’s five points) that describe the position’s
production.

• Production describe a family of buildings identified by some label
(‘brutalist’, for example).

According to Rowe, a theoretical position can be characterised as an
argument that first sets out a broad orientation, this orientation will
support certain architectural devices, and these devices will in turn lead
to certain types of architectural production.

Rowe discusses a number of examples of theoretical positions. For
example, he describes the functionalist position as follows (Rowe, 1987,
p. 124). The orientation envisages architecture as a matter of efficiently
accommodating the requirements in a manner consistent with material
composition and construction. “Architecture must be made of the ‘right
stuff’ and in the ‘right way’ without superfluous ornament or artifice”.
Under architectural devices, three devices are highlighted: the explicit
expression of a building structure and process of fabrication, a spatial
organization that grows directly from the program of uses, and a concern
with standardization and systematic organization. The production is
epitomised by the International Style “with its ubiquitous array of steel,
concrete and glass commercial buildings, each consistent in basic format,
regardless of location and resulting differences in cultural setting.”

Design style

For a particular designer, the design stance is not thought of as a choice,
in the sense that they may choose one stance or another. Rather, the
stance is inherent in the way that they operate, and often constitutes a
set of strongly held beliefs. The term style may not be appropriate to
describe design stance. Style refers to a recognisable set of features of
designs created during a particular historical period, whereas the design
stance is a set of principles particular to one designer.

Lawson (1997, p. 163-166) highlights the fact that, although most
architects have a clear design stance, rarely do they describe themselves
as working in a particular style. Lawson writes: “Many architects today
regard the style of architecture more as inventions of the critics than as
sets of rules that they themselves follow.”

In extreme cases, the design stance may become a moral stance, with
the designer claiming their principles to be a set of universal truths,
often related in some way to proportions and harmonies found in nature
(Watkin, 1977).

49 CHAPTER 2. DESIGN PROCESS

2.5 Design ideas

2.5.1 The dominance of initial design ideas

As well as the overall design stance, designers will generally tackle a
particular design task with certain design ideas. These ideas will be
compatible with their design stance, but will be much more specific to
the design task being considered. They reflect the design stance combined
with a ‘gut feeling’ inspiration on how to approach the design task.

Primary generators

Drake (1979) conducted a series of interviews with British architects
about their intentions when designing local authority housing. Through
these interviews, Drake highlights how many architects (but not neces-
sarily all architects) latch onto a relatively simple set of related concepts
and ideas early on in the design process. Drake refers to this concept as
a primary generator.

Concerning such primary generators, Drake emphasises three key
points:

• They are developed early on in the design process, prior to a de-
tailed analysis of the design problem.

• They are not created by a process of reasoning, but are instead an
“article of faith on the part of the architect”.

• They provide a framework that defines and directs the overall de-
sign approach. In particular, the primary generators structure the
problem definition, rather than visa versa.

Drake concludes that early on in the design process, designers “fix on a
particular objective, or small group of objectives, usually strongly valued
and self imposed, for reasons that rest on their subjective judgement
rather than being reached by a process of logic”.

Lawson (1997, p. 188) describes a series of protocol studies2 of de-
sign exercises supporting the conclusions reached by Drake (see Eastman
(1970) and Agabani (1980)). Lawson (1997, p. 194) also emphasises
the importance of these design ideas in the overall design process. In
addition, Lawson stresses that the number of primary generators may
be small. Lawson (1997, p. 194) writes: “Good design often seems to
have only a few major dominating ideas which structure the scheme and
around which the minor considerations are organised. Sometimes they
can be reduced to only one main idea known to designers by many names
but most often called the ‘concept’ or the ‘parti’ ”.

2Protocol studies attempt to understand the personal cognitive design process by
studying designers in the act of designing.

2.5. DESIGN IDEAS 50

Enabling prejudices

Further evidence supporting the idea of the primary generator has also
been collected by Rowe, using protocol studies and analysis of written
sources. Three case studies of designers in action were analysed, and an
attempt was made to reconstruct the sequence of steps, moves and other
procedures used. In addition, further examples of the design process,
taken from various written sources, were also analysed.

One of the key characteristics to emerge was the dominance of initial
design ideas on the rest of the design process. Rowe (1987, p. 31)
writes: “Initial design ideas appropriated from outside the immediate
context of a specific problem are often highly influential in the making of
design proposals. Quite often references are made to objects already in
the domain of architecture. On other occasions, however, an analogy is
made with objects and organizational concepts that are further afield and
outside architecture”. Rowe refers to these initial ideas and references as
enabling prejudices.

Based on the case studies and written sources, Rowe emphasises two
key points about such enabling prejudices:

• They are more important than the problem conditions and tend to
be the driving force behind the whole design process.

• In many cases, they are not discarded at the end of a project,
but instead become long-lasting themes explored through multiple
projects.

The first point regarding the dominance of these design ideas is simi-
lar to the conclusions reached by Drake and Lawson. Rowe (1987, p. 32)
highlights “the tenacity with which designers will cling to major design
ideas and themes in the face of insurmountable odds. Often the concept
the designer has in mind can only come to fruition if a large number
of apparently countervailing conditions can be surmounted”. One of the
many examples that Rowe discusses is the account by Richard Rogers (as
presented in Suckle (1980)) of the tension between the central design idea
and the technical requirements for the Centre Pompidou in Paris. The
central idea of an ‘inside-out building’ constructed from a prefabricated
kit of parts resulted in a wide range of problems requiring the develop-
ment of unorthodox methods of design, fabrication and construction.

To illustrate the second point, Rowe discusses the design ideas of
John Johanson (once again, from Suckle (1980)). Johanson develops an
analogy between architecture and electronic circuitry, with the circuits
chassis representing the structural frame, the circuit components repre-
senting the functional enclosures, and the circuiting system representing
channels for the circulation of people and mechanical systems. Johanson
explores and applies this analogy in a number of projects. Thus, Rowe
(1987, p. 31) writes: “Sometimes these analogies serve a designer’s pur-
pose for more than a single project and thus become incorporated as a
central part of that individual’s design thinking”.

51 CHAPTER 2. DESIGN PROCESS

Design ideas as working methods

Frazer (1974); Frazer and Connor (1979); Frazer (2002) describe a general
design methodology common to many design fields that develop design
ideas through multiple projects.

Frazer conceptualises the design ideas as being embedded in the work-
ing methods of designers, and that it is these methods that “characterise
their ‘style’ ”. Furthermore, Frazer highlights how aspects of these meth-
ods are explicitly defined in many offices as standard details, templates,
procedures, and so forth. He describes this methodology as both per-
sonal because it is particular to one designer, and generic because this
designer will use it in multiple projects. Frazer writes:

“It is common to find sets of standard details in archi-
tects’ offices that serve to economise in time, ensure details
are well tested, but also to ensure a consistency of detailing
and to reinforce the house style. In many offices this extends
to design procedures, approaches to organization and so forth.
The same is true of industrial designers where again stylis-
tic characteristics such as details, colour, preferred materi-
als give economy, consistency, quality control and identifiable
house style... The identifying characteristics often go through
changes during the development of the designers, sometimes
with abrupt changes as with Le Corbusier, but usually a con-
tinuous progression can be seen. The stylistic characteristics
can continue with an office, studio or company, long after the
death of the original designer.”

Frazer makes two important points about design ideas:

• They are developed on a long-term basis through multiple projects.

• They are embedded in the practical working methods used by de-
signers, encompassing procedures, tools and data.

2.5.2 Types of initial design ideas

The design ideas of a particular designer must be compatible with their
overall design stance. However, beyond this requirement, the develop-
ment of design ideas may be based on a variety of factors. Rowe (1987)
and Lawson (1997) have both developed frameworks that define a num-
ber of different types of design idea. Rowe’s framework conceptualises
design ideas as a type of design heuristic, while Lawson’s framework sees
design ideas as resolving specific design constraints.

Design ideas as design heuristics

Rowe conceptualises these design ideas in the form of heuristics that will
frame problem formulation and guide the search for design solutions.

2.5. DESIGN IDEAS 52

Rowe (1987, p. 76) defines the term ‘heuristic’ broadly, highlighting that
“the heuristics employed by designers may be quite subjective, having
evolved from prior personal experience”.

Rowe presents five classes of heuristics:

• Anthropomorphic analogies rely on physical actions of the human
body (such as moving, sitting, standing, and so on) as a driving
force.

• Literal analogies rely on existing form-giving configurations (which
includes both iconic and canonic analogies, as defined by Broadbent
Broadbent (1988)) as a driving force.

• Environmental relations relies on the concept of appropriate re-
lations between the environment and the building (including cur-
rently significant issues of sustainability).

• Typologies rely on past solutions at a variety of scales (including
complete building types, organizational templates, and prototype
for parts of buildings) as a driving force.

• Formal languages are generalizations of other design ideas — in
particular typologies and environmental relations — that consist of
guiding structures or rules that manipulate formal design elements.

These heuristics constitute different types of analogy and reference
that a designer may use to drive the design process forward. They are
not mutually exclusive, and tend to be used in combination. In addition,
they may be developed through repeated application, or they may be
created for one project and subsequently discarded.

Design ideas as resolution of constraints

Researchers have also made a distinction between design ideas that result
from specific aspects of the design environment, and design ideas that are
more general and that may be applied to a range of different projects. For
example, Rowe (1987, p. 2) describes two styles of designing: “Sometimes
the unfolding of a design is strongly influenced by constraints derived
from the initial setting of the problem, such as the context in which
the building is to be built or its social purpose. On other occasions the
process seems to be more determined by a designer’s personal attitudes
and prejudices towards such things as functional expression or modes of
fabrication technology.”

Lawson (1997, p. 189-202) conceptualises design ideas as constructs
that are developed to resolve specific constraints. Such constraints may
either be existing in the design problem, or may be self-imposed by the
designer. Lawson argues that most designers will be highly selective
in deciding which constraints to focus on, and during the early design
stages, the number of constraints to be considered is likely to be small.

53 CHAPTER 2. DESIGN PROCESS

In order to investigate how initial design ideas are used in practice,
Lawson (1997, p. 189-202) analyses the design presentations of three
groups of students working on the same problem. Each group of students
chose to focus on a different set of constraints — either self imposed
or existing — and as a result, each group developed a fundamentally
different set of design ideas.

Lawson identifies three main types of constraints:

• The existing constraints specified in the design requirements

• The existing constraints related to the design context, such as the
site.

• The self-imposed constraints, embodied in their design stance.

These three types of constraints result in three types of design ideas
that are fundamentally different from one another.

2.6 Summary

This chapter has discussed the design process, focusing mainly on meth-
ods and theories developed from the 1960’s onwards. The main points
are as follows:

• The methods and theories of the 1960’s and 1970’s suggested that
the design process should be highly rational and objective, and in
many cases it was assumed that one correct design method could
be defined. Today, many researchers describe the design process
as process of negotiation between multiple participants, involving
people and systems interacting together and exchanging informa-
tion and knowledge that tends to be incomplete, inconsistent and
incompatible.

• The roles of the computer in the design process has changed. In the
1960’s and 1970’s, researchers proposed computer systems that sup-
ported completely new ways of working. In the 1980’s and 1990’s,
computers in design became much more prominent, but they were
generally used to support conventional working methods. More re-
cently, the role of the computer is again becoming more ambitious,
with computers being used to support non-conventional design pro-
cess.

• When designers approach a design task, they have a set of design
preconceptions that are personal and idiosyncratic. Designs task
are typically ill-defined and ambiguous, and as a result such pre-
conceptions are required to develop a design. Preconceptions are
an important and necessary ingredient in the design process. Two
types of preconceptions exist: a general design stance that encom-
passes the philosophical beliefs and cultural values of the designer,

2.6. SUMMARY 54

and specific design ideas that are applicable in certain types of
design projects.

• A number of researchers have explored the role of design ideas in the
design process. Different types of design ideas have been identified.
In particular, design ideas may be project specific, or they may be
more generic and applicable in a variety of projects.

Chapter 3

Generative techniques

Contents

3.1 Introduction 55

3.2 Parametric approach 56

3.2.1 Overview . 56

3.2.2 Variational based parametric technique . . . 57

3.2.3 History based parametric technique 60

3.3 Combinatorial approach 62

3.3.1 Overview . 62

3.3.2 Algebra based combinatorial technique 62

3.3.3 Template based combinatorial technique . . . 63

3.4 Substitution approach 65

3.4.1 Overview . 65

3.4.2 Grid based substitution technique 67

3.4.3 Shape based substitution technique 70

3.4.4 Context-free versus context-sensitive substitu-
tion approaches 75

3.5 Summary . 77

3.1 Introduction

This chapter consists of three sections, each introducing a different ap-
proach to creating programs that generate three-dimensional forms. These
approaches may be used within the developmental step of an evolutionary
system in order to create alternative design models. The first approach is
the parametric approach, and is used by parametric evolutionary design
systems. The second and third approaches — referred to as the com-
binatorial and substitution approaches — are more flexible. Generative

55

3.2. PARAMETRIC APPROACH 56

evolutionary design systems may use a combination of any of these three
approaches in order to generate a variety of design models.

For each approach, two more specific techniques are identified.

• In section 3.2, the parametric approach is described, which involves
generating forms by varying a number of parameters. Two tech-
niques are introduced that differ in how the parameters affect the
final form. With the variational technique, parameters are assigned
to variables associated with a model of the form. Parametric mod-
elling systems use this technique. With the history based technique,
parameters are assigned to variables associated with a sequential
procedure for creating a form.

• In section 3.3 the combinatorial approach is described, which in-
volves generating forms by combining a predefined set elements.
Two techniques are introduced that differ in how elements are com-
bined. With the algebra technique, a set of element types are de-
fined together with a set of operations for manipulating these ele-
ments. This technique is highly flexible, and is implemented within
most standard CAD packages. With the template technique, an
organizational template is defined into which elements can be in-
serted.

• In section 3.4, the substitution approach is described, which in-
volves generating forms by starting with a seed form and repeatedly
substituting parts of this form with new parts. Two techniques are
described that differ in how the substitutions are performed. With
the grid based technique, a grid is defined and substitutions are
performed within this grid. Cellular automata are the best known
example of this technique. With the shape based technique, sub-
stitutions are performed based on the geometry of the individual
shapes. Fractals, shape grammars and L-systems are well known
examples.

3.2 Parametric approach

3.2.1 Overview

Introduction

The parametric approach allows a variety of designs to be generated
by varying constraints associated with either a model or a procedure.
For example, a model may be created that defines certain dimensions
as variable parameters, thereby allowing a variety of forms to be gen-
erated by varying those parameters. However, the parametric approach
is not limited to varying simple dimensional parameters. The paramet-
ric approach is understood to cover what can be found in the literature
under other headings such as relational modelling, variational design,

57 CHAPTER 3. GENERATIVE TECHNIQUES

Figure 3.1: Main inputs and outputs for the parametric approach.

constraint-based design, and so forth. In the broader sense, the para-
metric approach can be thought of as varying constraints, where dimen-
sional parameters are just one type of constraint. Monedero (2000) gives
an overview of various types of parametric modelling approaches. He
describes a constraint as follows: “A constraint is a relation that limits
the behaviour of an entity or group of entities... Parallelism, perpendic-
ularity, tangency, dimensionality are geometric constraints. But a model
can also be based on formula like area = force/pressure. Constraints can
also be specified as conditional relations...”.

Two parametric techniques

Monedero highlights two techniques to parametric modelling: the vari-
ational based parametric technique and the history based parametric
technique.

• With the variational technique, a model of the form to be generated
is first defined. The model incorporates a set of constraints defined
as equations. The entire system of constraints for the design is
solved simultaneously by a constraint solver. Unlike the history
based technique, the variational technique generates a form without
making reference to the sequence of modelling operations used to
create the form.

• With the history based technique, a form is incrementally con-
structed by a form generating procedure. This procedure consists
of a sequence of operations, with each operation requiring certain
data values. The form can subsequently be modified by manipu-
lating either the operations themselves or the data values used in
a particular operation.

3.2.2 Variational based parametric technique

Creation of parametric model

With the variational approach, a model of the form to be generated
must be predefined. The model may be a topological description of a
complex form with a number of associated variables. A parameter is a
variable to which other variables are related, and these other variables
can be obtained by means of parametric equations. In order to generate a

3.2. PARAMETRIC APPROACH 58

form, the generative program requires a system capable of resolving these
equations. Models may be irresolvable as a result of being either under
constrained or over constrained. An under constrained model cannot be
resolved because some additional parameter must still be specified. An
over constrained model cannot be resolved because of the existence of
some contradiction.

Concerning the variational approach, Monedero writes: “Parametric
design based on variational geometry can recompute a design taking into
account that actual situation, independently of the sequence that has
been followed to reach this situation. The method relies on the descrip-
tion of parameters by means of equations and the availability of a system
able to solve them.”

Simple example

A simple example is given by Mitchell (1977, p. 40-43), when he models
a rectangular room by defining three variables: d1 represents the length,
d2 represents the width, and d3 represents the height. One of the vertices
of the room is defined as being fixed, and the other seven vertices can be
calculated from the three variables. By substituting different values for
the variables, different rooms can be generated.

More generally, this example can be described in terms of the degree
of freedom (DOF) of the model. Monedero (2000) writes: “An object in
a space, defined by the three co-ordinates of their N -vertices will have
3N DOF. To compute the new geometry, after any of these vertices have
changed, 3N equations (with 3N variables) will have to be solved.”The
room has eight vertices and as a result may potentially have 24 DOF.
The 24 equations can all be solved using the three variables described
by Mitchell — d1, d2, and d3. The room model defined by Mitchell
therefore has zero DOF which means that it is neither under-constrained
nor over-constrained.

A serious drawback with this technique is that the model must, to
a large extent, predefine the topology of the form, The forms generated
are therefore very similar. In addition, as the complexity increases, the
process of solving the equations becomes computationally expensive.

Yacht hull forms

As well as defining flat surfaces, the vertices can also define control points
on curved surfaces. For example, Graham et al. (1993) (see also (Frazer,
1995b, p. 61)) used a variational parametric program in order to generate
curved forms that represented yacht hulls. This was part of a larger
system that used genetic algorithms in order to optimise the performance
of racing yacht hulls. A model of the yacht hull was created in which the
fairing of the curves of the hulls profile were defined by a set of control
points. The variational parametric program generated alternative yacht
hulls by varying these control points.

59 CHAPTER 3. GENERATIVE TECHNIQUES

Figure 3.2: Optimization of yacht hull using a genetic algorithm. From
Frazer (1995b, p. 61).

The examples of the room and the yacht are fairly simple. The varia-
tional parametric approach is capable of generating forms that are much
more complex. In particular, this technique is dependent upon the equa-
tions being solvable, rather than on the complexity of the model.

Waterloo Station

Variational based parametric modelling techniques were used in the de-
sign of the Waterloo railway station in London Szalapaj (2000, p. 135).
The arched roof of the train shed follows the curve of the railway, and in-
creases in span down the length of the station. The roof is supported by
a series of three-pin arches that change as the roof changes width along
the curved tracks. A single parametric model of an arch was modelled,
such that it encoded the underlying design rules for the whole family of
arches. The complete roof model was then created by instantiating a
series of these parametric arches, each with a different value for the span
parameter.

Szalapaj (2000, p. 135) writes:

“The parametric model can be extended from just the de-
scription of arches, through to the description of the connec-
tions between pairs of arches. This model can in turn be ex-
tended to the whole shed form, so that when any dimensional
change is made, it is propagated through the whole model.
Parametric expressions, therefore, allow users to change the
values of key parameters, and to observe the propagation of
changes on dependent expressions, and hence upon the de-

3.2. PARAMETRIC APPROACH 60

Figure 3.3: An example of a set of rules and the corresponding forms.
From Todd and Latham (1999).

pendent geometry. This is often referred to as strategic ma-
nipulation.”

3.2.3 History based parametric technique

Creation of parametric procedure

Monedero describes the history based parametric technique as follows:
“A graphically interactive parametric modeller allows the user to cre-
ate a master model that can be used as a base to input parameters to
the system and to request from the user the specification of constraints
that will fix the model through a closed description of its components.”
In general, a form generating procedure is defined. A variety of forms
can be generated by manipulating the constraints associated with this
procedure.

The FormGrow program

An example of a history based parametric program is FormGrow, devel-
oped by Todd and Latham (1992, 1999), which artists can use to generate
three-dimensional forms. FormGrow builds three-dimensional models of
abstract organic forms using a set of growth rules. The basic growth
process creates a compound form by duplicating a specified input form.
When the input form is duplicated, it is subjected to a series of trans-
lations and transformations as specified by a list of rules. For example,
the ‘stack’ rule will stack the input forms on top of each other, while the
‘grow’ rule will scale the input form each time it is duplicated. The input
form can either be a primitive shape such as a sphere, or it can itself be
a compound form. A simple script language allows the input forms and
the translation and transformation rules to be specified.

61 CHAPTER 3. GENERATIVE TECHNIQUES

Figure 3.4: Some examples of forms generated using the Xfrog software.

The Xfrog program

Another history based parametric program is Xfrog (Lintermann and
Deussen, 1999), a program that allows the easy generation realistic flow-
ers, bushes and trees. More generally, the program can be used to gen-
erate a huge variety of hierarchical structures. In this case, a graphical
interface allows the user to easily create a set of nodes and links that
encapsulate the generative rules used to generate the structure. Lin-
termann and Deussen write: “The nodes of the graph are components
that represent parts of a plant, and the edges denote creation dependen-
cies... components encapsulate data and algorithms for generating plant
elements. Generally, three categories exist: one group of components cre-
ates graphical objects like stems, twigs, leaves or geometrical primitives;
the second multiplies other components; the third applies applies global
modelling techniques.” An example of the first type of component is a
simple primitive like a cone. An example of the second component is the
‘PhiBall’ component which arranges child components on the surface of
a sphere by the golden section algorithm. The parameters include the
number of times to duplicate a child, the radius and the opening and
closing angle of the spherical section, and the size of the children and
their influence on the placement. An example of the third component is
the ‘Patch’ component which specifies free-form deformations by moving
control points. These three components can be combined and customised
in order to encapsulate a set of rules that can generate a configuration
of a few hundred cones.

3.3. COMBINATORIAL APPROACH 62

Figure 3.5: Main inputs and outputs for the combinatorial approach.

3.3 Combinatorial approach

3.3.1 Overview

Introduction

The combinatorial approach is perhaps the most general kind of approach
for generating form. This approach creates forms by instantiating and
assembling elements. The elements tend to be of a number of different
types, but in some cases may all be instantiations of one type. For
example, a combinatorial program may generate forms by defining a very
small and generic type of element sometimes described as a voxel (a three-
dimensional pixel). Forms can then be generated by assembling voxels.

Two combinatorial techniques

Two techniques to creating combinatorial programs can be identified: the
algebra technique and the template technique. In both cases, the combi-
natorial program must incorporate two key parts: a set of element types,
and a procedure for assembling elements. The algebra technique and the
template technique differ in the procedure for assembling elements.

• With the algebra approach, an algebra is defined that, as well as
including the element types, also includes a set of operations that
position and combine elements in space. The algebra based com-
binatorial program can use these operations in order to create as-
semblies of elements.

• With the template technique, an organizational template is defined
that consists of a structure into which elements can be inserted.
The template imposes a certain organization on the elements. The
template based combinatorial program generates forms by inserting
alternative elements into the predefined template.

3.3.2 Algebra based combinatorial technique

CAD systems

With the algebra based combinatorial technique, a set of elements types
and a set of operators must be defined. The elements and operators
constitute what Mitchell (1990, p. 128-129) describes as an algebra. An

63 CHAPTER 3. GENERATIVE TECHNIQUES

algebra consists of a set of element types available for instantiation, op-
erators that transform these elements, and operators that combine these
elements. For example, with a solid-modelling system, the set of element
types consists of parametric boxes, cylinders, spheres, cones and prisms;
the transformation operators include translation, rotation, reflection and
scaling; and the combination operators are union, intersection and sub-
traction of solids. A combinatorial program could use this algebra as
a basis for generating a wide variety of forms. Such a program might
randomly instantiate boxes, and then randomly combine and transform
these boxes.

An important aspect of the algebra based combinatorial approach is
that the possible assemblies of elements are not restricted in any signif-
icant way. An assembly should be able to contain any set of elements
in any order. As a result, the assembly process can freely generate as-
semblies without having to resort to any complex reasoning techniques.
When the possible assemblies of elements are restricted to certain config-
urations, the set of element types, the operators and the restriction rules
may be collectively described as a grammar (Mitchell, 1990, p. 131-133).
A grammar is an algebra with an additional set of rules that describe
which combinations of elements are valid and which are invalid. As a re-
sult, the set of forms that comply with a grammar are a subset of the set
of forms that comply with an algebra. Such grammars are analogous to
linguistic grammars. Mitchell writes: “Thus not every string of words in
English is a sentence: only strings that comply with the rules of English
grammar count as sentences”.

Creating combinatorial programs that generate forms that comply
with an algebra is fairly straightforward. This is due to the fact that
the elements are independent from one another and as a result all possi-
ble combinations of elements are valid. However, generating forms that
comply with a grammar are more complicated because the rules of the
grammar need to be enforced. The template based combinatorial tech-
nique may be one way of enforcing these rules. The parametric approach
and the substitutional approach, to be discussed later, may also be ap-
plicable.

3.3.3 Template based combinatorial technique

Creation of templates

With the template based combinatorial technique, a set of elements types
and an organizational template must be defined. The template defines
a set of place holders or locations in space into which elements can be
inserted. Each location is associated with a list of possible element types
that can be inserted into that location. A variety of forms can be gener-
ated by inserting elements into all the locations in the template.

The template may be highly generic. For example, the template may
consist of some kind of three-dimensional cellular grid into which voxel

3.3. COMBINATORIAL APPROACH 64

elements can be inserted. In such a case, the template is not specific to
any particular type of form, but can be used to represent a wide variety
of forms. In many cases, the template is highly specific thereby allowing
elements of different types to be organised in a predefined manner. For
example, the template may define an overall structure that consist of
four or five locations into which elements need to be inserted. Instead of
allowing all element types to be inserted into all locations, the possibilities
may be restricted to ensure that valid combinations are produced.

Mitchell (1977) traces this technique back to 13th century Spanish
scholar Ramon Lull, who developed a system for generating combinations
of words. According to Mitchell, Lullian ideas exerted an important
formative influence on the 17th century philosopher Leibniz, who wrote
extensively on methods of invention and design by systematic generation
of combinations.

Morphological method

An clear example of such an technique is the morphological method de-
veloped by Zwicky (1967, 1969) in the field of engineering design. The
method is described by Mitchell (1977, p. 34-35) using the example of
generating alternative designs for domestic windows. The design of the
window is broken into five types of elements: frame, glazing, opening
system, privacy system and sun protection system. For each type, a
number of alternative elements are given. In order to generate a design
for a window, one element for each element type is selected from the
predefined lists of alternatives. For instance, one possible window design
might consist of a steel frame, single pane glazing, vertical sash opening
system, drapes for the privacy system, and exterior louvres for the sun
protection system.

An important limitation of this technique is that the choice of ele-
ment in one location should not affect the choice of element in another
location. For instance, another possible window design might be gener-
ated by changing the vertical sash opening system to a pivoting opening
system. This choice should not affect any of the other choices, although
in this example this is clearly not the case. For instance, the pivoting
opening system is likely to be obstructed by the exterior louvres.

Dimensional co-ordination

Developments in standardization and modular co-ordination of building
components may also be thought of as using the template based com-
binatorial approach. Such templates are usually based on an orthogo-
nal three-dimensional grid. By standardising the dimensions of building
components, these components can be arranged and combined within
this grid in a limited number of positions. A highly generalised and sim-
plified version of such an approach was discussed by Bemis (1936), who
has shown how building forms could be defined by combining four-inch
cubes in an orthogonal grid.

65 CHAPTER 3. GENERATIVE TECHNIQUES

Figure 3.6: A house represented as a collection of four-inch cubes. From
Mitchell (1990, p. 41).

3.4 Substitution approach

3.4.1 Overview

Introduction

With these programs, an initial form is provided, and this form is grad-
ually manipulated by a set of rules that modify parts of the form. Time
flows in discrete steps, and at every step a new form is created by ap-
plying a set of rules that manipulate parts of the current form. These
rules are referred to as transition rules in that they define the transition
from one time step to the next. The initial form is descried as the seed
form. At each time step, the form to which the rules are to be applied
is described as the current form. After a certain number of time steps, a
final form is produced.

The transition rules are a type of if-then rule. In general, the rules
specify that if a certain configuration occurs in the current form, then
this configuration must be replaced by a new configuration. The if part
of the rule is called the antecedent, and the then part of the rule is called
the consequent. The rules specify two configurations: the antecedent
configuration that must be found in the current form; and the consequent
configuration that will replace the antecedent configuration if it is found.
In order to ascertain whether a rule can be ‘fired’ or not, the current form
will need to be searched for the antecedent configuration. If a match is
found, the rule is fired. If no match is found, the rule simply does nothing.

The rules are iterative in the sense that they can be applied many
times during the process of transforming the seed form into the final
form. In many cases, the rules are also recursive in the sense that a

3.4. SUBSTITUTION APPROACH 66

Figure 3.7: Main inputs and outputs for the substitution approach.

rule can be applied to its own output. Recursive rules1have a conse-
quent configuration that contains one or more copies of the antecedent
configuration.

Two substitution techniques

The process of searching the current form for an antecedent configuration
requires each part of the form to be compared to the particular configu-
ration. Exactly how this is done will depend on the type of substitution
program. Two common techniques for substitution programs might be
described as grid based substitution technique and shape based substitu-
tion technique. These techniques both define processes that generate
form by applying transition rules in discrete time steps.

• Grid based substitution techniques predefine a cellular grid within
which forms are defined as cellular patterns. The antecedent and
consequent configurations are therefore also defined as patterns
within the grid.

• Shape based substitution techniques, on the other hand, do not pre-
define any grid but allow the growth to take place in a continuous
space by substituting existing shapes with new shapes.

The substitution approach allows for a number of ways of generating
alternative forms. The most obvious approach is to either modify the
seed form, transition rules, or the total number of time steps. Chang-
ing any of these will result in different forms being generated. Another
possibility focuses on which transition rules to apply, with two possible
approaches being described as the indiscriminate approach and the se-
lective approach. The indiscriminate approach synchronously fires every
rule that is applicable. For example, at some particular time step, three
rules may be applicable to the current form. The indiscriminate approach
fires all three rules. This will mean that all three antecedent configura-
tions are deleted from the form and all three consequent configurations
are added to the form. An alternative approach would be to selectively

1Note that this is different from the distinction between an iterative process and
a recursive process. See Abelson et al. (1985, p. 29), who describe these processes in
terms of their ‘shapes’. Recursive processes build up a chain of deferred operations.
When the end of the chain is reached, the operations are performed in reverse order.
Iterative processes repeatedly perform one operation at a time, in sequence.

67 CHAPTER 3. GENERATIVE TECHNIQUES

choose which rules to fire. For example, rather than firing all three rules,
just one or two rules might be selected. Some substitution techniques
only allow one rule to be fired at every time step.

3.4.2 Grid based substitution technique

Cellular automata

The best known grid based substitution program is the cellular automata.
The simplest one-dimensional cellular automata consists of a line of cells
of fixed length. Each cell can be in one of two states: on or off; white or
black; alive or dead. Such a cellular automata generates patterns rather
than forms. The seed pattern of the cellular automata may consist of any
configuration of white cells. At every time step the state of all the cells
are synchronously updated by indiscriminately firing all transition rules
for which a match is found in the current pattern. The cellular automata
reaches its final pattern either after a predefined number of time steps
or when a desired pattern is produced. With a one-dimensional cellular
automata, its behaviour through time can be captured by stacking the
rows of cells created at each step on top of each other. In this way, a two-
dimensional picture can be created, with time running down the vertical
axis.

The transition rules determine the new state of a cell based on its
current state and the current state of its immediate neighbours. Each rule
defines an antecedent pattern and a consequent pattern. The antecedent
pattern consists of the states of the centre cell and its two immediate
neighbours to the left and to the right. The consequent pattern consists
simply of the new state of the centre cell. So, for example, one rule might
state that if the centre cell is black and the cells to left and right of the
centre cell are both white, then in the next step the centre cell should
remain black.

For this simple one-dimensional cellular automata there are a total
of (23) eight possible antecedent patterns. As a result, exactly eight
transition rules are required. Because each of these eight rules can have
only (21) two possible consequent patterns, there are a total of (28) 256
possible sets of eight rules. 2.

2Wolfram (2002, p. 55-56) has studied the global patterns of all 256 possible sets
of transition rules for the simple one dimensional automata. Most of these rules lead
to global patterns of little interest; in many cases all the cells either become all white
or all black, or in other cases a simple pattern persists. Of most interest are a few pat-
terns that include structures that repeat but that also have a certain level of apparent
randomness. In these cases, simple rules lead to levels of complexity that were in no
way predictable from an analysis of the rules themselves. Based on these and other
investigations, Wolfram (1983) developed a classification scheme that described four
classes of cellular automata arranged in order of increasing complexity: class one lead
to a uniform state; class two produce simple ordered structures that remain the same
for ever; class three create patterns that are random in many respects but small scale
structures such as triangles are always seen; and class four are somewhere between
class two and class three in that they lead to complex patterns with dynamic local

3.4. SUBSTITUTION APPROACH 68

This simple one-dimensional cellular automata can be extended in
two key ways: the dimensionality of the grid may be increased or the
number of states may be increased.

• The dimensionality of the grid can be increased, theoretically to
any number. It should be noted that above three dimensions, it
becomes difficult to visualise. As many of these programs rely
on visual inspection of the output, the number of dimensions is
usually limited to one, two or three. A two-dimensional cellular
automata can be created on a square grid so that each cell has eight
neighbours. This results in (29) 512 possible antecedent patterns,
which in turn means that 512 rules are required, and this in turn
means that there are an astronomical number (2512) of possible
sets of 512 rules. The 512 transition rules need not all be specified
individually. Instead, more general rules can be specified.

• The number of possible states may be increased to any number.
Rather than allowing for only two states represented as either a
white or a black cell, cells can be allowed to take on a range of
states. Often, additional states are displayed by using colour. For
example, a one-dimensional cellular automata can be created where
each cell is in one of three states: white, grey or black. In this case,
there are a total of (33) 27. As a result, exactly 27 transition rules
are required. As there are (31) three consequent pattern, this results
in a total of (327) 7.6 trillion possible sets of 27 rules. This highlights
another huge increase in complexity that results when the number
of states is allowed to increase. When the dimensionality of the grid
and the number of states are both increased, the resulting increase
in complexity is far greater.

The first cellular automata was proposed by John von Neumann (with
key suggestions coming from his friend Stanislaw Ulam) in 1952-3. Von
Neumann was trying to develop an abstract model of self-reproduction in
biology and he created a cellular configuration — consisting of 200,000
cells in total — that was able to reproduce itself when placed within
a cellular automata with 29 possible states and a complicated set of
transition rules. During the 1960s progressively simpler cellular automata
capable of hosting self-reproducing structures were found3. Best known
is John Conway, who in 1970 developed a set of transition rules for a
two-state two-dimensional cellular automata that he called The Game of
Life (Gardner, 1970, 1971). The Game of Life rules exhibit a range of
complex behaviours and an immense amount of effort was spent finding

structures that interact in complicated ways.
3Wolfram (2002, p. 876) highlights an important difference between the approach

implicit within von Neumann’s work and the approach within later studies: von
Neumann sought to produce complex behaviour (in this case, self-reproduction) by
creating a complicated underlying system whereas later studies focused on producing
complex behaviour by creating simple underlying systems.

69 CHAPTER 3. GENERATIVE TECHNIQUES

Figure 3.8: Generative sequence by Thomas Quijano and Manit Rastogi.
From Frazer (1995b, p. 92-93).

initial conditions that lead to repetitive or other interesting behaviour.
Eventually a configuration — described as a breeder — was found that
was capable of self-reproduction.

Cellular structures

More recently, researchers in John and Julia Frazer’s research unit (Frazer,
1995b) have created a variety of three dimensional cellular automata
that generate a variety of structures. For example, in 1994, Quijano and
Rastogi (Frazer, 1995b, p. 92-93) created a three dimensional cellular
automata program on an orthogonal cubic grid. The cellular automata
was initialised with a seed form that consisted of a single ‘on’ cell —
a solid cube — in an invisible cubic grid. A set of three-dimensional
transition rules were iteratively applied, resulting in a complex structure
of three-dimensional cubes being produced. The antecedent pattern for
these rules consisted of the state of the centre cell and the states of its
six face neighbours; the consequent pattern consisted of the new state
of the centre cell. For example, one rule might state that if the centre
cell is ‘off’ and it has just one neighbour directly below it that is ‘on’,
then in the next time step the centre cell should be switched ‘on’, thereby
resulting in a new solid cube being inserted into the grid at that position.

Once a certain level of complexity was reached, the program departed
from the restricted cubic formation by stretching and transforming the
cubes into a variety of coloured orthogonal volumes. The transformation
process of each cube was based on the configuration of its neighbouring
cells. Each possible neighbourhood configuration (of which there was a

3.4. SUBSTITUTION APPROACH 70

Figure 3.9: Generative sequence by Stefan Seemüller. From Frazer
(1995b, p. 46-47).

total of 26 = 64) resulted in one possible transformation. This resulted
in an abstract form of overlapping of overlapping coloured volumes.

Other examples of similar generative programs that used three-dimensional
cellular automata on a cubic grid include Seemüller (Frazer, 1995b, p.
46-47) and Nagasaka (Frazer, 1995b, p. 50-51).

3.4.3 Shape based substitution technique

Fractals

With the shape based substitution technique, the background space within
which forms are generated is treated as continuous canvas rather than
as a gridded cellular structure. The best known types of shape based
substitution programs are two-dimensional fractals. As with grid based
substitution programs, time flows in discrete steps, and at every step
all transition rules for which a match is found in the current form are
indiscriminately fired. In the case of fractal programs, the antecedent
and consequent configurations of the transition rules do not specify grid-
ded patterns. Instead, they consist of two-dimensional arrangements of
shapes.

One of the first and best known geometrical fractals was the Koch
curve, created by Helge von Koch in 1906. It consisted of only one
transition rule that substituted a straight line by four connected lines.
By repeatedly applying the same rule, the Koch curve is generated. It
was Benoit Mandelbrot who coined the term ‘fractal’ and who initiated
a whole new area of research with the publication in 1975 of his book
The Fractal Geometry of Nature (Mandelbrot, 1975). The crucial insight
that Mandelbrot presented in his book was that nested fractal structures
were common throughout nature, as well as in mathematics. Since then,
the general idea of the importance of fractals has become well established
within science.

An important feature of these types of rules is that they do not specify
absolute scale or orientation. The antecedent pattern does not specify
the scale and the orientation of the pattern to be matched in the current

71 CHAPTER 3. GENERATIVE TECHNIQUES

Figure 3.10: Generation of the Koch curve.

form; and the scale and orientation of the consequent pattern is relative
to the pattern found in the current form. So, for instance, in the Koch
example, the antecedent pattern does not specify the orientation or scale
of the shape. It is this feature that allows a rule to be repeatedly applied
to its own output.

In some cases this results in a conflict. This is because rules may be
applied in more than one way. As a result, some fractal programs use
additional markers in order to clarify how the rules should be applied.
For example, a marker in the initial form might indicate the start point
of a line. The antecedent pattern of the transition rule can also use a
marker to ensure that the match is made using the correct rotation. The
consequent pattern may also use markers indicating the start points of
new lines.

Shape grammars

In most cases, fractal programs tend to be two-dimensional. As is the case
with cellular automata, there is no reason why fractals programs cannot
be developed that use three-dimensional substitution rules. In particu-
lar, programs known as shape grammars are two and three-dimensional
shape based substitution programs that apply transition rules selectively
rather than indiscriminately. Usually, rules are selected manually by the
human user. Shape grammars were first proposed in 1971 by Stiny and
Gips (1972) for the generation of configurations of shapes that repre-
sented abstract paintings and sculptures. This approach was later gen-
eralised (Gips, 1975; Stiny, 1975, 1980b). Knight (1994) gives a com-
prehensive overview of the theoretical foundations of shape grammars,

3.4. SUBSTITUTION APPROACH 72

although computer programs are not discussed.
Shea (1997, 2001, 2002, 2004) has developed a generative structural

design system — called eiForm — that uses shape grammar techniques to
generate two-dimensional and three-dimensional space-frame structures.
Structures consist of planar topology of structural members. (Three
dimensional structures are essentially generated in two-dimensions and
then projected onto a three-dimensional surface, such as a hemisphere
or pyramid.) An initial design for a frame structure is defined, together
with a set of rules that add, remove and modify structural members.
The rules are developed by studying existing classes of design. For ex-
ample, Shea developed a grammar for constructing traditional geodesic
patterns. By iteratively apply these rules, different space-frame struc-
tures can be generated. This technique was combined with constraint
satisfaction mechanisms, performance evaluation software and a simu-
lated annealing optimization algorithm. The resulting system was used
to develop a wide range of space frame structures. Figure 3.11 on the
next page shows three space frame roof structures for an octagonal air
plane hanger with walls that vary in height. The first design was opti-
mised for pure efficiency, the second uses an aesthetic measure based on
visual uniformity, and the third uses an aesthetic measure based on the
golden proportion.

Shape grammars differ from fractals in two respects: the first differ-
ence involves the complexity of the process of matching rules to forms;
the second difference involves the idea that one shape may be a sub shape
of another shape.

• Within a shape grammar, shapes may be two or three-dimensional,
and may include lines, planes or solids, although curves, curved
surfaces and curved solids are generally excluded. In the three
dimensional case, the antecedent and consequent arrangements of
the transition rules consist of three dimensional arrangements of
markers, lines, planes or solids. As a result, the process of verify-
ing whether a particular rule matches the current form tends to be
much more complex. Two arrangements of shapes are seen to be
the same whenever one arrangement is a translation, rotation, re-
flection and/or scaled version of the other arrangement. Formally,
these transformations are described as euclidean transformations
or affine transformations (Knight, 1994, p. 44-47) (Flake, 1998,
p. 94-98). For fractals in two dimensions, performing these trans-
formations is feasible. In three-dimensions, the complexity of the
transformations increases hugely.

• Sub-shapes can best be explained with an example. Consider a
shape that consists of a two lines of the same length in a ‘V’ for-
mation. Now consider a rule where the antecedent arrangement
also consists of two lines in a ‘V’ formation, but in this case the
lines are of different length. In the case of a fractal program, the
rule could not be fired since the antecedent arrangement is not a

73 CHAPTER 3. GENERATIVE TECHNIQUES

Figure 3.11: Three space-frame designs for an air plane hanger roof.
From Shea (1997, p. 122–124).

euclidean transformation of the current form. However, in the case
of a shape grammar, the rule could be fired. Shape grammars in-
troduce the idea of sub shapes (Stiny, 1980a). One arrangement of
shapes is a sub shape within another arrangement of shapes when
the former is completely contained within the latter. With shape
grammars, a transition rule can be fired whenever the antecedent
arrangement can be found in the current form, either as an identical
arrangements of shapes or as a sub shape of some arrangement of
shapes. Shape grammars have included this concept of sub shapes
in order to allow for certain types of emergent behaviour (Stiny,
1994). However, this requirement further complicates the already
complex task of matching rules to forms. As a result, shape gram-
mars are often discussed in purely theoretical terms rather than as
computer implementations.

Difficulties with creating implementations of shape grammars been
highlighted by Knight (1999) and by Gips (1999). In response to a re-
quest by Gips for suggestions about computer implementations, Ulrich
Flemming highlights the need for a robust implementation of a param-
eterised shape grammar interpreter that allows for the graphical defini-

3.4. SUBSTITUTION APPROACH 74

tion of parameterised shape rules (which he describes as “a tricky, but
intriguing proposition”). Flemming’s students — Chien et al. (1998) —
describe their frustration in attempting to create such an implementa-
tion, highlighting difficulties in determining parametric rule application.
Gips asks: “Is the sub shape algorithm for shape grammars a solved
(solvable) problem?”

L-Systems

Another well known example of a shape based substitution program are
L-Systems. The growth process of almost all plants incorporates a re-
peated process of initiating new branches, thereby creating a branching
pattern. In smaller plants such as ferns, these branching patterns can be
very regular. In 1968, Lindenmayer (1968) invented a formalism, known
as L-systems, that models plant growth. An L-system can be thought of
as a fractal substitution program with certain connectivity constraints.

L-systems can be used to generate complex two-dimensional forms
consisting of a series of straight line segments that resemble a variety of
natural ferns and weeds (Prusinkiewicz and Lindenmayer, 1990). The
line segments represent plant modules such as internodes, apices, leaves
and branches. The line segments that the L-system manipulates fall into
a number of different types, and these types are indicated in some way
either by using colour or by having labels or markers associated with
them. The types are then used within the antecedent and consequent
patterns of the transition rules.

An important difference between L-systems and other fractal substi-
tution programs is that L-Systems maintain the relationships between
elements in the form. In a fractal substitution program, the connectivity
between lines would not be maintained. In the case of an L-system, the
insertion of an extra line into the centre of a structure forces the adjoining
parts of the structure to re-position themselves in order to accommodate
this extra line.

In order to simplify the process of maintaining the connectivity be-
tween line segments, the generation of the form tends to be broken down
into two stages. In the first stage, the structure is represented in an
abstract way as a string of symbols. The rules perform symbolic sub-
stitutions that expand the initial string into a more complex string. In
the second stage, the completed symbolic string is then translated into a
graphical form, with each symbol being mapped to a graphical operation.

L-Systems are often implemented as two-dimensional programs that
represent the growing structure by using simple lines. Prusinkiewicz
(1995) describes a number of three-dimensional L-systems that generate
plants, flowers and trees. In addition to generating three-dimensional
forms, L-systems have been further extended in a number of ways, includ-
ing the development of stochastic L-systems and parametric L-systems.
With stochastic L-systems, an element of random variation is introduced
into the growth process. Transition rules are created that have the same

75 CHAPTER 3. GENERATIVE TECHNIQUES

antecedent patterns. These rules will result in a conflict when the L-
system finds that there is more than one rule that is applicable. In this
situation, the L-system randomly chooses one rule from the set of possi-
ble rules. As a result, the forms that can be generated tend to be more
natural. With parametric L-systems, the transition rules may include
variable numeric parameters, thereby allowing the gradual phenomena
of growth to be modelled. For example, the line labelled B may have a
numeric parameter associated with it that defines its thickness. A transi-
tion rule may then specify that any line labelled B should be replaced by
a new line that was 5% thicker, also labelled B. This would result in the
line gradually becoming thicker with each time step, possibly simulating
the thickening of a branch.

3.4.4 Context-free versus context-sensitive substi-
tution approaches

The distinction context-free and context-sensitive is based on a distinc-
tion made by Chomsky (1956) in the field of linguistics, when he describes
a number of different types of generative grammars. Generative gram-
mars define a grammar of a language as a set of transition rules and
sentences in the language that can be generated by applying these rules.
The antecedent and consequent patterns consist of patterns of symbols
in the language. Chomsky defined four kinds of generative grammar,
classified according to the types of rules that are permitted: regular
grammars, context-free grammars, context-sensitive grammars, and un-
restricted grammars.

The distinction between context-free grammars and context-sensitive
grammars focuses on the antecedent pattern. Context free grammars
have rules where the antecedent pattern can contain only one symbol,
whereas context-sensitive grammars can have antecedent patterns with
many symbols. As a result, the context-sensitive types of rules can take
neighbouring symbols into account. This makes context sensitive gram-
mars much more powerful.

Experiments by Wolfram

The importance of a context-sensitive generation processes has been high-
lighted by Wolfram in his research into complex systems. Wolfram (2002)
describes a number of grid based substitution programs for generating
complex one-dimensional, two-dimensional and three-dimensional forms.
As well as cellular automata, Wolfram (2002) discusses two further types
of program: mobile automata4 and Turing machines5 .

4Mobile automata are similar to cellular automata except that instead of updating
all the cells in parallel, they have just a single ‘active cell’ that gets updated at each
step.

5Turing machines are similar to mobile automata, except that the state of the cell
and the colour of the cell are treated separately. They were invented by Alan Turing in

3.4. SUBSTITUTION APPROACH 76

Wolfram has found that all these grid based substitution programs
display certain similarities with respect to the complexity of the patterns
that they create. In particular, he repeatedly highlights three points:

• First, complex patterns can be produced by all these systems by
gradually increasing the complexity of the underlying system to a
certain threshold.

• Second, the threshold of complexity required in the underlying sys-
tem is surprisingly low.

• Third, increasing the complexity of the underlying system beyond
this threshold does not yield patterns that are ultimately any more
complex.

Context-sensitive L-Systems

A variety of context-sensitive L-Systems have been created in an attempt
to model the flow of information within plants and between plants and the
environment. Context-free L-Systems are sometimes described as blind
(or as 0L-systems), while context-sensitive L-Systems are sometimes de-
scribed as self-regulatory (or as 1L-systems) (Lindenmayer, 1968, 1982;
Bell, 1986; Prusinkiewicz, 1995).

Context-free L-Systems use standard transition rules to substitute
plant modules. They model a growth process that is controlled locally
by each parent module, independent of the rest of the plant or the envi-
ronment within which the plant is growing. Context-sensitive L-Systems,
on the other hand, use transition rules where the antecedent pattern can
specify neighbouring modules that must be present. Self-regulatory L-
Systems model growth processes that are controlled by the parent module
and by other neighbouring modules in the plant. For instance, the flow
of nutrients or hormones in the growing plant can be modelled.

Despite the added level of complexity provided by context-sensitive
L-Systems, they still leave out certain factors in the growth of plants
that are important. In particular, parts of the plant can interact with
each other without necessarily being neighbouring modules within the
structure of the plant. For example, one branch of the plant may obstruct
another branch from growing in a particular direction. Or the leaves at
the top of the plant may shade branches further down, thereby limiting
the amount of light that these lower branches can receive.

Systems that model these types of interactions are described as sighted.
These systems use transition rules that have the ability to analyse the
context into which the substitution is about to be made. They may

1936 to serve as idealised models for the basic processes of mathematical calculation.
Wolfram (2002, p. 889) emphasises the fact that Turing focused on what complicated
Turing machines could in principle do, rather than what very simple Turing machines
can actually do. Wolfram cites Marvin Minsky as one of the first (1960s) to consider
the simplest Turing machines capable of creating certain complex behaviours.

77 CHAPTER 3. GENERATIVE TECHNIQUES

be thought of as context-sensitive systems that are more advanced than
the self-regulatory L-Systems. Prusinkiewicz (1995) describes a series of
approaches that use a variety of sighted mechanisms.

3.5 Summary

This chapter has discussed parametric, combinatorial and substitution
approaches to generating form. These may be used within the develop-
mental step of an evolutionary system in order to create a generative
process. The main points are as follows:

• The parametric approach generates forms by parameterising either
a model or a procedure. This approach is highly controlled, but
the variability of the forms is limited.

• The combinatorial approach generates forms by combining compo-
nents using either an algebra or a template. Using an algebra is
very flexible, but the types of forms that are generated is difficult
to control. Using a template allows for much more control, but
variability is reduced.

• The substitution approach generates forms by repeatedly substitut-
ing components either by using a grid or by analyzing the shapes of
the components. This approach allows for a small number of rules
to be used to generate very complex forms. However, this approach
is also unpredictable and difficult to control.

Other approaches and techniques also exist. A fourth approach that
is not discussed here may be described as the agent approach: forms are
generated by defining virtual agents that move, interact and collabora-
tively construct form in space. This approach is often inspired by insect
colonies such as those built by ants and bees. These kinds of programs
are also closely related to research in Artificial Life systems. Flake (1998,
ch. 16) discusses a variety of agent based approaches.

Some researchers have also developed generative programs that are
opaque; their inner workings are either difficult or impossible to discover.
In such cases these programs are not discussed because they cannot pro-
vide any guidance to developing new generative programs. The numerous
generative programs developed by Soddu (2002) fall into this category.
Unfortunately, his published work does not explain how the programs
work.

3.5. SUMMARY 78

Chapter 4

Evolutionary computation

Contents

4.1 Introduction 79

4.2 General architecture 80

4.2.1 Synchronous architecture 80

4.2.2 Asynchronous architecture 87

4.3 Synchronous evolutionary algorithms 91

4.3.1 Canonical genetic algorithm 91

4.3.2 Other common synchronous algorithms . . . 96

4.4 Rules and representations 98

4.4.1 Genotype representation 99

4.4.2 Developmental step 101

4.4.3 Reproduction, evaluation and selection rules . 105

4.5 Summary . 110

4.1 Introduction

This chapter provides a general introduction to evolutionary computa-
tion. Evolutionary design systems are not specifically discussed, but the
more general issues covered in this chapter are nevertheless relevant to
evolutionary design. The chapter consists of three main sections:

• In section 4.2, two general architectures for evolutionary systems
are described: a synchronous architecture and an asynchronous
architecture.

• In section 4.3, synchronous evolutionary algorithms are discussed
in more detail. Genetic algorithms are described, and a number of
other synchronous evolutionary algorithms are also introduced.

79

4.2. GENERAL ARCHITECTURE 80

• In section 4.4, the rules and representations used by evolutionary
systems to implement the evolution steps are described. These
rules and representations may be used in both synchronous and
asynchronous systems.

4.2 General architecture

4.2.1 Synchronous architecture

Synchronous versus asynchronous modes

Researchers have developed a variety of evolutionary algorithms that dif-
fer in many ways. Two important aspects are the evolution mode, which
describes how the evolution steps process individuals in the population,
and the control structure, which describes how the evolution steps are
controlled. In chapter 1, a distinction was made between synchronous
and asynchronous evolution modes, and between centralised and decen-
tralised control structures.

The great majority of evolutionary algorithms, use a synchronous
evolution mode in combination with a centralised control structure. A
synchronous centralised architecture is identified that encompasses most
of these algorithms. Such a general architecture is useful in that it allows
the different evolutionary algorithms to be compared and contrasted. (It
should be noted that this architecture does not necessarily represent the
most efficient implementation. In practice many algorithms would not
be implemented in this way.)

Overall structure

Figure 4.1 on the facing page shows the main components and interac-
tions of the general synchronous evolutionary architecture. The general
architecture is based on the description of the general evolutionary algo-
rithm as defined by Bäck and Schwefel (1996); Back et al. (1997); Bäck
(2000). However, their algorithm does not include the developmental
step. The developmental step is included here because it is seen to be
important as it allows a clear distinction to be made between the geno-
type and the phenotype.

In order to implement the synchronous evolution mode, the popu-
lation is split into two parts, referred to as the main population and
the intermediate population1. In addition to the three evolution steps
in nature — reproduction, development, and survival — synchronous
evolutionary algorithms also include an evaluation step and a selection
step.

1At an abstract level, there is only one population. However, in order to simplify
the implementation, the population is split into the existing generation and the new
generation.

81 CHAPTER 4. EVOLUTIONARY COMPUTATION

Figure 4.1: General evolutionary architecture for algorithms using the
synchronous evolution mode.

Figure 4.2: The three representations of an individual in an evolutionary
algorithm.

The two populations continuously replace one another in a cyclical
synchronous fashion. Each evolution step acts on the whole population.
The survival steps copies a set of individuals from the main population to
the intermediate population. The reproduction step selects parents from
the main population and uses these to create a new set of individuals.
These new individuals are then developed and evaluated and added to
the intermediate population. The selection step then selects evaluated
individuals in the intermediate population and copies them to a new
main population.

An individual in the population is considered to consist of three parts:
a genotype, a phenotype and a set of evaluation scores. Figure 4.2 shows
the three main parts of an individual in an evolutionary algorithm.

• The survival step copies a set of existing individuals from the main
population into the intermediate population. This allows individu-
als to survive through many generations. Typically, individuals are
selected based on their fitness.

4.2. GENERAL ARCHITECTURE 82

• The reproduction step creates a set of new individuals. Parents
are usually selected randomly from the main population and ge-
netic operators are then applied to the parent genotypes in order
to create new genotypes.

• The development step creates a phenotype for each new genotype.
In many cases, this process is a straightforward mapping process:
genes in the genotype are mapped to a set of parameter values a
parametric design model. In other cases, the developmental process
may be much more complex, involving rule based growth processes.

• The evaluation step creates an evaluation score for each new phe-
notype. The evaluation scores are created by assessing the per-
formance of the individual with respect to a particular objective.
If more than one objective is specified, then this step will create
multiple evaluation scores for each phenotype. The evaluated indi-
viduals are added to the intermediate population.

• The selection step selects a set of individuals in the intermediate
population and copies them to a new main population. The evalua-
tion scores are used to calculate a fitness value for each individual.
The selection operator is defined in such a way that individuals
with higher fitness are likely to be copied to the main population
more often.

It should be noted that the survival and reproduction steps also in-
clude selection mechanisms. The survival step may select individuals
from the main population for survival. The selection procedures will be
discussed in the next section. The reproduction may select parents from
the main population, though this is usually performed randomly.

Survival step

The survival step allows individuals to survive from one generation to the
next. As a result, a population will include individuals created during
different generations, referred to as overlapping populations. This means
that parents will be able to compete with children. Jong (1975) uses the
term generation gap to describe the size of the overlap: a small generation
gap means that almost the whole population is replaced, while a large
generation gap means that almost the whole population survives. The
size of the generation gap differs depending on the algorithm being used;
some algorithms rely heavily on survival while others do not allow any
survival.

This step needs to select which individuals should be copied to the
intermediate population, and which should be left behind to be discarded.
Those that are being discarded may be thought of as being replaced. A
variety of strategies for selecting individuals are used, which are referred

83 CHAPTER 4. EVOLUTIONARY COMPUTATION

to as replacement strategies2. Four common replacement strategies are
worst, random, inverse proportional, and generational (Alba and Troya,
1999).

• The worst replacement strategy deletes the worst individuals in the
population.

• The random replacement strategy deletes random individuals in
the population.

• The inverse proportional replacement strategy selects individuals
to be deleted using the inverse of roulette wheel selection.

• The generational replacement strategy deletes all the individuals
in the population. In this case, there is no generation gap.

The term ‘replacement strategy’ may suggest that new genotypes can
only be added to the population if they replace existing members. How-
ever, this is not always the case. The number of new genotypes added
to the intermediate population may be much larger than the number of
individuals that were deleted. This results in an intermediate popula-
tion that is larger than the main population. The selection step must
then reduce this larger population back down to the size of the main
population.

Synchronous evolution modes

The synchronous evolution mode encompasses three more specific types
of modes that differ in terms of the size of the generation gap, and the
replacement strategy used. Three common evolution modes are the gen-
erational, elitist and steady-state evolution mode:

• The generational evolution mode uses the generational replacement
strategy. There is therefore no generation gap, and as a result
the survival step can be omitted completely. The intermediate
population will consist entirely of child genotypes.

• The elitist evolution mode (Jong, 1975) uses a small generation
gap and commonly uses the worst replacement strategy. A small
number of the fittest individuals are allowed to survive from one
generation to the next. The replacement strategy usually consists
of deterministically selecting the fittest individuals from the main
population and copying them into the intermediate population.
(The worst individuals are therefore left behind to be deleted.)
The majority of genotypes in the intermediate population will still
be created by the reproduction step.

2Alba and Troya (1999) uses the term replacement policy.

4.2. GENERAL ARCHITECTURE 84

Figure 4.3: Comparing the generational, elitist and the steady-state evo-
lution modes.

• The steady-state evolution mode (Whitey and Kauth, 1988; Syswerda,
1989) uses a large generation gap. Any of the replacement strate-
gies discussed above may be used. The reproduction step only
creates one or two genotypes every generation, with most of the
individuals being allowed to survive. Those individuals that are
not deleted are all copied into the intermediate population.

Figure 4.3 depicts the three modes, where the arrow width repre-
sents the number of individuals. Recently, a number of researchers
have found that steady-state evolutionary algorithms have a much better
performance that generational evolutionary algorithms (Whitley, 1989;
Syswerda, 1991).

Types of parallelism

Evolutionary algorithms are usually implemented as serial processes on
a single stand-alone computer. Due to their mode of operation they can
easily be parallelised. Parallel evolutionary algorithms break down the
evolutionary process into smaller sub-processes, which are then processed
simultaneously using multiple processors. One of the main motivations
for such parallel implementations was the desire to reduce the overall
time to complete the task. If complex solutions are being evolved, the
execution time of an evolutionary system can be extraordinarily long,
with some researchers reporting times of up to one CPU year (Luke,
1998). In such cases, it is essential to reduce the speed of the overall
evolutionary process by using some form of parallelism.

Researchers have also discovered that some forms of parallelization
that fundamentally change the behaviour of the evolutionary process im-
prove the quality of the solutions obtained. For example, some parallel
evolutionary algorithms search different subspaces of the search space
in parallel, thus making stagnation or premature convergence less likely.
It should be noted though that such advantages are dependent on the
restructuring of the evolutionary process, rather than the parallel imple-
mentation. The same advantages can be obtained by implementing the
restructured evolutionary process in a sequential manner.

85 CHAPTER 4. EVOLUTIONARY COMPUTATION

A number of researchers have proposed classifications and taxonomies
for parallel evolutionary algorithms (Grefenstette, 1981; Cantu-Paz, 1997;
Alba and Troya, 1999; Nowostawski and Poli, 1999). In general, there are
two approaches to the parallelization of evolutionary algorithms (Grefen-
stette, 1981; Cantu-Paz and Goldberg, 1999): either a single global popu-
lation is maintained and individuals are evaluated in parallel or multiple
populations are evolved in parallel with some level of communication
between them 3.

• With global parallelism, a single population of individuals is main-
tained and the individuals in the population are processed in par-
allel. These algorithms generally focus on parallelising the evalu-
ation step, as this is usually the most computationally expensive
step. Such algorithms are variously described as global parallel evo-
lutionary algorithms, master-slave parallel evolutionary algorithms,
or panmitic parallel evolutionary algorithms. In such a case, the
master maintains a single population and runs the main evolution-
ary algorithm. When individuals need to be evaluated, they are
sent to the slave processors and when evaluation is complete, the
results are returned to the master. Two categories can be identi-
fied depending on how the population of individuals are processed
(Cantu-Paz, 1997; Alba and Troya, 1999; Nowostawski and Poli,
1999): synchronous global parallelism and asynchronous global par-
allelism.

• With multiple population parallelism, the population is divided into
multiple sub-populations, with each population being evolved in
parallel by separate evolutionary processes that communicate with
each other. Algorithms differ in the sizes of the sub-populations and
the frequency and type of communication between the evolutionary
processes. The two categories most commonly described in the
literature are coarse-grained and fine-grained parallel evolutionary
algorithms (Cantu-Paz, 1997; Alba and Troya, 1999; Nowostawski
and Poli, 1999; Alba and Troya, 2001). The former break down
the population into multiple large sub-populations or demes with
infrequent communication. The latter break the population down
into many small sub-populations with frequent communication.

Parallelism using multiple populations is complex, may require spe-
cialised hardware, and requires additional parameters affecting popula-
tion sizes and information exchange to be set. Global parallelism using a
single population is more straightforward, both theoretically and practi-
cally in terms of implementation. Synchronous and asynchronous4 types
of global parallelism will be discussed in more detail below.

3The approach of evolving multiple populations in parallel should not be confused
with the two populations used in the general synchronous architecture. In the lat-
ter case, these two populations are mot being evolved in parallel. Rather, a single
population has been split into two parts in order to simplify the implementation.

4In the literature, the terms synchronous and asynchronous are also used to de-

4.2. GENERAL ARCHITECTURE 86

Figure 4.4: Synchronous global parallel architecture.

Synchronous global parallelism

With synchronous global parallelism, a master processor runs the main
evolutionary process, and delegates the task of evaluating individuals to
one or more slave processors. The evaluation step on the master processor
assigns equal numbers of genotypes to each slave, the slave evaluates the
genotypes and then returns the results. Figure 4.4 shows the master
and slave processors in relation to the four evolution steps. One of the
advantages of this method is that it is relatively easy to implement. This
method could also be used to parallelise the other three evolution steps.
The evaluation step is often emphasised in the literature because it is
usually the most costly step.

The reduction in overall execution time that can be expected depends
on two factors: the computation cost of the evaluation function, and the
communication cost of transferring data between the master and the
slaves.

• The computation cost is dependent on the complexity of the evalu-

scribe the exchange of information between sub-populations in multiple population
parallelism. However, in this thesis, these terms are used only to refer to global
parallelism.

87 CHAPTER 4. EVOLUTIONARY COMPUTATION

ation process and on the number of genotypes that each slave must
evaluate. The computation cost decreases as more slaves are added.

• The communication cost is dependent on the communication method
and on the number of slaves, with cost increasing in proportion to
the number of slaves.

Provided that the communication cost does not exceed the computa-
tion cost, the speed up will be significant. This approach is particularly
suitable for cases where the evaluation step is expensive.

Cantu-Paz (1998) has analysed the execution time of synchronous
global parallel evolutionary algorithms, and shown that there is an opti-
mal number of processors that minimises the execution time.

With this approach, the parallel implementation has no effect on the
fundamental behaviour of the algorithm, beyond reducing the overall ex-
ecution time. The solutions that are evolved will be the same, regardless
of whether sequential or parallel implementation is used.

4.2.2 Asynchronous architecture

Possible alternative architectures

The architecture described above uses a synchronous evolution mode
with a centralised control structure. An alternative to this architec-
ture is an asynchronous evolution mode, with either a centralised control
structure or a decentralised control structure.

• For an asynchronous mode in combination with a centralised con-
trol structure, a review of the literature revealed that, although
rare, systems using such an architecture have been developed. This
architecture will therefore be discussed next.

• For an asynchronous mode in combination with a decentralised
control structure, a review of the literature did not discover any
systems using such an architecture5. Such an architecture will
therefore not be discussed in this chapter. However, the genera-
tive evolutionary design system proposed in this research uses such
an architecture, and this architecture will therefore be discussed at
length in chapter 7.

Definitions of asynchronous evolution

Asynchronous evolutionary algorithms using a single population have
been mentioned by a number of researchers when describing parallel
global evolutionary architectures (Cantu-Paz, 1997, 1998; Alba and Troya,

5Various systems have been developed using a distributed peer-to-peer model
(Chong and Langdon, 1999; Arenas et al., 2002). This is not the same as the decen-
tralised model being considered here, and should be considered as another possible
architecture.

4.2. GENERAL ARCHITECTURE 88

1999; Nowostawski and Poli, 1999). For example, Cantu-Paz (1998) de-
scribes the difference between synchronous and asynchronous parallel
genetic algorithms (GA) as follows:

“If an algorithm stops and waits to receive the fitness
values for all the population before proceeding into the next
generation, then the global parallel GA is called synchronous
and it has exactly the same properties as a simple GA, with
a possibility of better performance being the only difference.
However, it is also possible to implement an asynchronous
global GA where the algorithm does not stop and wait for
any slow processors, but it does not work exactly like a simple
GA (it resembles a GA with a generation gap).”

Cantu-Paz (1998) does not elaborate on this resemblance6.

Example of an asynchronous evolutionary algorithm

One example of an asynchronous evolutionary algorithm is provided by
Rasheed and Davison (1999)7. The algorithm is introduced below, and
will be discussed in more detail in chapter 5 (see section 5.2 on page 113).

The evolution steps are performed for many individuals in parallel us-
ing a master-slave model. The master processor creates new individuals
one at a time, and sends these individuals to slave processors for evalua-
tion until all slaves are occupied. When a slave completes the evaluation
process, the master immediately adds the evaluated individual to the
population irrespective of what the other slaves are doing. The master
processor will then immediately create a new individual to be evaluated
by the idle slave processor. As a result, the algorithm does not need to
wait for each slave to complete its evaluation, but can apply the steps
independently from one another as and when slaves become available.

6Nowostawski and Poli (1999), in their taxonomy of parallel genetic algorithms,
define asynchronous global parallelism and steady-state parallelism as separate taxa.
They write: “The difference lies in the selection operator. In an asynchronous master-
slave algorithm, selection waits until a fraction of the population has been processed,
while in steady-state GAs, selection does not wait, but operates on the existing pop-
ulation.” However, this statement is thought to be misleading because steady-state
algorithms typically delete the worst member in the population which requires all in-
dividuals in the population to be evaluated before the ranking can be performed. The
algorithm would therefore have to process the whole population before proceeding to
the next generation.

7It is not clear whether Rasheed and Davison (1999) describe their own algorithm
as being asynchronous: they write “In the case of generational GAs, the global parallel
GA is called synchronous if the master waits for the slave to finish evaluating an
entire generation before generating any individuals of the following generation... If
the master does not necessarily wait, the GA is called asynchronous... In this paper,
however, we are interested in applying parallelism to a steady state GA.” This would
suggest that they see the synchronous-asynchronous terminology to be only applicable
to evolutionary algorithms using a generational evolution mode.

89 CHAPTER 4. EVOLUTIONARY COMPUTATION

Overall structure

From the brief comments relating to asynchronous global parallel algo-
rithms and based on the evolutionary algorithm described by Rasheed
and Davison (1999), a general asynchronous evolutionary architecture is
inferred. This architecture is shown in figure 4.5 on the next page.

The asynchronous architecture uses an asynchronous evolution mode
in combination with a centralised control structure. The evolutionary
process therefore controls the evolution steps. However, these steps differ
from their synchronous counterparts in the number of individuals that
are processed. With the synchronous architecture, steps such as the
selection and survival step typically process the whole population. For
example, the survival step may need to delete the weakest individual in
the population and will therefore need to process the whole population to
find the weakest member. With asynchronous evolutionary algorithms,
the reproduction, development and evaluation steps all process single
individuals and the selection and survival steps process small groups of
individuals. This allows these steps to be performed in an asynchronous
manner, independently from one another.

Since individuals are reproduced and inserted back into the popula-
tion one at a time, this asynchronous evolution mode is often referred
to as a steady-state mode. However, this steady-state mode operates
slightly differently from the synchronous steady-state evolution mode.
With the synchronous version, only one individual can be processed at
any one time. Only when this processing is complete can the evolution-
ary system start processing the next individual. With the asynchronous
mode, large numbers of individuals may be processed at the same time.
In some cases, the number of individuals being processed may actually
be larger than the size of the population.

The five evolution steps may be described as follows:

• The selection step selects parents from the population. Selection
may be performed randomly or some kind of fitness based selection
rules may be used. The number of parents selected depends on how
many are required in the reproduction step; usually two parents are
required. Copies are made of the parent individuals and passed on
to the reproduction step.

• The reproduction step creates a single new individual by applying
the genetic operators to the parent genotype in order to create a
new child genotype. This new individual is passed onto the devel-
opmental step.

• The developmental step creates a phenotype for the new individual,
and then passes the individual onto the evaluation step.

• The evaluation step creates one or more evaluation scores for the
new individual by assessing its performance with respect to a set

4.2. GENERAL ARCHITECTURE 90

Figure 4.5: General evolutionary architecture for algorithms using the
asynchronous evolution mode.

of objectives. The evaluated individuals are then passed onto the
survival step.

• The survival step selects one existing individual from the popula-
tion to be replaced by the new individual. Selection may be per-
formed randomly or some kind of fitness based selection rules may
be used.

Specific rules and representations used by the evolution steps are
discussed below in section 4.4 on page 98.

Asynchronous global parallelism

One problem with synchronous global parallelism is that the whole evo-
lutionary process has to wait until the slowest processor has completed
evaluating the genotypes assigned to it. Only when all evaluations have
been returned to the master processor can the selection step start cre-
ating a new main population. It has been suggested that one way to
overcome this is to allow the evolutionary process to proceed even when
all evaluations have not yet been completed. This is the main reason
for implementing an asynchronous evolutionary algorithm. Figure 4.6 on
the next page show the asynchronous global parallel architecture.

As with synchronous global parallelism, the reduction in overall ex-
ecution time is dependent on the computational cost of the evaluation
step, and the communication cost of transferring data between the master
and the slaves.

91 CHAPTER 4. EVOLUTIONARY COMPUTATION

Figure 4.6: Asynchronous global parallel architecture.

4.3 Synchronous evolutionary algorithms

Synchronous evolutionary algorithms, being the most common, will now
be discussed in more detail. Of the synchronous algorithms, genetic al-
gorithms have been the most popular. Genetic algorithms can be traced
back to the early 1950s when biologists used computers to simulate bio-
logical systems (Goldberg, 1989). However, in the strict interpretation,
the genetic algorithm refers to the model introduced by Holland (1975)
and his students at the University of Michigan. This model is referred to
as the canonical genetic algorithm (Whitley, 1994). This algorithm was
originally proposed as a general model of adaptive processes, but by far
the largest application of the techniques is in the domain of optimization
(Jong, 1993).

4.3.1 Canonical genetic algorithm

Users of genetic algorithms

Genetic algorithms have been applied to a wide variety of problems.
In most cases, they are used to build problem specific software systems.
Users with programming skills will typically build customised systems for
specific problems, possibly using generic libraries of functions and sub-
routines. The development of ready-made systems for non-programmers
is relatively rare, and if they do exist they tend to be focused on a
narrow application domain. The genetic algorithm, and more generally

4.3. SYNCHRONOUS EVOLUTIONARY ALGORITHMS 92

the evolutionary algorithm, tends to be seen as an adaptable concept for
problem solving (Back et al., 1997).

Alba and Troya (1999) provide a comprehensive survey of the most
important genetic algorithm implementations. This survey classifies im-
plementations into three types: ready-made menu-driven implementa-
tions that are developed for a specific application domains; source code
and libraries that allow users to implement a particular algorithm; and
flexible programming toolkits that allow users to construct a number
of different algorithms from predefined components. Implementations
within the first classification are aimed at non-programmers, while the
second and third classifications require the user to have extensive pro-
gramming skills. Out of the 36 implementations surveyed, only four fell
within the first classification.

The main reason that ready-made systems are rare is due to the
need to embed problem specific knowledge within the system. The main
area that contains such knowledge is the evaluation step. This includes
the genotype length, the mapping process and the evaluation function
or objective function. (The fitness function on the other hand is not
problem specific; see section 4.3.1 on page 94.) The researcher that uses
a genetic algorithm must define these aspects of the evaluation function
in a problem specific manner.

In addition to the evaluation step, users of genetic algorithms also
need to define the evolutionary parameters and create an initial pop-
ulation. The evolutionary parameters include the population size, the
crossover probability and the mutation probability. The choice of these
parameters will also be affected by problem specific knowledge. The ini-
tial population of genotypes may be generated by randomly generating
binary strings. In some cases, researchers have found that the perfor-
mance of the algorithm will be improved if the population is seeded with
carefully design problem specific genotypes.

Search and search spaces

Genetic algorithms are often characterised as search systems for finding
‘optimal solutions’. In most cases, a near optimal solution is provided
and the task of improving the solution is then characterised as a search
problem. This idea of searching among a selection of candidate solutions
gives rise to the search space concept (Wright, 1932; Newell et al., 1967;
Kanal and Cumar, 1988).

The search concept encompasses some notion of distance between
candidate solutions. An algorithm for searching this space is a method
for choosing which candidate solutions to test at each stage of the search
process. In most cases the next candidate solution(s) to be tested will
depend on the results of testing previous sequences; most useful algo-
rithms assume that there will be some meaningful relationships between
‘neighbouring’ candidate solutions - those close together in the space. As
a consequence of the search space concept, the idea of a fitness landscape

93 CHAPTER 4. EVOLUTIONARY COMPUTATION

arises naturally. A fitness landscape is a representation of the space of
all possible solutions along with their fitnesses. It is referred to as a
landscape because the fitness values can in some cases be visualised as
‘hills’, ‘peaks’, ‘valleys’, and other features analogous to those found in
physical landscapes. The task of the genetic algorithm is to home in on
the highest peaks in this landscape.

A large number of search algorithms have been developed in order
to try and search as efficiently and thoroughly as possible. Hill-climbing
is one of the best known. This algorithm utilises the iterative improve-
ment technique whereby, each iteration, a new solution is searched for
in the neighbourhood of the current solution. This is known as a point-
to-point search because at any one time, only a single point is being
processed. However, such point-to-point search algorithms are suscep-
tible to stagnation at local peaks and have difficulty searching rugged
fitness landscapes. In order to overcome these drawbacks, numerous al-
ternative algorithms were introduced. The most successful alternatives
discarded the point-to-point search strategy in favour of a parallel strat-
egy, whereby whole populations of solutions are considered at any one
time. Genetic algorithms are based on the intrinsically parallel process of
natural evolution. As such they have earned the reputation for being an
efficient and robust type of parallel search algorithm suitable for certain
types of complex problems (Paul Schwefel, 2000).

The individual in the population

Each member of the population is described as an individual and has
two parts. The first part is a fixed-length binary string8 that encodes the
parameters for a solution, referred to as a genotype (Holland, 1975) or a
chromosome (Schaffer, 1987). The binary string is mapped to a set of real
values that are the parameters being optimised. The second part is a real
number that represents the quality of the individual with respect to some
predefined objective, referred to as the fitness. Figure 4.7 on the next
page shows the two parts of the individual. Within the genotype string
, the sub-string ‘1011’ encodes one of the parameters in the solution.

For example, one common application of the genetic algorithm is
function optimization, where the goal is to find a set of parameter values
that maximise a function. In the case of a function with six variables, the
mapping step must first break the binary string into six sub-strings, and
then translate each sub-string into a real number. The six real values are
then used to evaluate the function. This evaluation may either represent
the fitness directly, or a comparative fitness value can be calculated by
taking into consideration all other members in the population. If at some
later stage a different function needs to be optimised, then the evaluation
rules will need to be changed.

8A binary string is a list of ‘0’s and ‘1’s.

4.3. SYNCHRONOUS EVOLUTIONARY ALGORITHMS 94

Figure 4.7: The representation of an individual, consisting of a binary
string genotype and a real valued fitness.

Evolution steps

The synchronous evolutionary process has been described as consisting
of five key steps: survival, reproduction, development, evaluation, and
selection. With canonical genetic algorithms, the developmental and
survival steps are not used. (The developmental step may be thought
of as the process of mapping the binary string to a set of real values.
However, most researchers in field of genetic algorithms conceptualise
this as being part of the evaluation step. The survival step is ruled out
since a generational replacement strategy is used.)

For the evaluation step, the terms ‘evaluation’ and ‘fitness’ are of-
ten used interchangeably. However, Whitley (1994) has highlighted a
important distinction: “The evaluation function, or objective function
provides a measure of performance with respect to a particular set of
parameters. The fitness function transforms the measure of performance
into an allocation of reproductive opportunities. The evaluation of a
string representing a set of parameters is independent of the evaluation
of any other strings. The fitness of that string, however, is always defined
with respect to other members of the current population.” The process
of determining the fitness may be thought of as being part of either the
evaluation step or the selection step.

The canonical genetic algorithm is usually described as consisting of
three steps: reproduction, evaluation and selection.

• The survival step is not used because the generational replacement
strategy deletes all individuals in the main population.

• Reproduction creates a new intermediate population. Pairs of par-
ents are randomly selected from the main population and recombi-
nation and mutation are applied to the genotypes of these parents
with fixed probabilities. The recombination operator breaks off the
tail of each parent string at some random location, and then swaps
these tails to create two new child strings. This is referred to as

95 CHAPTER 4. EVOLUTIONARY COMPUTATION

one-point crossover. The mutation operator will change each bit in
a genotype with a fixed probability. The probability of recombina-
tion is usually quite large (e.g. 60% or 70%), while the probability
of mutation is usually low (e.g. 1%).

• The developmental step is not used.

• Evaluation involves computing the fitness of each genotype in the
intermediate population. This consists of three processes: first each
genotypes is broken down into a set of fixed-length binary segments
which are decoded into integer values and then mapped to a set of
real values; second, these values are then used by the evaluation
function or objective function in order to obtain an evaluation for
each individual; and third, the fitness for each individual is calcu-
lated using the fitness function, which typically consists of dividing
each evaluation by the average evaluation for the population.

• Selection replaces the main population with a new population of
genotypes. The genotypes currently in the main population are first
discarded. New genotypes are then repeatedly selected from the in-
termediate population and copied into the main population. This
selection mechanism ensures that genotypes with a higher fitness
have a higher chance of being selected. This selection mechanism
is described as fitness proportionate selection or proportional se-
lection. Genotypes with high fitness are likely to be copied many
times, whereas genotypes with low fitness may not be copied at all.

Exploration and exploitation

Holland (1975) characterises the process of adaptation of individuals dur-
ing the evolutionary process as a balance between two opposing tenden-
cies: exploration and exploitation. Exploration refers to the creation of
diversity within the population. This is achieved primarily through the
genetic operators: mutation introduces innovation, while recombination
changes the context of existing genetic information. Exploitation refers
to the reduction of diversity as a result of a selection process that favours
individuals of higher fitness. This balance between exploration and ex-
ploitation is critical for the evolutionary process. Holland’s original ge-
netic algorithm was proposed as an “adaptive plan” for accomplishing a
proper balance between exploration and exploitation in adaptive systems.

The level of exploitation within an evolutionary system is often char-
acterised as selection pressure. If the selection pressure is high, the evo-
lutionary process quickly converges on the fittest individuals. If the se-
lection pressure is low, the evolutionary process becomes divergent. Ex-
cessively high selective pressure may result in the evolutionary process
converging too quickly; this is described as premature convergence. Con-
versely, if the selection pressure is excessively low, then the evolutionary
process may lose direction and start randomly drifting; this is known as

4.3. SYNCHRONOUS EVOLUTIONARY ALGORITHMS 96

stagnation. Goldberg and Deb (1991) and Bäck (1994) have attempted
to quantify the selective pressure of different selection approaches.

Many researchers have found that it useful to change the selection
pressure as evolution progresses. At the start of the evolutionary process,
low selective pressure is useful because it allows many new possibilities to
be explored through a divergent search process. By gradually increasing
the selective pressure the process becomes more convergent, focusing on
the fitter individuals and exploiting their genetic material.

Building blocks hypothesis

In order to help explain how genetic algorithms work, Holland (1975)
proposed the building block hypothesis. This hypothesis postulates that
canonical genetic algorithms work by discovering, emphasising, and re-
combining good ‘building blocks’ of solutions in a highly parallel fashion.
A building block is a small sub-section of the genotype. The idea is that
good solutions tend to be made up of good building blocks.

Holland (1975) formalised this notion of building blocks in the Schema
Theorem. This theorem shows that the canonical genetic algorithm (us-
ing binary representations and single point crossover) provides a near-
optimal strategy for increasing the number of good building blocks.

The Schema Theorem has been the subject of much critical discussion.
Many researchers argue that it fails to capture the full complexity of the
genetic algorithm. (For an introduction to these issues, see Mitchell
(1996, ch. 4)).

4.3.2 Other common synchronous algorithms

Evolution strategies

Evolution strategies were created by Rechenberg (1973) and further de-
veloped by Bäck (1996). The genotype representation consists of a fixed
length list of real values, called a real-valued vector. The phenotype
representation is specific to the problem application. Initially, evolution
strategies had a population of just one parent and one child in each gener-
ation (Schwefel, 1965; Rechenberg, 1973). In the 1980s, researchers devel-
oped more advanced evolution strategies using populations with multiple
parents and multiple children (Bäck, 1996).

• The survival step has two versions, referred to as (µ, λ) and (µ+λ),
where µ is the number of new individuals created each generation,
and λ is the size of the main population. In the first version, there is
no survival and individuals cannot be copied from the main popula-
tion to the intermediate population. The intermediate population
is of size µ. In the second version, all individuals in the population
survive. Each generation, all genotypes in the main population are
copied to the intermediate population, and new genotypes are cre-
ated and added to this population. The size of the intermediate

97 CHAPTER 4. EVOLUTIONARY COMPUTATION

population is therefore µ + λ. The size of µ is typically around
seven times λ (Bäck, 1996).

• The reproduction step randomly selects parents from the main pop-
ulation and applies recombination operators and a mutation oper-
ator in order to generate new real valued vectors. The recombi-
nation operators may recombine the values within two parents, or
they may use a different parent for every variable in the vector.
The mutation operator replaces randomly selected values within
the vector with new normal-distributed random values.

• The developmental step must create the phenotype from the real
valued vector. The mapping from a binary string to real values
is not required. However, the mapping from the real values to
the more complex structure that represents the phenotype is still
required.

• The evaluation step calculates a fitness value for each genotype in
a problem specific manner.

• The selection step creates a new main population using determin-
istic selection (see section 4.4.3 on page 108).

An important further development of evolution strategies is their abil-
ity to evolve parameters controlling the evolutionary process. This is
referred to as self-adaptation. Rudolph (2000) gives a brief overview of
contemporary evolution strategies.

Evolutionary programming

Evolutionary programming was created by Lawrence Fogel (Fogel, 1963)
and further developed by his son David Fogel (Fogel, 1995). As with
evolution strategies, the genotype representation consists of a real-valued
vector and the phenotype representation is problem specific.

• The survival step is similar to the process used by (µ+λ) evolution
strategies, with all individuals in the population surviving. Each
generation, all individuals in the main population are copied to
the intermediate population, and new individuals are created and
added to this population until its size has doubled.

• The reproduction step creates new genotypes from single parents
using only mutation. Each genotype in the main population is used
to create a new genotype by making a copy of the parent vector and
mutating the real values within this vector. (Fogel (1995) has shown
that mutation is able to simulate operators such as crossover.)

• The developmental step is similar to that of evolution strategies.
The real valued vector must be mapped to the phenotype in a
problem specific manner.

4.4. RULES AND REPRESENTATIONS 98

• The evaluation step uses the values in the real valued vector to
calculate the fitness value for each individual.

• The selection step creates a new main population using either de-
terministic selection, tournament selection or proportional selection
(see section 4.4.3 on page 108).

Genetic programming

Genetic programming was created by Koza (1992) as a way of evolving
computer programs. In this case, each genotype is actually a computer
program, usually written in symbolic languages such as LISP. There is
therefore no distinction between the genotype and the phenotype.(It may
be argued that the phenotype should be considered to be the behaviour
of the program as it runs or the outcome, rather than the program itself
(Bentley, 1999a, p. 56-57). For example, if the program produces some
data, then this data may be thought of as being the phenotype.)

• No survival is allowed. Evolution proceeds in a synchronous gener-
ational manner similar to genetic algorithms.

• The reproduction step is similar to that of the genetic algorithm,
except that specialised operators are used. Each computer program
is represented as a tree, with the crossover and mutation operators
creating new trees by modifying and rearranging the branches of
the parent trees. The crossover operator switches a randomly cho-
sen branch of one tree with a randomly chosen branch of another
tree; the mutation operator deletes a randomly chosen branch and
replaces it with a randomly created new branch. These operators
are carefully designed to ensure that they do not create invalid or
meaningless programs.

• The developmental step is not necessary as the genotype represents
the computer program directly.

• The evaluation step evaluates the performance of the computer
programs by running the programs and analyzing their behaviour
and output.

• The selection step creates a new main population using a propor-
tional selection (see section 4.4.3 on page 108).

4.4 Rules and representations

Synchronous and asynchronous evolutionary algorithms may use similar
rules and representations in order to define the evolution steps. In gen-
eral, these rules and representations may be seen as transformations that

99 CHAPTER 4. EVOLUTIONARY COMPUTATION

take one or more individuals as input and produce one or more individu-
als as output. In the literature, the rules are also sometimes referred to as
operators ; for example, reproduction operators, and selection operators.

A wide variety of such rules and representations have been developed.
This section will discuss some of these rules and representations in more
detail.

4.4.1 Genotype representation

Complex representation

Genetic algorithms using binary string representation together with bit
mutation and one-point crossover have the advantage of strong theoret-
ical foundations (Goldberg, 1989, p. 40-41). Nevertheless, in practice,
many researchers have found that the performance of the algorithms can
be improved by using more complex types of rules and representations
(Michalewicz, 1993, 1996). Michalewicz (1996, p. 3) advocates “the use
of proper (possibly complex) data structures (for chromosome represen-
tation) together with an expanded set of genetic operators”. He argues
in favour of evolutionary algorithms that employ complex representa-
tions and rules. Michalewicz also provides many examples where such
algorithms have been successfully used to solve complex problems that
canonical genetic algorithms were unable to solve.

For problems with continuous parameters, a common trend is to use a
real valued genotype representation directly, rather than a binary repre-
sentation that is then mapped to real values (Janikow and Michalewicz,
1991; Radcliffe, 1991; Wright, 1991; Bäck, 1993; Eshelman and Schaffer,
1993). New types of reproduction rules have also been developed in order
to perform mutation and recombination of such strings.

For problems with complex constraints, it is now generally accepted
that performance of the genetic algorithm can be improved by creating
new problem specific rules and representations for the reproduction and
the selection steps (Wolpert and Macready, 1995; Michalewicz, 1996).
In many cases, string based genotype representations are replaced by
other more complex types of structures such as trees and graphs. For
example, Koza writes: “Representation is a key issue in genetic algorithm
work because the representation can severely limit the window by which
the system observes its world... String-based representation schemes are
difficult and unnatural for many problems and the need for more powerful
representations has been recognised for some time” (Koza, 1990) (quoted
in (Michalewicz, 1996, p. 4)). For such representations, reproduction
rules need to be developed that are specific to these representations.

Strong and weak evolutionary algorithms

Evolutionary algorithms can range from being generic to highly specific
to a particular problem. Michalewicz (1993, 1996) describes a hierarchy

4.4. RULES AND REPRESENTATIONS 100

of evolutionary algorithms capable of solving hard optimization prob-
lems. At the bottom of the hierarchy are evolutionary algorithms that
are problem specific, while at the top of the hierarchy are programs that
are the most generic. The set of problems to which an evolutionary algo-
rithm can be applied is described as the domain for that program. The
problem specific programs have a narrow domain and are described as
strong, while the generic ones have a broad domain and are described as
weak. Genetic algorithms are identified as the weakest programs and are
at the top of the hierarchy. Below genetic algorithms, the evolutionary
algorithms get progressively more problem specific “by using ‘natural’
representations and problem-sensitive ‘genetic’ operators” (Michalewicz,
1996, p. 289).

Michalewicz puts forth the hypothesis that the stronger program
should generally perform better that the weaker program, based on “a
number of experiments and on the simple intuition that problem-specific
knowledge enhances an algorithm in terms of performance (time and
precision) and at the same time narrows its applicability” (Michalewicz,
1996, p. 291).

The domain and the performance of an evolutionary algorithm are
related to each other via the rules and representations used. A narrow
domain implies problem specific rules and representations which in turn
implies a good performance. A broad domain implies generic rules and
representations which in turn implies a poor performance. The program-
mer of an evolutionary algorithm must decide on an appropriate balance
between domain and performance. An additional factor that must be
considered by the programmer is the time and effort required to develop
the system. Michalewicz (1996, p. 303) writes: “The development of a
stronger, high-performance system may take a long time if it involves ex-
tensive problem analysis to design specialised representation, operators,
and performance enhancements”.

Using a standard algorithm such as a genetic algorithm would clearly
reduce the development time and effort. However, Michalewicz (1993)
has shown that for most complex problems, the performance of these
weak programs is poor when compared to stronger alternatives. Michalewicz
(1993, p. 303) writes: “If one is solving a transportation problem with
hard constraints (i.e. constraints which must be satisfied), there is little
chance that some standard package would produce any feasible solution,
or, if we start with a population of feasible solutions and force the sys-
tem to maintain them, we may get no progress whatsoever — in such
a case the system does not perform any better than a random search
routine”. As a result, a new system may need to be built from scratch
and could require a considerable amount of time and effort on the part
of the programmer.

101 CHAPTER 4. EVOLUTIONARY COMPUTATION

4.4.2 Developmental step

Distinction between genotypes and phenotypes

With canonical genetic algorithms, the evaluation step first maps the
genotype to a set of parameters, and then uses these parameters in order
to calculate the genotypes fitness. The phenotype is embedded within
the evaluation step, and as a result the existence of a phenotype is not
emphasised. Nevertheless, many researchers have found it useful to make
the genotype-phenotype distinction more explicit. Once this distinction
has been made, two types of search space can be identified: the genotype
representation defines a genotype space and the phenotype representation
defines a phenotype space. A developmental mapping function is thought
of as a function that maps points in the genotype space to points in the
phenotype space. The genetic operators act on points in the genotype
space, and the evaluation function acts on points in the phenotype space
(Back et al., 1997).

If the types of solutions being evolved by a genetic algorithm are
susceptible to parameterization, then a fairly simple mapping function
can be created. However, with many real-world problems, the potential
solutions are complex and cannot be parametrised in a straightforward
manner. As a result a simple mapping function may no longer be fea-
sible. Under such circumstances, researchers tend to follow one of two
approaches (Michalewicz, 1996; Back et al., 1997):

• A special genotype representation may be created that is closer to
the phenotype representation. This would allow a simpler type of
mapping function to be used. The disadvantage of this approach
is that special reproduction rules would have to be developed that
are able to manipulate the genotype representation.

• A more complex developmental process may be created that trans-
forms the genotype into the phenotype. Such a process would al-
low a standard genotype representation and standard reproduction
rules to be used. The disadvantage of this approach is that the
complex mapping procedure may introduce other problems that
hinder the evolutionary process.

Michalewicz (1996) argues for the first approach. A genotype repre-
sentation that is closer to the phenotype representation is described as
being a ‘natural’ representation. He writes: “It seems that a ‘natural’
representation of a potential solution for a given problem plus a family of
applicable ‘genetic’ operators might be quite useful in the approximation
of solutions of many problems, and this nature-modelled approach... is
a promising direction for problem solving in general.” Back et al. (1997)
also suggests that many researchers prefer “natural, problem-related rep-
resentations”.

Other researchers have found that, in some cases, the second approach
is more appropriate. They have found more complex developmental pro-

4.4. RULES AND REPRESENTATIONS 102

cesses analogous to the developmental processes in nature may have some
advantages. During the last decade, there has been an increase in re-
search into such developmental processes — referred to as gene expression
(Kargupta, 2003) — in genetic and evolutionary computation. O’Neill
and Ryan (2000) list a number of areas, including genotype-phenotype
distinction, genetic code evolution, distributed fitness evaluation, the role
of introns, and degenerate genetic codes and neutral mutations.

The developmental process in nature

In nature, the genotype of a plant or animal cannot be directly evaluated.
Instead, the genotype is developed into the phenotype — the fully de-
veloped organism — by a complex developmental process. Through the
machinery of the cell, the DNA is copied into another long string called
RNA. The RNA then leaves the cell nucleus to be read by a cellular
device that brings amino acids corresponding to the coding sequence to-
gether to be linked in the proper order to make a polypeptide of perhaps
several hundred amino acids. When finished, the polypeptide folds up
into a complex shape to form a protein. In total, about 100,000 different
proteins can be created in this way. The shape of the protein then gives
it certain functions and properties; for example, certain shapes might al-
low it to bind to fit together with other proteins to form cell structures,
while others might allow it to bind to chemicals and change the speed
with which they react. The definitions for all these steps exist as physical
properties of the various entities involved.

In order to create complex organisms with cells that differ from one
another, the expression and repression of genes must be carefully orches-
trated. Kauffman (1993, p. xvii) describes this process as follows: “Cell
types differ because different subsets of genes are ’active’ in different cell
types... The expression of gene activity is controlled at a variety of levels,
ranging from the gene itself to the ultimate protein product. It is this
web of regulatory circuitry which orchestrates the genetic system into
coherent order. That circuitry may comprise thousands of molecularly
distinct interconnections”.

The role of the environment in this process is often underestimated,
and the role of the DNA is often overemphasised. The DNA is sometimes
described as a ‘blueprint’ for an organism. However, this is misleading
as it suggests that the DNA defines the complete design of the organ-
ism. Even the idea that the DNA consists of a set of ‘instructions’ is
not accurate. The instructions are embedded within the environment as
physico-chemical processes, and the genes in the DNA only provide the
initial trigger for these processes to occur (Kauffman, 1993). The genes
contained in the DNA can therefore be thought of as a set of triggers
that initiate certain processes. These triggers will only have the desired
outcome if the genes are in an environment that contains the suitable
instructions.

103 CHAPTER 4. EVOLUTIONARY COMPUTATION

Advantages of a developmental process

Angeline (1995) provides an overview of evolutionary systems that incor-
porate a developmental step. The developmental step is referred to as
morphogenic processes. Angeline sees the inclusion of the developmen-
tal step as a way of extending the abilities of evolutionary algorithms
to more readily construct large, complex, structures. In particular, two
benefits of including a developmental step are highlighted:

• The genotype representation can be designed to ensure that the
genetic operators are more likely to create viable offspring. This
may increase the chances of evolving appropriate solutions.

• The genotype representation can be compressed into a compact
form thereby reducing the size of the genotype’s search space, which
will reduce the time needed to evolve large structures. Uninterest-
ing areas in the phenotype space may also be excluded.

Other researchers have proposed additional advantages. O’Neill and
Ryan (2000) argue that the developmental step allows the genotype rep-
resentation to incorporate a number of genetic techniques found in nature
that may help the evolutionary process. They list techniques such as the
use of generalised encodings that allow a wide variety of phenotypes to be
developed using the same genotype representation, degenerate encodings
that allow a range of different genotypes to result in the same pheno-
type, and positional independence where the position of particular genes
within the genotype does not affect the developmental process.

Bentley (1999b) highlights the possibility of improved constraint han-
dling. He argues that the development step can be designed to ensure
that every possible genotype is mapped to a legal phenotype that abides
by certain constraints.

Types of developmental processes

Angeline (1995) formally defines the development step as consisting of a
function that transforms the genotype into the phenotype. Three types
of developmental function are defined: translative developmental func-
tions, generative developmental functions and adaptive developmental
functions :

• Translative developmental functions typically involve a trivial or
near trivial mapping that is used to encode the phenotype into ap-
propriate form for the evolutionary process. Such mappings simply
translate the genotype representation to the phenotype representa-
tion without much expansion. In most cases there is no interaction
between the genes, with each phenotypic trait being specified by a
single gene. Examples include binary codings, Gray codings and
the evolution of neural network structures (Harp and Samad, 1991).

4.4. RULES AND REPRESENTATIONS 104

• Generative developmental functions typically transform genotypes
into phenotypes using recursive processes such as L-systems, pro-
duction rule systems, and other types of symbolic rewrite processes.
A grammar-based process is often used that works as a decom-
pression function. In many cases, phenotypes are created that are
exponentially larger than the genotypes. Examples include the evo-
lution of classifier systems (Wilson, 1989), the evolution of neural
network structures (Kitano, 1990; Gruau, 1992; Garis, 1994), the
evolution of artificial life (Sims, 1994) and the techniques use in the
field of genetic programming (Koza, 1992, 1994).

• Adaptive developmental functions use a scheme that dynamically
creates the development function during evolution. The develop-
ment function is generally a generative process that is subject to
modification during evolution. Such modifications are usually de-
pendent on either the number of generations that have elapsed,
or on other factors such as the diversity of the population. Exam-
ples include extensions of genetic algorithms (Shaefer, 1987; Schau-
dolph and Belew, 1992; Whitley et al., 1991) and extensions of ge-
netic programming (Angeline and Pollack, 1994; Rosca and Ballard,
1994).

Bentley and Kumar (1999); Kumar and Bentley (2003) have pro-
posed an alternative classification of developmental processes. They re-
fer to the developmental process as a computational embryogeny. They
first classify embryogenies into those where the developmental process
is evolvable (the adaptive type in the classification by Angeline (1995))
and those where it is not evolvable. Evolvable types are then further
subdivided into those that explicitly describe the developmental process,
and those where the developmental process emerges as a result of recur-
sively applying growth rules. Three different classes are defined: external
embryogenies are non-evolvable; explicit embryogenies are evolvable and
explicitly describe the developmental process; implicit embryogenies are
also evolvable but only describe the developmental process implicitly. In
order to explore the behaviour of the evolvable classes of embryogenies,
Bentley and Kumar developed some simple experiments that involved
evolving letter shapes.

Developmental processes for design

Classifications specific to particular fields have also been developed. In
design, a number of such classifications have been proposed. Bentley
(1999d) identifies four types of evolutionary design: evolutionary design
optimization, creative evolutionary design, evolutionary art, and evolu-
tionary artificial life forms.

• Evolutionary design optimization is the straightforward optimiza-
tion and is referred to here as parametric evolutionary design.

105 CHAPTER 4. EVOLUTIONARY COMPUTATION

• Creative evolutionary design involves the evolution of designs guided
by functional performance criteria.

• Evolutionary art focuses on evolutionary systems with interactive
interfaces that allows human users to evolve a variety of designs
and to judge these designs based on aesthetic appeal.

• Evolutionary artificial life-forms involve the evolution of designs
that have both a form and a behaviour.

Hu et al. (2002) have proposed a classification of evolutionary design
problems that is dependent on the types of problems. They propose three
types of problem: fixed structure with a fixed number of parameters, vari-
able structure with no parameters, and variable structure with a variable
number of parameters.

• Fixed structure with a fixed number of parameters are standard
optimization problems where the topology is fixed, and certain pa-
rameters are allowed to vary.

• Variable structure with no parameters are problems where only
structure is important, such as algorithm design, program induction
and logic design.

• Variable structure with a variable number of parameters are prob-
lems where both the structure and the parameters need to vary.
Typically, a structure is sought within a topologically open-ended
space, and parameters need to be assigned to key variables as-
sociated with the structure. The number of parameters and their
semantics may change frequently. Examples, include circuit design,
mechanical design and neural network design.

Hu et al. (2002) find that many of the most interesting types of prob-
lems fall into the last classification.

4.4.3 Reproduction, evaluation and selection rules

Reproduction rules

Alternative reproduction rules have been developed for both binary string
representations and real-valued vector representations. For binary strings,
two common alternative recombination operators are n-point crossover
and uniform crossover :

• N-point crossover (Jong, 1975) is a generalization of one-point crossover
by increasing the number of crossover points. For example, with
n = 2, two random crossover point are chosen. Each parent string
is then broken into three sections, and the middle sections are
then swapped, thereby creating two new child strings. Two-point
crossover is the most common type of crossover (Booker et al.,
2000).

4.4. RULES AND REPRESENTATIONS 106

• Uniform crossover (Syswerda, 1989) does not predefine the number
of crossover points in advance. Instead, each string position is
considered in turn and a breakpoint is inserted with a predefined
probability (usually 50%). The two parent string are then broken
into sections and two new child strings are created by swapping
these sections.

In addition to these recombination operators, a variety of other op-
erators have been developed for different purposes. For example, re-
combination operators have also been developed that use more than two
parents. Such operators combine genetic material from multiple parents
to create multiple offspring. Booker et al. (2000) give an overview of
these developments.

For real-valued vectors, new types of recombination and mutation
operators have had to be developed. The mutation operators are similar
to their binary counterparts. Two common types of mutation are uniform
mutation and non-uniform mutation (Michalewicz, 1996):

• Uniform mutation applies mutation to each real value within the
vector with a fixed probability. If mutation is applied, then the old
value is replaced by a new random value uniformly selected from a
range of possible values.

• Non-uniform mutation also applies mutation to each real value
within the vector with a fixed probability. If mutation is applied,
then the old value is replaced by a new value that is calculated
by taking into account the age of the population. Early on during
the evolutionary process, the new value is selected randomly from
the range of possible values. However, as evolution progresses, the
chance of the new value being different from the old value grad-
ually decreases. The size of the mutations will get smaller as the
population gets older.

For the recombination operators, the two main variants are simple
crossover and arithmetical crossover (Michalewicz, 1996):

• Simple crossover is similar to binary crossover and breaks off the
tail of each parent string at some random location between two real
values, and then swaps these tails to create two new child strings.

• Arithmetical crossover creates a new real-valued vector by calculat-
ing the averages of the corresponding values in the parent vectors.
The first value in the child vector will be equal to the average of
the first values in the parent vectors, the second value will be equal
to the average of the second values in the parent vectors, and so
forth.

Both Holland (1975, p. 111) and Goldberg (1989, p. 14) emphasise
that recombination using crossover should be the main type of operator,

107 CHAPTER 4. EVOLUTIONARY COMPUTATION

with the mutation operator acting as a ‘background operator’ supporting
recombination. This is why the mutation probability is usually set low.
Recently, empirical and theoretical investigations have demonstrated that
increased emphasis on mutation can result in performance improvements
(Bäck et al., 2000a). Booker et al. (2000) give a formal analysis of the
behaviour of various recombination operators.

Evaluation rules

When developing evaluation rules, a problem described as the scaling
problem may arise. The selective pressure that is applied to a particular
population of individuals is dependent on the variation of fitnesses of the
individuals in the population. If there is little variation in the fitness of
the individuals, then the selective pressure will be small. For example, if
a function with a range between 1000 and 1010 is being optimised, then
the selective pressure will always be low because the variation in fitnesses
is always small.

A number of methods have been proposed to overcome this problem.
Two common approaches are windowing and scaling :

• Windowing uses the worst fitness score in the population as the
baseline, and subtracts this value from all other fitness values.

• Scaling attempts to map the fitness values to some new set of values
that are less susceptible to stagnation and premature convergence.
Two types of scaling are sigma scaling and linear scaling.

Scaling problems only occur with proportional selection; tournament
selection or rank based selection — which will be discussed next — avoid
these problems. For these selection schemes, the magnitude of the fit-
nesses makes no difference, as long as they are different. Furthermore,
Whitley (1989) also argues that in many real applications, evaluation
functions may only be able to provide approximate measures of fitness.
He writes: “In most cases, it may not be realistic to use the value gen-
erated by the evaluation function to judge relative differences in fitness.
Ranking (or even approximate ranking) may be the best one can expect
from an evaluation function.”

Anther potential complication that may arise when developing eval-
uation rules is when more than one objective needs to be evaluated.
The majority of evolutionary algorithms have been applied to problems
where only a single objective needs to be optimised. However, real-world
problems often involve multiple objectives that need to be simultane-
ously considered. Furthermore, such objectives are often conflicting in
that a solution that performs well in one objective may perform badly in
another. In such a case, the objectives cannot all be simultaneously op-
timised, and a compromise solution must be sought whose performance
is acceptable for all objectives. When an evolutionary algorithm is used
in to search for such solutions, it is referred to as evolutionary multi-
objective optimization.

4.4. RULES AND REPRESENTATIONS 108

If only a single objective is being considered, the evaluation function
will produce a single scalar value, and the function is called a scalar val-
ued function. If multiple objectives are being considered, the evaluation
function is a composite function consisting of a list of separate objec-
tive functions, one for each objective. The evaluation of this composite
function results in a list of scalar values called the objective vector. The
evaluation function is referred to as a vector valued function.

Evolutionary algorithms require the objective vector to be trans-
formed into a single number, referred to as scalarization. A distinction
has been made between the evaluation function and the fitness calcu-
lation (see section 4.3.1 on page 94). In the context of multi-objective
optimization, the evaluation function is a vector valued function, and
fitness calculation is considered to consist of the process of scalarization
of this vector.

The scalarization of the objective vector can be performed either
within the evaluation step or the selection step. One option is to nu-
merically combine the objective functions into a single evaluation func-
tion. However, different objectives are often non-commensurate: non-
commensurate objectives measure fundamentally different qualities that
cannot be meaningfully compared or combined. This has led to the de-
velopment of alternative scalarization techniques that rank populations
of solutions by comparing how solutions perform for each objective.

One commonly used approach is the Pareto-ranking method. With
this method, one solution is said to dominate another solution if it per-
forms better for one or more objectives, and performs worse for none. If
a particular solution cannot be dominated, then it is described as being
Pareto-optimal. A solution is Pareto-optimal is it is impossible to change
it in such a way that all objectives are either improved or stay the same.
Alternatively, Pareto-optimal solutions are solutions where improvement
in one objective will always lead to degradation in another objective.
In nearly all cases, multiple solutions will exist that are Pareto-optimal.
This set of solutions is called the Pareto-optimal set. The plot of the
objective functions whose vectors are in the Pareto-optimal set is called
the Pareto-front. Multi-objective optimization methods often present the
user with a range of alternative Pareto-optimal solutions to choose from.

Selection rules

For the selection step, the canonical genetic algorithms use proportional
selection, where the probability of selection is proportional to the fitness
of the individual9. A common method for implementing this form of
selection is roulette wheel sampling, whereby each individual is assigned
a slice of a roulette wheel, the size of the slice being proportional to the
individual’s fitness. On each spin of the roulette wheel, the individual
under the wheel’s marker is placed in the intermediate population.

9Holland’s original genetic algorithm actually suggested only picking one parent
according to fitness. If another parent was required, then it was picked at random.

109 CHAPTER 4. EVOLUTIONARY COMPUTATION

Researchers have experimented with a variety of other selection meth-
ods. In particular, researchers have found that the selection methods pro-
vides a way to affect the balance between exploration and exploitation.
Three other common approaches are rank based selection, tournament
selection and Boltzmann selection (Goldberg and Deb, 1991; Bäck, 1994;
Hancock, 1995).

• Rank based selection was first proposed for genetic algorithms by
Baker (1985). Rank based selection orders all the individuals in
the population according to their fitnesses and then uses their rank
to calculate their selection probabilities. Two ways of making this
calculation are linear ranking and exponential ranking (Hancock,
1995). A new main population can then be created in a similar way
to proportional selection, by repeatedly selecting individuals using
roulette wheel sampling.

• Tournament selection extracts a random sample of individuals from
the population and then selects an individual from this sample. A
new main population is created by repeatedly extracting random
samples and selecting individuals. In some case, the fittest indi-
vidual in the sample is always selected. In other cases, the fittest
individual is selected with some predefined probability (not related
to its fitness), thereby allowing less fit individuals a chance of se-
lection. This method is easy to implement and is computationally
efficient. In addition, the selective pressure can be easily controlled
by increasing or decreasing the size of the sample, or by adjust-
ing the probability parameter. An analysis of this approach was
presented by Goldberg and Deb (1991).

• Boltzmann selection creates the new population using roulette wheel
sampling in the normal way. However, Boltzmann selection at-
tempts to vary the selective pressure as evolution progresses. A
‘temperature’ variable controls the rate of selection according to a
pre-set schedule, with lower temperatures resulting in higher selec-
tion pressure. The temperature starts out high, thereby ensuring
that even individuals with low fitness are selected. As the temper-
ature is lowered, the selection pressure is increased and as a result
only the fitter individuals are selected. For example, see Goldberg
(1990); de la Maza and Tidor (1993).

Tournament and rank based selection approaches discard information
about the magnitude of the differences between fitness values. As a
result, these approaches may avoid two key problems associated with
proportional selection. First, they may avoid stagnation due to lack
of selective pressure when individuals all have similar fitnesses. Second,
they may avoid premature convergence due to excessive selective pressure
when a ‘super’ individual with unusually high fitness is created (Whitley,
1989).

4.5. SUMMARY 110

4.5 Summary

This chapter has given an overview of the field of evolutionary computa-
tion. The main points are as follows:

• Two evolutionary architectures are the general synchronous evo-
lutionary architecture and the general asynchronous evolutionary
architecture. In both cases, a centralised control structure is used,
whereby a cyclical process invokes and applies the evolution steps to
individuals in the population. With the synchronous architecture,
two populations are maintained and the evolution steps are used
to repeatedly replace these populations. With the asynchronous
architecture, a single population is maintained and the evolution
steps are used to repeatedly replace individuals in the population
with new individuals. The majority of evolutionary algorithms are
based on the synchronous architecture.

• Genetic algorithms are the most common type of evolutionary al-
gorithm. Other common evolutionary algorithms include evolu-
tion strategies, evolutionary programming, and genetic program-
ming. Each type of algorithm can be described using the general
synchronous architecture, thereby highlighting the differences and
similarities between these algorithms.

• The evolution steps require rules and representations that define
how individuals in the population should be processed. A wide
variety of rules and representations exist. For real world prob-
lems, there is little theory to guide the researcher, and as a result
researchers have experimented with many different types and com-
binations of rules and representations.

Chapter 5

Evolutionary design

Contents

5.1 Introduction 111

5.2 GADO . 113

5.2.1 Overview . 113

5.2.2 Demonstrations 117

5.3 GS . 118

5.3.1 Overview . 118

5.3.2 Demonstrations 120

5.4 GADES . 122

5.4.1 Overview . 122

5.4.2 Demonstrations 125

5.5 Concept-seeding 126

5.5.1 Overview . 126

5.5.2 Demonstrations 130

5.6 Epigenetic design 134

5.6.1 Overview . 134

5.6.2 Demonstrations 136

5.7 Summary . 140

5.1 Introduction

This chapter consists of five sections, each of which describes a differ-
ent evolutionary design system or approach. In each case, certain key
features are highlighted which are relevant to the proposed architecture
described in chapter 7.

In chapter 1, two evolutionary design approaches were described as
parametric evolutionary design and generative evolutionary design. The

111

5.1. INTRODUCTION 112

first two systems discussed in this chapter are parametric evolutionary
systems, while the last three are generative evolutionary systems and
approaches.

• In section 5.2, a parametric evolutionary design system developed
by Khaled Rasheed is described, called the Genetic Algorithm for
Design Optimization (GADO). This is an optimization system for
use in engineering design. The key feature of this system is its novel
architecture specifically designed for situations where the evalua-
tion step is complex.

• In section 5.3, a parametric evolutionary design system developed
by Louisa Caldas is described, called the Generative System(GS).
GS has been used to optimise aspects of building designs, and in
particular has been proposed as a method for evolving designs for
low-energy buildings. The key feature of this architecture is the
integration of an existing simulation application called DOE-2.

• In section 5.4, a generative evolutionary design system developed
by Peter Bentley is described, called Genetic Algorithm Designer
(GADES). This system aims to be highly generic, and Bentley ar-
gues that it can be used in a wide variety of design domains. For
this system, the key feature is the overall architecture, which pro-
vides a clear example of a generative evolutionary design system.
It also highlights certain problems and weaknesses associated with
creating a highly generic system.

• In section 5.5, a generative evolutionary design approach developed
by John Frazer is described, called concept-seeding. In this case,
the key feature of the concept-seeding approach is that it suggests
a knowledge-rich approach to generating designs. This offers an
alternative to the generic approach explored by Bentley in GADES.
A prototype system using concept-seeding is also described.

• In section 5.6, another generative design approach developed by
John Frazer is described, referred to here as epigenetic design. The
key feature of this approach is that it offers an environmentally sen-
sitive way of generating designs, whereby the designs that are gen-
erated differ depending on the environment within which they are
generated. This generative method was developed independently
of any evolutionary systems, but may be used in such systems in
order to implement the development step.

113 CHAPTER 5. EVOLUTIONARY DESIGN

5.2 GADO

5.2.1 Overview

Introduction

Rasheed (1998) has developed a parametric evolutionary design system,
called the Genetic Algorithm for Design Optimization (GADO), for use
in engineering design. GADO was briefly described in section 4.2.2 on
page 88. The systems has an architecture with a number of novel fea-
tures designed to increase its efficiency for design engineering problems,
particularly where the evaluation step may involve computationally ex-
pensive simulation or analysis routines. It uses a number of new types
of rules and search control strategies and has demonstrated a great deal
of robustness and efficiency when compared with other systems.

Evolutionary algorithm

GADO uses a steady-state evolution mode, with individuals being added
to the population one at a time. Rasheed and Davison (1999) developed a
parallel version of GADO. Global parallelism was used where one master
processor executes the main evolutionary process — including the repro-
duction and selection steps — and multiple slave processors perform the
evaluation step.

Since evaluations may be complex and may involve computationally
expensive simulations of design models, this approach was seen to po-
tentially reduce the execution time by a significant factor. However,
the steady-state evolution mode used by GADO is less susceptible to
parallelization. When a generational evolution mode is used, the whole
population must be evaluated each generation. As a result each slave
processor can be assigned a sub-set of the population to evaluate. With
a steady-state evolution mode, only one individual is created each gen-
eration, and as a result only one individual needs to be evaluated.

In order to allow GADO to be parallelised, the steady-state evolu-
tion mode had to be modified to allow more than one individual to be
evaluated at a time. Rasheed and Davison (1999) therefore propose an
algorithm whereby a new individual can be created even before the eval-
uation of the previous individual has been completed.

Slave processors are controlled by the master processor and wait to
be sent a design model to be evaluate. The master processor continu-
ously monitors all its slave processors. Each time a slave has completed
evaluating an individual, the master will take two actions irrespective
of the state of the other slaves. First, it will add the individual with
its evaluation score to the population. Then, it will select two parent
individuals from the population, create a new individual and send it to
the idle slave for evaluation. This means that the slave processors will
evaluate multiple new individuals in parallel.

This results in a more complex type of steady-state evolution mode

5.2. GADO 114

where, at any one point in time, a significant number of new individuals
will have been created but not yet added to the population. The num-
ber of such new individuals is dependent on the number of slaves being
used. (The number of slaves may be larger than the population size,
in which case the number of new individuals under evaluation would be
larger than the population.) For each individual, there is a delay between
being created through reproduction and being available for reproduction
as a parent. The size of this delay will depend on the slave processor
performing the evaluation. Furthermore, in a heterogeneous computing
environment — where slaves may have different processor speeds and
memories — the size of the delay will vary from one slave to the next.
This results in evaluated individuals being added to the population in a
different order form the order in which they were created.

The algorithm used by GADO can be described according to the
five steps of the general asynchronous evolutionary architecture1 (See
figure 4.5 on page 90).

• The selection step changes its behaviour as evolution progresses.
The maximum number of generations is specified at the start of
the evolutionary process. For the first 75% of generations, the
selection step uses rank based selection, which is seen as promoting
exploration and as a way of avoiding premature convergence. For
the last 25% of generations, a more greedy form of selection is used
in order to promote exploitation in the final stages of search.

• The reproduction step creates a single new individual each gener-
ation using a number of crossover and mutation operators. Some
operators have been specifically developed for GADO and change
their behaviour as evolution progresses.

• The evaluation step performs a simple simulation in order to calcu-
late the fitness of each individual. This calculation may include a
penalty function that reduces the fitness of individuals that violate
certain constraints.

• The development step is not used.

• The survival step selects a single individual in the main population
to be deleted using a crowding technique that takes into account
both the fitnesses of the individuals in the population, and the
similarity of the individuals in the population.

Reproduction step

Each individual in the population represents a parametric description of
an artefact, where all parameters have continuous intervals. The geno-

1The general architecture can be used to conceptually describe how GADO func-
tions, but it may not reflect how GADO was actually implemented.

115 CHAPTER 5. EVOLUTIONARY DESIGN

type representation uses a floating point representation, which is seen as
being superior to a binary representation.

The operators used in the reproduction step include five crossover
operators and three mutation operators. For the crossover operators,
two are standard operators: point crossover and random crossover. The
other three operators are novel and have been specifically designed for the
types of optimization problems considered by GADO. All three operators
consider a genotype of an individual as representing a point in the mul-
tidimensional genotype search space. These operators then create new
child points by performing geometric operations on the parent points.
Of the three mutation operators, two are novel and one is the standard
non-uniform mutation operator. The reproduction step will randomly
select one of the crossover operators and one mutation operator, with
a fixed probability of selection being assigned to each operator. These
operators will then be used to create a new genotype.

Evaluation step

GADO also incorporates a technique that minimises the number of evalu-
ations that are necessary by preventing individuals being evaluated that
are similar to previously evaluated individuals with low fitness scores.
This is performed by a screening module.

When a new individual has been created through reproduction, prior
to evaluation the screening module will decide whether it is worthwhile
evaluating it. The screening module considers the group of individuals
in the population that are most similar to the new individual. If at least
one of these neighbours has a fitness score higher than some threshold,
then it is evaluated; otherwise it is discarded. The size of the group and
the fitness threshold are parameters set at the start of the evolutionary
process. The similarity of two individuals is measured using a distance
metric that considers the differences at a genotypic level.

In order to ensure that the evolutionary process has had a chance to
fully explore the search space, this module is only activated after the first
25% of generations have been processed.

Diversity maintenance

For problems that require complex and computationally expensive eval-
uation processes, the steady-state evolution mode is argued to perform
better than the generational mode. This is because the evolution mode
retains all the best individuals found during the evolutionary process and
imposes a higher selection pressure. However, due to the increased selec-
tive pressure, premature convergence is identified as being particularly
problematic. An important consideration is the maintenance of diversity
in the population, particularly in the early stages of the evolutionary
process. This is referred to as diversity maintenance.

The diversity maintenance module maintains diversity in two ways:
first, it discards individuals created by the reproduction step that are

5.2. GADO 116

Figure 5.1: Optimization of supersonic aircraft

similar to existing individuals in the population. Second, if a severe loss
of diversity is detected, this module will attempt to restore diversity by
rebuilding the population using previously evaluated individuals.

In order to decide whether to discard a new individual, the diversity
maintenance module finds its closest neighbour in the population using
the distance metric. If the distance to the closest neighbour is under
some threshold — referred to as the rejection radius — then the new
individual is rejected. The rejection threshold is gradually decreased as
evolution progresses, thereby allowing the process to converge towards
the global optimum near the end of the search.

In order to decide whether to rebuild the population, the diversity
maintenance module calculates the average distance between individuals
in the population. If this average distance is below a certain threshold,the
population is rebuilt. The rebuilding process discards all the individuals
in the population except the best one and then adds previously evolved
individuals to the population, with preference going to those individuals
that have both a high fitness score and that are most dissimilar to the
retained fittest individual.

117 CHAPTER 5. EVOLUTIONARY DESIGN

5.2.2 Demonstrations

Supersonic Transport Aircraft Design

Application areas discussed in the context of GADO include the opti-
mization of aircrafts and missiles. Rasheed and Davison (1999) describe
the results from a series of experiments using GADO to optimise a sim-
plified design for a supersonic transport aircraft. Figure 5.1 on the facing
page shows certain parameters for the design of a supersonic aircraft be-
ing optimised by GADO.

Random populations were created, with each population containing
120 individuals. Each population was then evolved for 12,0000 iterations.
In order to explore the affect of using different numbers of slaves, these
populations were evolved using various numbers of slaves. The maximum
number of slaves used was 100.

In addition, two slightly different evolution modes were tested. The
first evolution mode is the approach described above: individuals may
be evaluated at different speeds and may be added to the population in
a different order to the order in which they were created. This mode
is advantageous when using heterogeneous computing resources, since
processor speeds and memory specifications of slaves are likely to vary.
They refer to this type of evolution mode as random return. However,
the affect that this would have on the evolutionary process was uncertain.
With the second evolution mode, individuals were forced to be added to
the population in the same order as they were created. This evolution
mode they refer to as ordered return.

Conclusions from experiments

The type of parallelism used by GADO has the potential for close to linear
speedup in cases where the evaluation step is computationally expensive.
However, Rasheed and Davison (1999) suspected that the speedup that
could be achieved would be degrade when large number of slaves were
used and when randomised return evolution mode was used. They write:
“We were concerned that as the number of slave processors becomes
significantly large the deviation from the steady state model — in which
a new individual is generated after the previous one has already been
evaluated and possibly inserted into the GA population — may degrade
the performance and make it more like random search.”

The experiments that they performed showed that degradation of
the linear speedup was quite limited and was only noticeable when the
number of slaves was larger than the population size. In addition, ex-
periments using the random return evolution mode performed as well as
those using the ordered return mode.

5.3. GS 118

5.3 GS

5.3.1 Overview

Introduction

Caldas has developed a parametric evolutionary design system, called
the Generative System (GS), for use in architectural design, focusing on
aspects related to the environmental performance of buildings. GS gen-
erates populations of alternative solutions from a parametric model and
a set of rules and constraints defined by the designer. The system com-
bines a genetic algorithm with a complex building simulation application,
DOE-22 (Manual, 1993) used for performance evaluation.

The objective of developing GS is as a system to be used in the early
conceptual design phase in order to explore alternative design solutions.
In particular, it aims to assist designers in researching low-energy archi-
tecture solutions. Caldas and Norford (2001) write: “Solutions must not
be interpreted as definite or optimal answers, but as diagnoses of poten-
tial problems and as suggestions for further architectural explorations,
thereby building an innovative and promising interaction between archi-
tecture and computation.”

Evolutionary algorithm

Genetic algorithms are applied as a search procedure to look for opti-
mised design solutions in terms of thermal and lighting performance in a
building. The genotype representation consists of a standard fixed length
binary string, which is decoded into a set of values that are then applied
to the variables in the parametric model. The evaluation step then eval-
uates the designs in terms of lighting and thermal behaviour using the
DOE-2 application. The results from the simulations is then used as the
fitness for the design, with the GA aiming to minimise this value. The
GA searches for low-energy solutions to the problem under study.

A special type of genetic algorithm, called a micro-GA, is used. The
main difference between a canonical GA and a micro-GA is the size of the
population: while the former typically use population sizes of between
30 and 200 individuals, the latter use much smaller populations size, and
in this case the population of only five individuals is used.

Due to the small population size, micro-GA’s quickly converge to a
solution. Each time the algorithm converges, the evolutionary process is
restarted with a new random population except for the best individual
from the previous run, which is allowed to survive. During the evolu-
tionary process, many new random populations will be created, and as
a result it is argued that the size of the initial population can be greatly
reduced.

2DOE-2.1E c©, http://www.doe2.com/

119 CHAPTER 5. EVOLUTIONARY DESIGN

Evaluation step

DOE-2 is a widely used and accepted building energy analysis program
that can predict the energy use and cost for most types of buildings. It
also performs a simplified form of lighting analysis, based on the day-
light factor method. DOE-2 uses a description of the building layout,
constructions, usage, and conditioning systems (lighting, HVAC, etc.),
along with weather data, to perform an hourly simulation of the building
and to estimate energy consumption.

DOE-2 was chosen to be the simulation engine because it performs
both thermal and lighting calculations, and because it offers good accu-
racy for reasonable computation times. In addition, it includes a vast
library of construction materials, glazing types, shading devices, HVAC
systems, operation modes, control strategies, and so forth. However, Cal-
das identifies two drawbacks with DOE-2. First, it is a single-node system
and cannot predict variations in air temperature at different points in a
space. As a result, it cannot compute air movement and air flow patterns.
Second, it cannot perform thermal comfort predictions.

Before evolution can start, one of the key tasks for the designer is to
create an input file that describes the building and its mechanical and
electrical systems. The design needs to be described using the Building
Description Language (BDL) used by DOE-2. BDL is flexible enough to
describe most type of building geometries, except curved surfaces, which
have to be approximated by a number of planes. Surfaces such as walls,
roofs and floors can have any orientation, and be tilted in any direction.
BDL also allows light sensors to be placed in a space where light levels
will be calculated.

The BDL file must include a set of codes that represent the variables
that are to be evolved by the GA. Once the evolutionary process has
started, the evaluation step in the GA makes a call to DOE-2 each time
an individual needs to be evaluated. This call extracts the values encoded
in the genotype and inserts them into the BDL file. Any dependent
variables not directly encoded in the genotype must be calculated by the
evaluation step. DOE-2 then runs the thermal and lighting simulation
and returns the annual energy consumption, which then represents the
fitness of the design.

Caldas (2001, p. 52) suggests that in future, other applications capa-
ble of performing Computational Fluid Dynamics (CFD), thermal com-
fort predictions (such as EnergyPlus3 c©), and accurate lighting simula-
tions (such as Radiance4 c©) could also used. However, as Caldas states,
“at the present time, and considering the several hundred evaluations a
Generative System performs, including these types of programs would be
infeasible, for in a standard personal computer one might have to wait
unreasonable amounts of time to obtain results for a moderately complex
building.”

3http://www.eere.energy.gov/buildings/energyplus/
4http://radsite.lbl.gov/radiance/

5.3. GS 120

Maver (2000) gives a brief review of important developments in build-
ing analysis and simulation. Issues relating to integration and interoper-
ability of systems have been discussed by Bazjanac and Crawley (1997);
Hensen (2002); van Treeck et al. (2003); Shea (2004).

5.3.2 Demonstrations

Optimization of facade design

One of the main demonstrations of GS has been the optimization of the
sizes and positioning of window openings in a facade, and may in addition
also optimise the sizes of overhangs that provide shading for windows.
In this case, building geometry, spatial organization, and construction
materials are left unchanged. A single objective was considered, consist-
ing of reducing the annual energy consumption, which incorporates both
space conditioning and lighting.

One of the building blocks — Tower H — of Alvaro Siza’s School of
Architecture in Oporto was used as a test case for demonstration. Tower
H was chosen due to the rich spatial configurations and variety of archi-
tectural light sources. Facades include windows of different proportions
and sizes facing distinct orientations, and in some cases have overhangs
that provide shade. In addition, the top floor includes roof lights. The
tower houses mainly studio teaching rooms, and the control of natural
light is an important consideration.

For each space, two light sensors were defined and desired illuminance
values were specified according to the type of occupation. The artificial
lighting system was assumed to be continuously dimmable, thereby al-
lowing for the quantification of savings in artificial lighting due to natural
daylight. The DOE-2 application calculates the annual energy consump-
tion of the building, taking into account the climate for that geographical
location.

By studying the original designs by Siza, Caldas derived a set of
rules relating to the composition and proportion of the openings. These
rules were then used define a set of windows with variable dimensions,
bounded by maximum and minimum values. Other constraints related
to the composition and proportion of the windows.

Figure 5.2 on the next page shows a set of alternative facades evolved
by the system. These facades were evolved for the climate in Oporto. As
an experiment, the system was also used to evolve facades for the same
building with climate data for Phoenix, Arizona and for Chicago, Illionis.
In the Phoenix climate, cooling is dominant, while in the Chicago climate,
heating is dominant. These experiments were performed as an academic
exercise to compare the results from the system. Caldas concludes that
the range of solutions developed by the system for different geographical
locations show that the system is able to adapt the design to the local
climate.

121 CHAPTER 5. EVOLUTIONARY DESIGN

Figure 5.2: Alternative facade solutions generated by GS for one block
of the School of Architecture in Oporto by Álvaro Siza. From (Caldas
and Norford, 2001).

Optimization of building geometry

In a number of other demonstrations (Caldas, 2002), the building geom-
etry has also been allowed to change in a highly restricted way. In these
cases a parametric model of the building is defined that predefines all
adjacencies between spaces. In one example, the model specifies a simple
spatial topology consisting of two floors, with four spaces on each floor
arranged in a square grid. On the first floor, the four spaces can vary in
their length and width, but the height is constrained to be the same. On
the second floor, the spaces may also have variable heights. In addition,
the roof may also tilt. Walls could have windows of variable height that
ran the full length of the wall. This resulted in a variety of building forms
being generated and evolved. Figure 5.3 on the following page shows a
selection of building forms evolved by GS.

In this case, the building forms that were generated had different vol-
umes. Since buildings with small volumes tend to consume less energy,
the volume or area of the building has to be included in the evalua-
tion process. Caldas (2002) experimented with two approaches: first,
the buildings with small area could be penalised by reducing their eval-
uation score. Second, instead of calculating total energy consumption,
the energy per unit area could be calculated. Caldas concludes that the
second approach is preferable.

5.4. GADES 122

Figure 5.3: Alternative building forms generated by GS. Top row is
viewed from the south west, and the bottom row is viewed from the
north-east. From (Caldas, 2001, p. 256).

Multi-criteria optimization

Pareto multi-criteria optimization techniques have also been used (Cal-
das, 2001; Caldas and Norford, 2004). The two conflicting objective
functions considered were maximising daylighting use and minimising
energy consumption for conditioning the building. These experiments
were done using the Chicago climate data, as heating and daylight are
elements that conflict. Large openings result in more daylight but also
increased heat loss. The system was used to evolve design that reflected
the best trade-off between these two conflicting objectives.

GS generated a uniformly sampled, continuous Pareto front, from
which a number of designs were selected for visualization. The designs
shown in figure 5.3 are a set of such Pareto-optimal designs. The first
design represents the best building shape in terms of heating, and the
last design is the best building shape in terms of lighting. Intermediate
design represents varying trade-offs between heating and lighting.

The experiments performed by Caldas show that the system could
simultaneously consider multiple objectives and could take into account
interactions between different elements in the building design. The design
of a specific element is dependent on its integrated role in the design with
respect to the objectives under consideration.

5.4 GADES

5.4.1 Overview

Introduction

Bentley (1996, 1999a) has developed a generative evolutionary design
system, called GADES (Genetic Algorithm Designer), that he claims is
a generic system that can be used for many different types of design.
The system evolves designs represented as solid models using a modified

123 CHAPTER 5. EVOLUTIONARY DESIGN

genetic algorithm that incorporates specialised genotype representation,
a specialised design model representation, and a complex generative pro-
cess that creates models from genotypes.

Bentley (1999a) claims that GADES can easily be configured to evolve
designs for a wide variety of design problems and that — once properly
configured — it can consistently evolve good designs without human
intervention. (These claims are seen to be highly optimistic, and will be
discussed in more detail in chapter 7.)

Bentley emphasises the generic nature of the system, claiming that
the system is able to evolve designs ‘from scratch’. The term from scratch
is used to indicate that little design knowledge needs to be provided.
Bentley claims that the default configuration for the system is able to deal
automatically with various complex issues such as multiple objectives and
design constraints. In particular, the main input required from the user
is an initialization file that specifies which evaluation modules should be
used in order to evaluate designs.

Evolutionary algorithm

The evolutionary algorithm used by GADES can be described using the
general synchronous architecture shown in figure 4.1 on page 81.

• The survival step allows a portion of the individuals in the main
population to survive, which are added to the intermediate popu-
lation. An elitist replacement strategy is used5, whereby the fittest
individuals are allowed to survive.

• The reproduction step creates new individuals by randomly select-
ing parents form the fittest 80% of individuals in the main pop-
ulation, and performing crossover and mutation using specialised
operators. The new individuals are added to the intermediate pop-
ulation. New individuals are created until its size is equal to the
main population.

• The development step creates design models for the new individuals
in the intermediate population using a complex generative process6.
This process uses information contained in the genotypes to create
a solid model of a design.

• The evaluation step evaluates the new individuals for multiple ob-
jectives. A set of custom-written evaluation modules are used that
independently evaluate different objectives. Modules were devel-
oped that could evaluate design objectives related to size, mass,
surface area, stability and aerodynamics.

5Bentley (1996, p. 120) describes the replacement strategy as a steady-state re-
placement strategy. Since a large number of individuals are replaced every generation,
this strategy is more accurately described as an elitist strategy.

6Bentley refers to the generative process as an embryogeny.

5.4. GADES 124

Figure 5.4: Examples of clipped stretched cubes used in the spatial par-
titioning representation in GADES. From (Bentley, 1996, p. 56)

• The selection step then aggregates these evaluations into a single
fitness value, using a specially developed technique called Sum of
Weighted Global Ratios (SWGR). This technique converts the eval-
uation score for each objective into a ratio, using the best and worst
evaluations for all generations. These ratios for the different objec-
tives are then weighted and summed to provide a single overall
fitness value for each individual. The weights reflect the relative
importance of each objective, and must be provided by the user.
Once fitness values have been calculated for all individuals in the
population, the selection step copies all individuals into the main
population.

Developmental step

The generative process used in the developmental step must be able to
generate solid models that vary significantly from one another. A variety
of representational schemes were explored for the solid models, focusing
on the number of parameters required in order to define the models.
Bentley argues that, for evolutionary design, representations that require
few parameters are preferable since this reduces the size of search space.
For the final system, a low-parameter representation using a specialised
spatial-partitioning representation was developed that defines forms by
assembling primitive solids.

The primitives from which solid models are created are referred to
as a clipped stretched cubes or blocks. Figure 5.4 shows example of these
blocks. A block consist of a solid cube that can be stretched to form an
orthogonal solid of any size, and that can optionally be clipped along one
plane. The clipping plane will in effect slice of part of the solid. This
allows each block to have a clipped face that is not orthogonal, thereby
allowing surfaces at non-orthogonal orientations to be approximated. An
important restriction is that the blocks in a solid model must all be non-
overlapping.

125 CHAPTER 5. EVOLUTIONARY DESIGN

The generative process creates forms by placing blocks in space rela-
tive to the global origin. The position and size of each block is controlled
by nine parameters that are encoded in the genotype. The genotype uses
a hierarchical representation consisting of blocks and genes that encode
the parameters. Each genotype consists of a variable number of blocks,
and each block consists of nine genes. A gene is represented as a 16
bit string that encodes one of the parameters used to define the posi-
tion and size of a block. The generative process generates a solid model
by simply decoding the parameters in the genotype and placing blocks
independently from one another.

Since the blocks are placed independently from one another, they
may overlap. The generative process uses a repair procedure in order to
correct such overlaps. For each pair of overlapping blocks, the process
resolved the illegal overlap by reducing the size of the offending clipped
stretched cubes until the overlap disappears.

Reproduction step

The reproduction step uses specialised mutation and crossover operators
in order to create new genotypes.

• The mutation operator adds or deletes blocks in the genotype. In
order to add a block, the operator splits a randomly chosen block
into two. In order to delete a block, it simply randomly selects a
block and deletes it.

• The crossover operator is similar to the standard one point crossover
operator. However, the operator must ensure that the genotype
produced by crossover has a valid hierarchical structure. The op-
erator therefore searches the parent genotypes for crossover points
that will result in valid child genotypes.

5.4.2 Demonstrations

Generic approach

Bentley argues that GADES can be used in many different domains, to
solve many different types of problem. Bentley (1999a) writes, “Most evo-
lutionary design systems do not follow the example provided by natural
evolution... Natural evolution... uses the same genetic machinery to gen-
erate everything from bacteria to blue whales (Dawkins, 1986). In order
to explore the advantages and disadvantages of this highly generalised
natural evolutionary approach, GADES makes no distinction between
stages of design and is not limited to a single type of design. For every
type of problem presented, the system simply evolves the form of new
designs from random blobs to optimised shapes.” He then demonstrates
how GADES has been used to evolve a variety of designs, ‘from coffee
tables to hospital layouts’.

5.5. CONCEPT-SEEDING 126

Figure 5.5: Examples of sports car designs at different stages of evolution.
From (Bentley, 1996, p. 205)

Example of designs generated by GADES

Bentley (1996, 1999a) has tested GADES for sixteen different design
problems from different fields. These include the evolution of tables, sets
of steps, heat-sinks, optical prisms, streamlined designs (train fronts,
boat bowls, boat hulls, saloon cars, sports cars) and two-dimensional
floor plans for hospital layouts.

Figure 5.5 shows four sports car designs at different stages of evolu-
tion: top left represents a random design, top-right is the best design
after 20 generations, bottom-left is the best design after 200 generations,
and bottom-right is the best final design after further evolving the rear
of the car.

Figure 5.6 on the next page shows four table designs evolved by the
system.

5.5 Concept-seeding

5.5.1 Overview

Introduction

Frazer (1995b) has proposed a generative evolutionary design approach
that differs fundamentally from previous approaches in terms of the role
of the designer. Many researchers in the generative evolutionary design
field first focused on evolutionary systems and later enhanced these sys-
tems with generative capabilities. Frazer followed an opposite path; he
first focused on generative systems (Frazer, 1974), and then enhanced

127 CHAPTER 5. EVOLUTIONARY DESIGN

Figure 5.6: Examples of table designs. From (Bentley, 1996, p. 173)

these systems with evolutionary capabilities (Frazer, 1995b). The gener-
ative approach developed by Frazer first requires the designer to capture
and codify a set of design ideas. These encoded design ideas can then
be used by a computer program to generate alternative designs that all
embody the design ideas.

This approach enables “the designer to crystallise a generalised de-
sign concept which embraces formal, structural, constructional, construc-
tional, aesthetic and other considerations. The program then allows this
concept to be manipulated into specific building forms in response to
a particular problem” (Frazer and Connor, 1979). This approach was
described as concept-seeding, with the design ideas being captured as a
seed.

Generative concept-seeding

A key idea embedded in the concept-seeding approach is that designers
must necessarily be an active participant in the software creation process.
Whether designers are actually programmers, or whether they collabo-
rates with programmers, these designers must define the design ideas
that will be encoded as generative rules. Furthermore, it is suggested
that the process of creating rules and generating forms will lead to ideas
for new types of rules, resulting in positive creative feedback between the
system and the designer. The role of the designer is not limited to simply
specifying design rules, which a programmer then implements.

The importance of design ideas in the design process has been dis-
cussed in chapter 2. Frazer refers to a similar idea discussed by Sullivan
(1967), where he described the development of a ‘germ’. Frazer starts his
book, An Evolutionary Architecture with a quote from Louis Sullivan:

5.5. CONCEPT-SEEDING 128

“... a typical seed with two cotyledons. The cotyledons are
specialised rudimentary leaves containing a supply of nourish-
ment sufficient for the initial stage in the development of the
germ. The germ is the real thing; the seat of identity. In
its delicate mechanism lies the will to power: the function of
which is to seek and eventually to find its full expression in
form. The seat of power and the will to live constitute the
simple working idea upon which all that follows is based...”
(Sullivan, 1967).

In the concept-seeding approach, the seed does not contain the gen-
erative rules. Instead, this approach requires two types of information to
be encoded: first, generative rules need to be codified that can develop
a concept-seed into a design; second, a concept-seed needs to be codified
that captures a set of design ideas. These are then used by the generative
program to generate a design in response to the design environment.

The concept-seeding approach is, in itself, not cyclical. The gener-
ative program creates a single design from a single seed in response to
the design environment. However, the assumption is that the designer
will explore a wide range of design possibilities by making small genera-
tive modifications to either the concept-seed or the generative rules. The
results is a cyclical process guided by the designer.

Evolutionary concept-seeding

The concept-seeding approach was originally developed as a generative
rather than an evolutionary approach. The system generates a single de-
sign proposal from a single seed in response to the design environment.
However, early on, Frazer hinted at possible development of some kind
of automated procedures that were able to improve the forms being gen-
erated based on previous experience. Frazer (1974) writes: “Alternative
strategies for cultivating the seed are automatically evaluated and the
program adjusts itself on a simple heuristic basis to adopt those tactics
which have proved most successful in previous attempts”. This eventu-
ally led the idea of embedding the generative approach in a computational
evolutionary system that was able to evolve alternative seeds.

The parametric and the generative evolutionary design methods were
discussed in chapter 1, and shown in figures 1.1 and 1.2 on page 12.

The generative concept-seeding approach may be combined with the
generative evolutionary approach, resulting in a new type of design method
that integrates the advantages of both previous methods. Such an ap-
proach was first proposed in (Frazer, 1990), and was further developed
in (Frazer, 1995b). This is referred to here as the evolutionary concept-
seeding method. Figure 5.7 on the next page summarises the main stages
of this method.

• The generative concept-seeding method allows designs to be gen-
erated that embody particular design ideas. However, the method

129 CHAPTER 5. EVOLUTIONARY DESIGN

Figure 5.7: The evolutionary concept-seeding design method.

does not use an automated exploration or feedback system, and as
a result it is up to the designer to discover the generative modifi-
cations that produce the most suitable design.

• The generative evolutionary method allows designs to be evolved
that are adapted to their environment in complex ways. However,
the designs do not embody any design ideas and the designer has
limited control over the types of designs that are created.

The evolutionary concept-seeding method synthesises these two pre-
vious methods, thereby allowing designs to be evolved that — as well
as being adapted to their environment — also embody particular design
ideas.

Frazer (1995b, p. 65) summarises this method as follows: “The evolu-
tionary model requires an architectural concept to be described in a form
of ‘genetic code’. This code is mutated and developed by a computer pro-
gram into a series of models in response to a simulated environment. The
models are then evaluated in that environment and the code of successful
model used to reiterate the cycle until a particular stage of development
is selected for prototyping in the real world.”

Figure 5.7 shows the evolutionary concept-seeding method. The method
includes three stages: codifying generative concepts, codifying design
ideas and evolving designs. First, generation and evaluation rules are
defined. In this case though, the generation rules must generate designs
from the seed rather than from the genotypes. Second, the concept-seed
is defined that codifies a set of design ideas. Third, the design alterna-
tives are evolved in response to the design environment. This last stage
requires a generative evolutionary system that includes concept-seeding.

The genotypes encode the generative modifications. These modifica-
tions will make small changes either to the concept-seed itself or to the

5.5. CONCEPT-SEEDING 130

Figure 5.8: The two basic structural units of the Reptile System.

generative rules that transform the seed. These generative modifications
result in different designs being produced and evaluated. The generative
modifications that result in designs with the highest fitness scores are
selected. The genetic operators are then used to create a new popula-
tion of generative modifications, which will be used to generate a new
population of designs, and so forth.

5.5.2 Demonstrations

Reptile system

The first attempt to realise a generative concept-seeding approach (with-
out evolution) was the development of a generative program to create
space frame enclosures. From 1966 onwards, Frazer (1974); Frazer and
Connor (1979) designed an alternative type of space frame system that he
referred to as the “Reptile System”. This space frame system was capa-
ble of creating a wide variety of enclosures from just two basic structural
units, shown in figure 5.8. These units could be connected together in
over three hundred different ways to form the skin of the enclosure7.

The generative Reptile program embodied a set of context-sensitive
rules that were based on the geometry of the two units and the various
ways that these units could be combined. This allowed the program to
take a seed enclosure and to increase its size by using the inbuilt rules
and by extrapolating from the existing structure. This could be done
with minimal human intervention.

Once a larger enclosure had been developed, it could be further ma-
nipulated in an interactive way by applying high-level commands de-
scribed by terms such as ‘stretch’ and ‘bend’. These commands would
not stretch and bend the individual units but would stretch and bend
the overall enclosure, inserting and deleting units as and where required.
In this way, enclosures with complex geometries could be created that
were guaranteed to be valid in both a formal and a constructional sense.

7Drawing a Reptile enclosure by hand (which Frazer refers to as ‘traditional T-
square design’) was tedious, and as a result Frazer developed a computer program. A
program was developed in 1967 to aid in the process of drawing the enclosures and
creating perspective views. (In 1967 the computer hardware was extremely limited
in terms of speed, memory, and graphical output capabilities. Much of the program-
ming effort focused on optimizing how these enclosures were stored and manipulated.)
However, the program was soon enhanced with additional features, and by 1971 a
generative program was developed that was able to automatically generate complete
Reptile enclosures.

131 CHAPTER 5. EVOLUTIONARY DESIGN

Figure 5.9: Enclosures growing from two different seeds

Figure 5.10: Plan of building generated from star seed

Generalization of the Reptile approach

Frazer generalised the approach developed with the Reptile program to
encompass more general-purpose systems of building construction. The
seed was conceptualised as a compact three-dimensional object that em-
bodied all the key configurations such as a corners or a changes in direc-
tion. The elements in the seed were not necessarily a building component
as was the case with the Reptile program, but were more usually assem-
blies of components. The seed may then be used in order to develop —
either interactively or automatically — designs for buildings that embody
the key configurations in the seed.

Once a designer has developed a particular seed, Frazer imagined
that the enclosure would be developed in two steps. In the first step, the
enclosure is — as far as possible — automatically generated in response
to quantifiable defined in the brief. In the second step, the user evaluates

5.5. CONCEPT-SEEDING 132

Figure 5.11: Output from evolutionary system using the evolutionary
concept-seeding method.

a series of solutions produced by the first step in terms of non-quantifiable
criteria such as aesthetic judgements.

First prototype system

Although Frazer (1995b) has demonstrated various techniques that could
be applicable in the evolutionary concept-seeding approach, no complete
implementation of an evolutionary system incorporating concept-seeding
was developed.

The first generative evolutionary design system8 that explicitly in-
corporated the idea of concept-seed was developed by Sun (2001), one
of Frazer’s Ph.D. students (Frazer et al., 1999). Sun developed an evo-
lutionary system to support product design, and tested the system for
designing mobile phones, remote controllers and other hand-held prod-
ucts. Figure 5.11 shows a family of mobile phones that were evolved
using her evolutionary system.

Rudiments and formatives

Sun (2001) decomposed the idea of a concept-seed into two new repre-
sentations, referred to as rudiments and formatives.

8Caldas (2001) discusses an approach to generating and evolving designs that
is similar to the concept-seeding approach. One of the key elements in her design
method (Caldas, 2001, p. 9) is a set of initial design rules, formulated by the architect,
that define elements, variables, constraints, compositional rules, and so forth. This
approach seems to have similarities to the concept-seeding approach developed by
Frazer. Caldas (2001, p. 41) cites the work of Frazer (1995b) as providing some of the
background for the ideas in her thesis. However, the systems implemented by Caldas
only incorporate design ideas in a highly simplistic form, primarily embedded in a
parametric model and constraints related to dimensional parameters. The systems
discussed by Caldas are not seen to incorporate the concept-seeding approach.

133 CHAPTER 5. EVOLUTIONARY DESIGN

• A rudiment is a type of sub-component in a design, built up from
geometric primitives consisting of simple solids and surfaces. A
rudiment will incorporate a set of parametrised features.

• The formative consists of a set of rudiments and a set of configu-
rational rules that define how the rudiments may be combined.

Both rudiments and formatives are seen to embody design knowledge.
In particular, a key area of design knowledge considered in this research
was knowledge about the manufacturability of the products.

Sun (2001, p. 52) writes: “A formative is an encapsulated potential
design solution, which defines a set of entities and relations, as well as the
generative rules involved during the generative process. A rudiment is a
composition element of the formative, which defines a set of entities and
related design knowledge. In the domain of product design, a potential
product design solution corresponds to a formative and it contains the
constitutional parts of a product structure, the relationship of these parts,
and the configuration rules to build the product embodiment.”

Frazer makes a distinction between the seed and the rules that develop
the seed into a design. With the Reptile program, Frazer demonstrated
the feasibility of using different seeds with the same set of rules. This
allows different design models to be generated by mutating the seed. Sun
(2001) has taken a slightly different approach. In her case, configurational
rules are encapsulated in the formative.

In the system developed by Sun, the designer must define two types
of information. First, a set of rudiments must be defined that consist
of primitive components with a set of parameterised features. For hand
held devices these may include a button, a screen, a piece of casing,
and so forth. Second, a set of configurational rules must be define that
constrain how the rudiments may be combined. For example, the rules
may specify a particular relationship between the button rudiment and
the casing component. Together, the rudiments and the rules constitute
the formative.

The evolutionary system then evolves both the configuration of rudi-
ments and the parameter values for the features associated with those
rudiments. The genotype must encode both the configurational informa-
tion and the parameter values. In order to achieve this, the genotype
uses a hierarchical variable length representation that mirrors the con-
figuration of the rudiments in the design. The first level of the hierarchy
encodes a list of rudiments; the second level encodes the features associ-
ated with these rudiments; and, at the third and final level encodes the
parameter values for each feature. The developmental step then uses a
generative process in order to generate design models by instantiating
the rudiments encoded in the genotype.

Integration with existing CAD application

Sun (2001) has developed a prototype evolutionary system. This system

5.6. EPIGENETIC DESIGN 134

has a database of rudiments, an interface for building up the formatives,
and an evolutionary system that enables designers to explore and evaluate
a large number of design solutions in an interactive manner.

This system is integrated with a CAD application in order to allow
different designs to be developed, evaluated and visualised. Initially,
AutoCAD9 c©was used and programs were written in AutoLisp c©(Sun
et al., 1999). The final system was integrated with MicroStation/J10

c©(Sun, 2001, p. 118–120) due to its sophisticated modelling capabil-
ities and programmability using MicroStation Basic, C and Java. By
integrating the evolutionary system with such a CAD modelling applica-
tion, the generative process in the developmental step can make use of
complex geometric functions. For example, MicroStation uses the Para-
solid modelling kernel, that includes extensive surface and solid modelling
functions.

5.6 Epigenetic design

5.6.1 Overview

The environment and the developmental step

The role of the environment in evolutionary design is usually restricted to
the evaluation step. In such a case, the developmental step will generate a
design based purely on the genetic information contained in the genotype.
The evaluation step then analyses and simulates the design within a
virtual environment. This environment will model significant aspects of
the physical environment in which the design will finally be used. This
role of the environment in the evaluation step is valid. However, research
by Frazer has repeatedly emphasised that environment may also play a
critical role in the developmental step. If the developmental step uses
a generative process, rather than a simple mapping process, then the
environment may affect the way a genotype is developed into a design
model.

Frazer (1995b, p. 65) writes: “In order to create a genetic description
it is first necessary to develop an architectural concept in a generic and
universal form capable of being expressed in a variety of structures and
spatial configurations in response to different environments”(emphasis
added). This statement includes two key ideas. First, the idea of cap-
turing an architectural concept — described as concept-seeding — has
been discussed above. The second key idea relates to the role of the
environment.

Frazer (1995b) describes generative processes that are affected by the
environment as epigenetic processes. With an epigenetic growth process,
the final form of the design model is partly influenced by genetic factors,
and partly by environmental factors. Epigenetic processes highlight the

9http://www.autodesk.com
10http://www.bentley.com

135 CHAPTER 5. EVOLUTIONARY DESIGN

fact that the genotype cannot be seen as a blueprint for a design, but
must instead be seen as a set of triggers that initiate a growth process
that is sensitive to its environment.

Epigenetic generative processes

A variety of generative processes created by Frazer and his researchers
developed forms in response to the environment. Solar geometry was
one area of particular focus. They also developed a variety of evolution
programs that manipulate abstract forms. Form is typically represented
and manipulated as cellular structures that inhabit an infinite three-
dimensional spatial grid. As a result, the grid can be used to represent
both the new form and existing forms that are part of the environmental
context. The grid also allows the substitution approach to be effectively
used to grow new structures, with genetic rules being used to add and re-
move cells. However, the genetic rules are sensitive to the environmental
context. This means that the growth process is affected by both internal
genetic factors and external environmental factors.

For example, in one program by Rastogi (Frazer, 1995b, p. 89), ab-
stract surfaces are generated that represent the interaction between an
evolving structure and the environmental context. Both the evolving
structure and the environmental context are represented in exactly the
same way, as structures constructed of spherical cells arranged in a cel-
lular grid. Frazer and Rastogi (1998) write: “These evolutionary models
exist entirely in the computer and comprise ‘seeds’ of coded descriptions
that can divide and multiply. A seed inhabits dataspace and its growth
depends on the environment and its own genetic code. Each growth of a
seed produces a change in the environment. Certain cells and cell clus-
ters, depending on their place in the data structure and relationship with
other cells, may prove to be more adapted to their new environment and
will survive while others will perish.”

Iso-space

Frazer (1992) has proposed a non-orthogonal cellular grid that is based
on the close packing of spheres in space as a way of representing both
structure an environment. This grid is described as isospatial, in that
each cell has neighbours that are all equidistant. This is not the case
with the orthogonal grid, where each cell has three type of neighbours:
six face neighbours, twelve edge neighbours, and eight vertex neighbours.
Frazer writes: “An alternative (and preferable) geometry uses the centr-
ers of close packing spheres (cubic faced-centred packing). This gives
each [cell] twelve neighbours of identical geometric conformation and
equal centre-to-centre distance. The reduction in number, equidistance
between centres and ease of identification in the database all provide
significant advantages for certain applications.”

Representing the evolving structure and the environment in the same
isospatial grid allows the evolving structures to easily interact with the

5.6. EPIGENETIC DESIGN 136

environment. In addition, cellular-automata based growth processes can
then be used to generate alternative structures. A number of generative
programs that use isospatial cellular automata have been developed by
Frazer and his students. In these cases the transition rules consisted of
an antecedent pattern that described the state of the centre cell and its
twelve neighbours, and the consequent pattern described the new state
of the centre cell. In total, this allows for 212 = 4096 rules.

Levels of adaptation

The environment may include both design constraints and the design con-
text. The generative process may then create designs that fulfil certain
constraints, and may also adapt to certain aspects of the design context.
The evolutionary concept-seeding method may be seen to incorporate a
number of different levels of design adaptation. These may be described
as concept-seed adaptation, generative adaptation and evolutionary adap-
tation.

• Concept-seed adaptation involves the designer adapting the concept-
seed to particular design tasks. The design ideas embedded in the
concept-seed will be adapted to certain types of design environ-
ments.

• Generative adaptation involves the concept-seed being developed
into a design model in a way that is sensitive to information about
the environment. This requires the environmental information to
be encoded in an appropriate format.

• Evolutionary adaptation involves the evolutionary system adapting
the population of designs to the encoded environment. In this case,
the evolutionary system does not attempt to adapt individual de-
signs, but adapts the population as a whole by favouring genotypes
that result in well adapted designs.

5.6.2 Demonstrations

The Interactivator

Frazer (1995b,c,a); Frazer et al. (1995b,a); Frazer and Rastogi (1998) and
his researchers developed a generative evolutionary system, known as the
Interactivator 11, that emphasised the role of the environment.

A precursor to this experiment was an experiment by Frazer and Gra-
ham (1994) where an evolutionary program was used to evolve cellular
automata transition rules that tended to generate complex structures. In
this case, an isospatial cellular automata was used to grow forms, with

11The author was a student at the Architectural Association and involved in devel-
oping the Interactivator together with Manit Rastogi and Peter Graham.

137 CHAPTER 5. EVOLUTIONARY DESIGN

more complex forms being allowed to survive. The forms being generated
consisted of a cellular structure of close packed spheres.

The Interactivator was part of a generative evolutionary experiment
launched to involve global participation in the evolution of a family of
abstract structures. The experiment was at the centre of the exhibition
entitled An Evolutionary Architecture. It was the work of Frazer, his
wife and their students at the Architectural Association, and the School
of Design and Communication at the University of Ulster.

The Interactivator evolves the transition rules for an isospatial cellular
automata. In this case, the genetic information is stored in chromosomes
rather than genotypes. A chromosome encodes a single transition rule.
Each generation, the developmental step uses a population of chromo-
somes — described as the dominant chromosome pool — to generate one
structure. The developmental step uses a cellular automata to simulate
growth by cellular division. Cellular structures are generated, where each
cell contains a copy of all the chromosomes. Growth starts from a single
cell, and this cell divides and multiplies, forming a complex cellular struc-
ture. Two types of form — cellular configurations of spherical cells and
organic ‘skinned’ forms — are generated representing different aspects of
the generative process.

Frazer writes: “As cellular division takes place, unstable cells are
generated. In the next generation this leftover material creates a space
of exclusion in the cellular space, which in turn interacts with the physical
environment to create a materialization of the model. Boundary layers
are identified in the unstable cells as part of their state information and
an optimised surface is generated to skin the structure. This material
continues to exist throughout the evolution of the model and will initially
affect the cellular growth of future generations.”

Local and global environment

The cellular growth process used by the Interactivator is an epigenetic
process in that it is influenced by the environment. Cell division is based
on two types of information: the chromosomes contained in the cell and
the environment outside the cell. This environment includes two types of
environment, referred to as the local environment and the global environ-
ment (Botsford, 1995): the local environment consisted of neighbouring
cells in the virtual space in which the cells were dividing; the global envi-
ronment consisted of the physical space of the exhibition, where changes
in temperature, light levels, noise levels and movement were recorded
using a set of sensors.

A chromosome transition rule consists of a typical substitution rule,
with an antecedent and a consequent. A chromosome consists of the
following 5 parts:

[person@address.com][1011010*11**][000011011010][1][192.5]

The five parts are decoded as follows:

5.6. EPIGENETIC DESIGN 138

Figure 5.12: The Interactivator: the process of cellular division and mul-
tiplication.

• Origin of chromosome: The unique address from where the chro-
mosome is received.

• Antecedent condition: The local environment of a cell (* being a
don’t care situation)

• Consequent action: The state of the cell in the next generation.

• Flag: Whether a chromosome is dominant or recessive.

• Strength: Fitness of the chromosome with respect to the environ-
ment.

Developmental step

The developmental step uses a generative process that consists of three
parts, referred to as cellular growth, materialization and the genetic
search landscape:

• Cellular growth: Chromosomes are generated by being sent in by
a remote user, an active site or are created by the reproduction
step. The global environment determines which chromosomes be-
come dominant, thereby being included in the dominant chromo-
some pool. The local environment of each cell then determines
which chromosomes become active. The cell multiplies and divides
in accordance with the consequent action specified by the active
chromosomes. Figure 5.12 shows a cellular structure dividing and
multiplying from one cell.

139 CHAPTER 5. EVOLUTIONARY DESIGN

Figure 5.13: The Interactivator: the materialization of left-over cellular
material.

• Materialization: As cellular division takes place, unstable cells are
generated. In the next generation this leftover material creates a
space of exclusion in the cellular space. This space of exclusion in-
teracts with the physical environment to create a materialization.
Boundary layers are identified in the unstable cells as part of their
state information and a surface is generated to skin the structure.
This material continues to exist throughout the evolution of the
model and will initially affect the cellular growth of future genera-
tions. Figure 5.13 shows the gradual development of the space of
exclusion over many generations.

• Genetic search landscape: The selection criteria are not defined but
are an emergent property of the evolutionary process, and are based
on the relationship between the genotype, cellular structure and
the virtual and physical environment over time. A genetic search
landscape is generated for each member graphically representing
the evolving selection criteria. Form, or the logic of form, emerges
as a result of travelling through this search space.

Once the developmental process stabilises, the cellular activity is ter-
minated. The final cellular structure, the materialization and the genetic
search space are posted out. A new generation of cellular activity is then
initiated. The fittest chromosomes from the parent generation are com-
bined with the new list of dominant chromosomes from the population to
form a new population. These new chromosomes are then inserted into
single cells, and these cells are then developed new cellular structures.

5.7. SUMMARY 140

The evolutionary system was integrated with AutoCAD V. 1212 c©.
This allowed the complex surface modelling operations during the ma-
terialization process to make use of the modelling functions provided by
AutoCAD. The evolutionary system was developed using AutoLisp —
the programming language built into AutoCAD — thereby allowing the
developmental step to directly call any modelling functions. In addition,
this also allowed the process of cellular growth, materialization and the
genetic search landscape to be visualised in the AutoCAD application
window.

Co-evolution of structure and environment

In another experiment, Rastogi (Frazer, 1995b, p. 89) developed a gen-
erative program that explored the interaction between a growing envi-
ronment and a growing structure by creating a hierarchical system of
cellular automata. The generative program created boundary surfaces
between a cellular environment and a cellular structure both developing
in an isospatial cellular automata. The development of the environment
and the structure were controlled by separate sets of transition rules,
and these rules were themselves generated by a pair of two-dimensional
cellular automata. As the environment and structure developed, the
boundary surface deformed and transformed.

5.7 Summary

This chapter has discussed five evolutionary design systems and ap-
proaches. The main points are as follows:

• Genetic Algorithm for Design Optimization (GADO) is a para-
metric evolutionary design system for engineering design optimiza-
tion that uses parallel master-slave model and a steady-state asyn-
chronous evolution mode. A single population is maintained and
new designs are created and added to the population one at a time.
In addition, specialised crossover and mutation operators have been
developed. A module has also been developed to ensure that diver-
sity in the population is maintained.

• Generative System(GS) is a parametric evolutionary design system
for building design that is integrated with a sophisticated simu-
lation application called DOE-2. In this case, the systems fol-
lows the general synchronous evolutionary architecture, and uses
standard rules and representations. The DOE-2 application was
used for both lighting and thermal calculations, and in some cases
Pareto multi-criteria optimization techniques were used. Experi-
ments were performed using climate data for different global loca-
tions.

12http://www.autodesk.com

141 CHAPTER 5. EVOLUTIONARY DESIGN

• Genetic Algorithm Designer (GADES) is a good example of a gen-
erative evolutionary design system. The system follows the general
synchronous evolutionary architecture, but uses specifically devel-
oped rules and representations. A set of customised evaluation
routines are also required. The system is supposed to be highly
generic and applicable to any design domain. As such, it highlights
certain problems and weaknesses associated with creating a highly
generic system.

• The concept-seeding approach allows designers to create a set of
rules and representations that encapsulate certain design ideas.
When this approach is used in an evolutionary system, then the
designs evolved by the system will all embody the ideas encoded
in the rules and representations for the developmental and evalu-
ation steps. Recently, a prototype system using the evolutionary
concept-seeding approach has been developed. This system allows
rules and representations to be defined for generating designs for
hand-held devices such as mobile phones or remote controls.

• The epigenetic design approach allows designs to be generated in
response to the design environment. Many evolutionary design sys-
tems allow the evaluation step to make use of encoded environmen-
tal information such as information about the design constraints or
deign context. However, this approach also allows the develop-
mental step to make use of such information. This results in an
additional level of design adaptation to the environment.

5.7. SUMMARY 142

Part III

Research proposition

143

145

Part three consists of three chapters that describe the proposed gen-
erative evolutionary design framework.

• Chapter 6 describes the design method introduced in chapter 1.
The two phases of the method are described in more detail, and
the requirements for the method — conservativeness and synergy
— are discussed.

• Chapter 7 describes the computational architecture introduced in
chapter 1. The requirements for the architecture – scalability and
customizability — are discussed with reference to existing methods.

• Chapter 8 demonstrates the process of encoding a design schema.
An example schema is introduced and a set of routines are imple-
mented and used to generate design models.

146

Chapter 6

Design method

Contents

6.1 Introduction 147

6.2 Overview of method 148

6.2.1 Structure of method 148

6.2.2 Schema conception stage 150

6.2.3 Schema encoding stage 155

6.3 Key requirements 162

6.3.1 A conservative method 162

6.3.2 A synergetic method 165

6.4 Summary . 168

6.1 Introduction

This chapter describes the design method of the proposed generative
evolutionary design framework. It consists of two main sections:

• In section 6.2, an overview of the design method is given. The
schema development phase and the design development phase are
described, with each phase being broken down into two smaller
stages. The schema development phase is then described in more
detail.

• In section 6.3, the requirements for the design method identified in
chapter 1 are discussed. First, the requirement that the method
should be conservative is discussed; and second, the requirement
that the method should be synergetic is discussed.

147

6.2. OVERVIEW OF METHOD 148

6.2 Overview of method

6.2.1 Structure of method

Four stages

The proposed generative evolutionary design method was introduced in
chapter 1 (see section 1.2.2 on page 18) and is shown in figure 1.3 on
page 19. One of the key components of this method was a design en-
tity that captures the essential and identifiable character of a family of
designs, referred to as the design schema.

The method consists of the schema development phase and the design
development phase. Each phase requires the design team to carry out a
number of tasks that are grouped into stages. Each stage focuses on a
different set of skills, and as a result different team members are likely
to lead the design process at each stage. The composition of the design
team may also change during the different stages of the design method.

The two stages of the schema development phase are as follows:

• The schema conception stage requires the design team to concep-
tually develop a design schema for a particular niche environment.
The main guiding force at this stage are the preconceptions of the
design team, which includes their philosophical beliefs, cultural val-
ues, and design ideas. The design team must then define the design
schema is some relatively explicit way. The design team may, for
example, create a number of prototypical designs that capture the
variability that they desire. At this stage, the design team works at
a purely conceptual level and as a result, no specialised program-
ming or computational skills are required.

• The schema encoding stages involves encoding the design schema in
a form that can be used by the evolutionary system. This involves
defining a set of evolutionary rules and representations for the evo-
lutionary system. The requirements from the design team are now
different, and specialised programming and computational skills are
essential. The evolutionary process must be well understood and,
in particular, the design team must be aware of the relationships
and interactions between the various rules and representations.

For the design development phase, the two stages are as follows:

• The design evolution stage allows a large variety of alternative de-
signs to be evolved and adapted to a specific design environment.
At this stage, the design team will need to encode the design envi-
ronment for the specific project, and will then need to configure and
run the evolutionary system. The process of encoding the design
environment is generally much more straightforward than encoding
the design schema. The evolutionary process will result in a set of
alternative designs. The design team must choose one of these for
further detailed design.

149 CHAPTER 6. DESIGN METHOD

• The detailed design stage will need to further develop the design
model selected in the previous stage to the level of detail required
for construction. This stage involves the design team carrying out a
process of detailed design similar to most existing design methods.
As with the first stage, no specialised programming or computa-
tional skills are required.

Interaction between stages

The four stages do not have to remain distinct. At each stage, the design
team will probably find it necessary to ‘look ahead’ to the next stage
and ‘look back’ to the previous stage. This is particularly true for the
two middle stages: the schema encoding stage and the design evolution
stage.

In the schema encoding stage, the design team will need to repeatedly
test an encoded schema by running the evolutionary system as defined in
the next stage. At the same time, the variability of designs defined in the
previous stage may be discovered to be to difficult to achieve, and as a
result the design schema may require modification. Alternatively, certain
unexpected design features may emerge as the result of a particular way
of encoding the design schema, which the design team may decide to
explore further.

In the design evolution stage, the design team may want to apply an
encoded schema to a project for which it was not developed. In such a
situation, the design team will have to go back and modify the encoded
schema. The design team may also need to go forward and consider
issues relating to how the design is detailed.

Schema development phase in more detail

For the design team, the schema development phase is a critical phase.
It is during this phase that design ideas are developed and encoded. The
two stages in this phase will be discussed in more detail in the next
section.

For the schema conception stage, the process of creating the design
schema is described. The concept of a design schema is compared and
contrasted with the types of abstract body plans used by natural evolu-
tion.

For the schema encoding stage, the process of creating the evolu-
tionary rules and representation is discussed. The genericness of these
rules and representations is discussed in relation to the performance and
re-usability of the evolutionary system.

6.2. OVERVIEW OF METHOD 150

6.2.2 Schema conception stage

Conception of design schema

During the schema conception stage, the design team must develop a
design schema that encompasses a family of designs. This schema is
an abstract model from which a variety of designs can be extrapolated.
Natural evolution also evolves alternative designs based on an abstract
models, often referred to as archetypal body plans. In many ways, design
schemas appear analogous to archetypal body plans. However, important
differences exist.

The most obvious difference is that design schema are defined out-
side the evolutionary process whereas archetypal body plans have been
created by the evolutionary process. This difference is considered less
significant when the historical and contingent aspects of natural evolu-
tion are considered. First, the body plans were evolved for historical
environmental conditions relevant hundreds of millions of years ago but
are no longer relevant today. Second, many biologists have argued that
the evolution of body plans is highly contingent, in that the survival of
body plans are primarily due to luck1 rather than to any fitness based
selection mechanisms (Gould, 2000).

More significant differences between design schemas and archetypal
body plans can be identified at a more detailed level. These differences
are related to a stark contrast in variability of natural and artificial de-
sign: while natural designs are all based on a small number of body
plans, artificial designs are highly variable and resist the discovery of any
common characteristics.

The contrasts between archetypal body plans and design schemas are
explored in more detail below. First, body plans in nature are briefly
introduced. Second, design schemas are compared and contrasted with
these body plans, with key differences being emphasised. Third, the
variability of natural and artificial designs is investigated. Finally, it is
argued that design schemas should focus on a small family of designs
that share certain characteristics. From the perspective of the design
team, the designs that are most relevant are designs that they themselves
created.

Archetypal body plans

The organisms evolved by nature often resemble one another, which has
led biologists to identify homologies: a homology is defined by Owen
(1843, p. 379) as “the same organ in different animals under every variety

1In Wonderful Life, Gould (2000) describes the Burgess Shale animals that existed
in the pre-Cambrian and Cambrian periods. He emphasises that only a small number
of the great variety of body plans that existed in this fauna have survived. He argues
that the survival of these body plans was highly contingent, and that if evolution was
‘re-run’, a different set of body plans would survive. Although many aspects of his
argument remain contentious (for example, see (Morris, 1999)), the general idea that
the history of life is profoundly contingent has become accepted.

151 CHAPTER 6. DESIGN METHOD

of form and function”. During the nineteenth and twentieth centuries, a
variety of body plans for plants and animals were proposed based on the
discovery and analysis of such homologies.

Johann Wolfgang von Goethe explored, from a holistic perspective,
the relationship between the body plan of an organism and the growth
process for that organism. Goethe was fascinated by plant and animal
morphology and proposed an archetypal plant — which he called the
Urpflanze — from whose form all other plants might be derived. The
Urpflanze was not seen as a Platonic absolute category, nor as an histor-
ical ancestor in the Darwinian sense. Rather, it was seen as an outward
expression of the developmental growth process by which plants come into
existence. Goethe imagined that, by extrapolating from the Urpflanze,
new plant types could be proposed. Thus Goethe writes “With such a
model, and with the key to it in one’s hands, one will be able to con-
trive an infinite variety of plants. They will be strictly logical plants - in
other words, even though they may not actually exist, they could exist”
(Goethe, 1817).

Such archetypal body plans became one of the major biological con-
troversies of the first half of the nineteenth century. Russell (1982) sum-
marises this conflict as follows: “Is function the mechanical result of
form, or is form merely the manifestation of function or activity? What
is the essence of life – organization or activity?”. Two schools emerged:
Georges Cuvier founded the functionalist school that maintained that
function was primary; Étienne Geoffroy St. Hilaire continued the for-
malist school that maintained that form was primary. Cuvier argued
that similarities between organisms could only result from similar func-
tions. Hilaire, on the other hand, argued in his Philosophie anatomique
(2 vol., 181822) that all vertebrates were modifications of a single plan
of structure.

The theory of evolution by natural selection proposed by Darwin
(1968) synthesise the positions of Cuvier and Hilaire. For Darwin, the
existence of such body plans were seen as the result of structures that ex-
isted in common ancestors modified by natural selection. Darwin (1968,
p. 233) writes:

“It is generally acknowledged that all organic beings have
been formed on two great laws - Unity of Type, and the Con-
ditions of Existence. By the unity of type is meant the fun-
damental agreement in structure, which we see in organic be-
ings of the same class, and which is quite independent of their
habitats of life. On my theory, unity of type is explained by
unity of descent. The expression of conditions of existence, so
often insisted on by the illustrious Cuvier, if fully embraced
by the theory of natural selection. For natural selection acts
by either now adapting the varying parts of each being to its
organic and inorganic conditions of life; or by having adapted
them during long-past periods of time: the adaptations being

6.2. OVERVIEW OF METHOD 152

aided in some cases by use and disuse, being slightly affected
by the direct action of the external conditions of life, and
in all cases being subjected to the several laws of growth.
Hence, in fact, the law of the Conditions of Existence is the
higher law; as it includes, through the inheritance of former
adaptations, that of Unity of Type.”

When Darwin refers to adaptations being ‘subject to the several laws
of growth’, he acknowledges the importance of the developmental growth
process. Darwin (1968, p. 427) highlights that archetypal body plans
are often most apparent during the developmental growth process, stat-
ing that “community in embryonic structure reveals community in de-
scent”. This idea was later pursued by Ernst Haeckel. Haeckel (1874)
had claimed that the developmental growth process of an individual from
zygote to adult reflects the evolutionary history, in terms of patterns of
lines of descent, of the taxonomic group to which the individual belongs.
This is summarised in the law of recapitulation: that ontogeny recapitu-
lates phylogeny.

Recently, this has led to speculation about how archetypal body plans
might be genetically encoded. Although a strong form of recapitulation
has been discredited (Richardson et al., 1997), it is generally accepted
that phylogeny and ontogeny are closely intertwined, and many biologists
are beginning to explore and understand the basis for this connection.
For example, the discovery of certain genes that organised pattern for-
mation in the early embryonic stage of development led to speculation
that these genes might be the key to the evolution of the archetypal body
plan. Slack et al. (1993) proposed a set of genes that encoded a relative
positioning system used in the developing organisms. These genes seem
to be present in all animals and are therefore seen to be a defining char-
acter, or synapomorphy, of the animal kingdom. Slack refers to this set of
genes as the zootype, which may be viewed as the genetic counterpart to
the body plan. Slack proposes that these genes must have been present
in the last common ancestor of all multicellular organisms.

Design schemas versus archetypal body plans

Design schemas and archetypal body plans are both abstract models
from which a variety of specific designs can be extrapolated. In both
cases, an evolutionary process evolves alternative designs based on these
abstract models. However, the concept of archetypal body plans differs
fundamentally from the concept of the design schema. Archetypal body
plans are described by Darwin (1968, p. 415) as follows:

“We have seen that the members of the same class, inde-
pendently of their habits of life, resemble each other in the
general plan of their organization. This resemblance is often
expressed by the term ‘unity of type’; or by saying that the
several parts and organs in the different species of the class

153 CHAPTER 6. DESIGN METHOD

are homologous... What can be more curious than that the
hand of a man, formed for grasping, that of a mole for dig-
ging, the leg of the horse, the paddle of the porpoise, and the
wing of the bat, should all be constructed on the same pat-
tern, and should include the same bones, in the same relative
positions? Geoffroy St. Hilaire has insisted strongly on the
high importance of relative connexion in homologous organs:
the parts may change to almost any extent in form and size,
and yet they always remain connected together in the same
order.”

This highlights the fundamental difference between archetypal body
plans and design schemas. In the case of design schemas, three key fea-
tures may be identified: first, all designs share a certain essential and
identifiable character; second, designs may vary in overall organization
and configuration; and third, all designs are adapted to the same niche
environment. In the case of archetypal body plans, all three key features
are inverted: first, designs may have completely different characters; sec-
ond, all designs share the same overall organization and configuration;
and third, designs may be adapted to totally unrelated environments.

Variability of designs

The difference between design schema and archetypal body plans is due
to the difference in design variability of artificial designs and natural
designs. It is often emphasised how natural evolution has evolved a vast
diversity of natural designs. However, this diversity may actually be seen
too be highly limited when the overall organization and configuration is
considered. Despite the massive diversity that exists in nature, most
designs are based on a small number of body plans. This has been
discussed by Gould (2000, p. 49):

“Biologists use the vernacular term diversity in several dif-
ferent technical senses. They may talk about ‘diversity’ as a
number of distinct species in a group... But biologists also
speak of ‘diversity’ as difference in body plans. Three blind
mice of differing species do not make a diverse fauna, but an
elephant, a tree and an ant do — even though each assem-
blage contains just three species.... Most people do not fully
appreciate the stereotyped character of current life... Stereo-
typy, or the cramming of most species into a few anatomical
plans, is a cardinal feature of modern life... Several of my
colleagues (Jaanusson, 1981; Runnegar, 1987) have suggested
that we eliminate the confusion about diversity by restricting
this vernacular term to the first sense — number of species.
The second sense — differences in body plan — should then
be called disparity.”

6.2. OVERVIEW OF METHOD 154

Variability in character is therefore described as diversity, while vari-
ability in overall organization and configuration is therefore described as
disparity. In terms of diversity, artificial and natural designs are similar.
In both cases the diversity in character is huge. However, in terms of
disparity, artificial and natural designs are very different. The disparity
of artificial designs is much greater than the disparity of natural design.
As a result, the homologies commonly found in natural designs, are —
in the case of artificial design — quite rare. The reason for the greater
disparity of artificial designs must be attributed to the process by which
such designs are created. In nature, the process is highly restricted, by
both the inheritance mechanisms of evolution by natural selection and
by the ‘several laws of growth’. With artificial design, the cognitive de-
sign process is much less restricted and designers will typically strive to
impose their individuality on a design.

Due to the lack of disparity in nature, archetypal body plans could be
proposed that were highly generic and encompassed significant portions
of the designs created by nature. For artificial designs, on the other hand,
an archetypal body plan would only be applicable to a small number of
designs. A different type of approach therefore needs to be taken. Rather
than trying to identify a common body plan, a more flexible approach
is required that specifies common characteristics without predefining the
overall organization and configuration.

Families of designs

Despite the disparity in artificial designs, some have suggested that com-
mon characteristics may nevertheless be found that are highly generic
and may therefore encompass a significant portion of the designs cre-
ated by human designers. For example, Gropius (1962) writes: “A basic
philosophy of design needs first of all a denominator common to all...
Will we succeed in establishing an optical ‘key’, used and understood by
all, as an objective common denominator of design?” Such a ‘key’ would
provide “the impersonal basis as a prerequisite for general understanding
and would serve as the controlling agent in the creative act.”

Such a generic common denominator would be of great value, since it
could be used by any human designer or by any automated design system
to guide the design process. However, to-date, no such common denomi-
nator has been discovered. Due to the disparity of artificial designs, it is
likely that any common denominators must be restricted to some small
family of designs.

Common denominators — or shared characteristics — may then be
defined in relation to such a family of designs. One approach may be
to investigate a variety of formal devices, such as grammars, typologies,
proportioning systems, ordering principles, and so forth. The family
of design would then consist of members using the same set of formal
devices.

An alternative approach would be to look beyond the actual formal

155 CHAPTER 6. DESIGN METHOD

devices, and instead seek the source of these devices in the design process.
This approach will lead back to the preconceptions of the design team.
In this case, the family of designs would consist of the body of work of
the design team.

The latter approach is preferable for two reasons: first, the body of
work of a single design team has a strong unity; and second, designers
will find designs that embody their own beliefs, values and ideas more
relevant.

• In general, a designer’s body of work does not consist of a disparate
set of unrelated designs. Instead, the individual designs tend to
be related to each other, and can be seen to reflect specific ideas
relating to aesthetics, space, structure, materials and construction.
The individual designs may often be seen as part of a personal
process of exploration and development. The designs may form a
stylistic family or a chronological sequence, or parts of one design
may be found in another design. As a result of the interrelationships
between the designs, each design becomes recognisable as being
part of the designers body of work. The unity in a designer’s body
of work therefore tends to be strong.

• In general, designers have little interest in exploring designs that do
not reflect their beliefs, values and ideas. For a designer’s body of
work, the common denominator becomes the personal and idiosyn-
cratic design ideas of the designers. These ideas can then be used
to guide the generative process. These design ideas will reflect a
set of more general philosophical beliefs and cultural values held by
the designers. By incorporating the designer’s ideas, the relevance
of the designs synthesised are greatly increased.

6.2.3 Schema encoding stage

Encoding rules and representations

After the design team has developed the design schema, the next stage
of the design method involves encoding the schema as a set of rules and
representations that can be used by an evolutionary system.

For any evolutionary system — whether in the design domain or some
other domain — the way that these rules and representations are encoded
will affect the trade-off between the performance and the re-usability of
the system. In general, as the rules and representations incorporate more
domain- and task-specific knowledge, the performance of the system will
increase and the re-usability of the system will decrease.

Broadly, three approaches can be identified that differ in the level of
knowledge incorporated into the rules and representations: the highly-
generic approach, the domain-specific approach, and the task-specific
approach. The levels of performance and re-usability that can be achieved
by these approaches is dependent on the domain and the task.

6.2. OVERVIEW OF METHOD 156

For generative evolutionary design systems, these performance and re-
usability issues are related to the variability problem and style problem
introduced in chapter 1(see section 1.1.2 on page 12 and section 1.1.2 on
page 15). For the variability problem, task-specific knowledge can be used
in order to restrict design variability. As discussed in the section above,
the task-specific knowledge that is most relevant to the design team is
likely to consist of their own design ideas. However, this aggravates the
style problem: incorporating such task-specific knowledge will result in
designs with a specific character or style, thereby reducing re-usability.

Performance and re-usability are therefore in direct conflict. One
way to resolve this conflict is to allow the design team to customise the
evolutionary system with rules and representations specifically developed
to reflect their own design ideas. This approach is seen to be similar to
the concept-seeding approach developed by Frazer and Connor (1979);
Frazer (1995b); Sun (2001).

The different approaches to encoding the evolutionary rules and rep-
resentations are discussed in more detail below. First, the three main
approaches are described, and performance and re-usability issues are
discussed. Following this, the discussion then focuses specifically on gen-
erative evolutionary design systems. Performance issues are then dis-
cussed in relation to the variability problem and the style problem. Fi-
nally, the concept seeding approach is discussed as a way of resolving the
conflict between performance and re-usability.

Types of rules and representations

The three broad approaches to creating evolutionary rules and represen-
tations are described as follows:

• With the highly-generic approach, researchers use standard rules
and representations that do not rely on any task or domain-specific
knowledge. For example, many researchers use binary string geno-
types in combination with one or two point crossover and bit mu-
tation. Any task or domain-specific knowledge is confined to the
evaluation step.

• With the domain-specific approach, researchers develop non-standard
rules and representations that incorporate domain-specific knowl-
edge. Many researchers have found that the standard rules and rep-
resentations result in evolutionary systems with poor performance.
Researchers have therefore incorporated domain knowledge in the
rules and representations in order to improve the performance of
the system.

• With the task-specific approach, researchers develop non-standard
rules and representations that incorporate task-specific knowledge.
In this case, the type of tasks in the domain may be complex and
as a result researchers may find it necessary to incorporate such

157 CHAPTER 6. DESIGN METHOD

task-specific knowledge if a reasonable level of performance is to be
achieved.

As discussed in chapter 4 (see section 4.4.1 on page 99), highly-generic
approaches are described as weak while task-specific approaches are de-
scribed as strong.

Performance and re-usability

The idea that knowledge is critical to improving the performance of an
evolutionary algorithm is similar to the No Free Lunch (NFL) theorem
discussed by Wolpert and Macready (1995, 1997) in relation algorithms
that search for a maximum or minimum value of a cost function. They
argue that the performance of such algorithms can only be improved by
making them less generic. They show that “all algorithms that search
for a maximum or minimum value of a cost function perform exactly
the same, when averaged over all possible cost functions” (Wolpert and
Macready, 1995). More generally, they state that “...for any algorithm,
any elevated performance over one class of problems is exactly paid for
in performance over another class” (Wolpert and Macready, 1997).

However, it is also clear that when researchers embed domain- and
task specific knowledge in the rules and representations used by an evo-
lutionary system, then the re-usability of the system will decrease. In
some cases — for example, genetic algorithms — it may be possible to
create rules and representations that are highly generic and also perform
reasonably well. As a result, such systems can be re-used for many tasks
with little modification. However, for most real-world tasks this is not
feasible (see section 4.4.1 on page 99). In such cases, researchers must
balance the performance of the system against the re-usability of the
system.

The conflict between performance and re-usability is also applicable
to evolutionary design: for any evolutionary design system, any elevated
performance over one class of designs is exactly paid for in performance
over another class. In other words, the performance of the system can
be improved by using less generic rules and representations, but the re-
usability will also decrease as a consequence. In this case, the domain is
seen as a particular design domain — such as building design, and the
task is seen as the process of creating a type design — for example, a
design for a particular type of building.

With parametric evolutionary design, design variability is low and as
a result the performance of the system using generic rules and represen-
tations may be reasonable. For example, GS developed by Caldas (2001)
(see section 5.3 on page 118) is based on the canonical genetic algorithm
and is therefore highly generic. Some parametric evolutionary design
systems may nevertheless include domain-specific rules and representa-
tions in order to achieve a better performance: for example, the GADO
system (Rasheed, 1998) (see section 5.2 on page 113) uses a real-valued

6.2. OVERVIEW OF METHOD 158

genotype representation and a number of specially developed crossover
and mutation operators that incorporate domain-specific knowledge.

With generative evolutionary design, a much greater variability of
design needs to be evolved. This results in a major shift in the balance
between performance and re-usability. Since it is not possible to develop
a generative process capable of generating any conceivable design in any
domain is highly unrealistic, the highly generic approach can be ruled
out. This leaves two possibilities: the domain-specific and the task-
specific approaches.

Performance of generative evolutionary design system

For generative evolutionary building design, the domain-specific approach
is likely to result in poor performance. Although the range of designs to
be generated would be limited to the building domain, the developmen-
tal step would still have to be capable of generating almost any possible
building design. Such a developmental step would have to rely on a
generic rules and representations, which would lead to variability being
under-restricted. This would then result in poor performance due to
the variability problem, and in particular due to the problem of chaotic
designs.

A key requirement for the rules and representations is to avoid unre-
stricted variability, and this can only be achieved by identifying shared
design characteristics that can be used to guide the generative process.
It has been argued that the most appropriate family of designs is the
body of work of one design team. This approach results in a set of rules
and representations, that — although not specific to a single design —
are specific to one design team. This approach is therefore a task-specific
approach.

Re-usability of generative evolutionary design system

The problem of embedding such task-specific rules and representations
in an evolutionary design system has been described by Bentley (1999b)
as the style problem. When discussing evolutionary art systems, Bentley
writes:

“One undesired side-effect of many of these representa-
tions is that they generate pieces of art which have distinct
styles. Often the style of form generated using a particu-
lar representation is more identifiable than the style of the
artist used to guide the evolution. This can cause problems
if the artist wishes to take credit for the piece. The cause of
this ‘style problem’ is perhaps due to the initial preconcep-
tions and assumptions of the designer of the representation.
By limiting the computer to a specific type of structure, or
a specific set of primitive shapes and constructive rules, it

159 CHAPTER 6. DESIGN METHOD

will inevitably always generate forms with many common and
identifiable elements” (Bentley, 1999b).

Bentley therefore suggests that the main alternative to parametric
evolutionary design2 is generative evolutionary design systems that do
not use task-specific rules or representations; he refers to these types of
systems as evolutionary exploration systems. Bentley (2000a) writes: “a
knowledge-lean representation is used, and ... a set of low-level compo-
nents is defined. Solutions are then constructed using these components,
allowing exploration (sometimes at the expense of size of search space
and the ability to locate optima).”

In the development of GADES (see section 5.4 on page 122), Bent-
ley (1999a) has attempted to create an exploration system using only
the domain-specific approach. For the developmental step, a generative
process was created using only low-level knowledge-lean rules and rep-
resentations. Bentley claims that GADES is both highly generic and
that it can consistently evolve good designs without human intervention.
However, both these claims appear overly optimistic.

Regarding the genericness of the system, although the rules and repre-
sentations used by Bentley are not specific to one designer, they do limit
its applicability to a small area of design. The system is only capable
of evolving solid objects3, which already excludes a vast set of possible
designs. Furthermore, the solid objects evolved by GADES all have a par-
ticular ‘blocky’ monochrome character; the system cannot evolve other
types of geometries such as free-flowing surfaces. In addition, many other
aspects — such as symmetry of designs — has to be predefined by the
user.

Second, with regard to the quality of designs evolved, the example
designs shown by Bentley (1999a) are all seen to be simplistic. For in-
stance, Bentley uses the relatively straightforward problem of designing
a table as an example of the capabilities of the GADES system. Bentley
(1999a) writes: “Results were good: GADES consistently evolved fit ta-
ble designs, often with surprising creativity.” The examples that Bentley
provides do not support this optimism. From a design perspective, the
table designs created by the system are very primitive.

The style problem versus the variability problem

The style problem may be contrasted with the variability problem. The
style problem relates to re-usability, while the variability problem relates
to performance.

• The style problem relates to the re-usability of the evolutionary
system. If task-specific rules and representations for a particular

2Bentley refers to parametric evolutionary design as evolutionary design optimiza-
tion.

3Bentley (1999a) has claimed that GADES is capable of evolving other types of
design, such as hospital plans. However, this requires a significant amount of modifi-
cation to the system.

6.2. OVERVIEW OF METHOD 160

designer are programmed into the system, then the system will be
restricted to evolving design that reflect the designer’s preconcep-
tions. The style problem suggests that researchers should use the
domain-specific approach rather than the task-specific approach to
creating rules and representations. This will lead to a system that
is capable of evolving designs that are more generic, thereby allow-
ing the system to be re-used by many different designers on many
different projects.

• The variability problem relates to the performance of the evolution-
ary system. In the building design domain, both the diversity and
disparity of designs are high. If only domain-specific rules and rep-
resentations are used, then designs will vary in highly unrestricted
ways which will result in a poor performance from the evolutionary
system. The variability problem suggests that researchers should
limit the variability of designs by using the task-specific approach
to creating rules and representations. This will lead to a system
that, as a result of the restricted variability of the designs, performs
better and is capable of evolving designs that a designer may find
surprising and challenging.

Attempting to create a generative evolutionary system without task-
specific knowledge is seen as a fundamentally flawed approach. In order
to evolve surprising and challenging designs, knowledge about the de-
sign task must be incorporated in the rules and representations of the
evolutionary system.

One way to achieve this is to accept the low level of re-usability and
create a new evolutionary system for each designer. This is common for
the evolutionary art systems (Bentley, 1999b). In some cases, the design-
ers and programmers may work together to develop a system, while in
other cases they be the same people. This is also the approach taken by
Soddu (2002), an architect who has created his own generative system
capable of producing designs with a distinctive character. The disad-
vantage of this approach is that designers must all developed their own
specialised evolutionary systems from scratch. Many designers simply do
not have the resources for such a process. This approach is also wasteful
since the underlying evolutionary system should not have to change.

Concept-seeding approach

An alternative approach would be to allow designers to customise an
evolutionary system with their own rules and representations. Such an
approach would allow for the conflict between the style problem and the
variability problem to be resolved. The core of the evolutionary system
prior to customization could incorporate only domain-specific knowledge,
and could be re-used by many different designers. Rules and representa-
tions could be defined that incorporate task-specific knowledge, including

161 CHAPTER 6. DESIGN METHOD

knowledge related to the preconceptions of the designers using the sys-
tem.

This is similar to the concept-seeding approach developed by Frazer
and Connor (1979); Frazer (1995b); Sun (2001). This approach was dis-
cussed in chapter 5 (see section 5.5 on page 126). To recap, the concept-
seeding approach — when combined with a generative evolutionary de-
sign system — allows the designer to capture and encode a set of design
ideas in the form of a seed. Such a seed allows designs to be generated
that embody the design ideas encoded in it. A generic and re-usable
generative evolutionary design system can then be used to evolve modi-
fications to either the seed or the generative process.

However, the concept-seeding approach also has a number of limi-
tations. Firstly, it focuses exclusively on the generative rules and rep-
resentations used in the developmental step. As discussed in chapters
4 (section 4.4 on page 98) and 5, the rules and representations used in
the other evolution steps also have a significant effect on the types of
designs that can be evolved. Furthermore, the rules and representations
in the developmental step are closely related to both the reproduction
step and the evaluation step. It is usually impossible to change the rules
and representations in one step without modifying other steps.

In order to support such experimentation, the proposed architecture
generalises the concept-seeding approach by including all the evolution-
ary rules and representations in the ‘seed’, in this case referred to as
the encoded schema. Such an encoded schema may still include enti-
ties such as the design seeds developed by Frazer and Connor (1979) for
the Reptile Program, or the rudiments and configurational rules in the
system developed by Sun (2001). The encoded schema will also include
all the other rules and representations that are required to manipulate
and process these individuals. This approach gives researchers maximum
flexibility in encoding the design schema.

Each evolutionary step is characterised as a process that transforms
input data into output data. The rules that define this transformation
are encapsulated as a self-contained program, referred to as evolution
routines. These routines can be linked to the evolutionary system and ex-
ecuted by the system whenever a transformation needs to be performed.
The representations define the format of the input and output data of
these routines.

In total there are seven different routines, and three representations.
Figure 6.1 on the following page show the various routines and represen-
tations that need to be codified. The routines must be specified explicitly,
while the representations are defined implicitly as data formats used by
the routines. These routines and representations will be described in
more detail in the next chapter.

6.3. KEY REQUIREMENTS 162

Figure 6.1: The rules that encode the design schema.

6.3 Key requirements

In chapter 1 (see section 1.2.2 on page 18), two key requirements for the
proposed method were identified: it should be conservative and it should
synergetic.

6.3.1 A conservative method

As stated in chapter 1 (see section 1.2.1 on page 16), the design method
is argued to be conservative based on a general similarity between the
structure of the design method and a conventional design process com-
monly used by designers in practice.

Design schemas as design ideas

Chapter 2 reviewed research into the design process. A number of re-
searchers found that, in practice, the design process does not follow the
design sequence of analysis, synthesis and evaluation, as commonly pro-
posed in the 1960’s. Instead, they argue that many designers — including
architects — bring a set of preconceptions into a project, and that these
preconceptions play a significant role in the design process. Two types of
preconception have been identified: a design stance and a set of design
ideas (see section 2.4.3 on page 46).

• The design stance has been referred to as the designer’s paradig-
matic stance (Broadbent, 1988), guiding principles (Lawson, 1997),
and theoretical position (Rowe, 1987). This stance consists of a
designer’s broad philosophical beliefs and cultural values, which

163 CHAPTER 6. DESIGN METHOD

emerge over an extended period of time through multiple projects.
The design stance often evolves and changes throughout a designers
career. However, a designer will generally adhere to a single design
stance that is applicable to any projects that they work on.

• Design ideas have been described as primary generators (Drake,
1979), enabling prejudices (Rowe, 1987), and working methods (Frazer,
2002). The main characteristic of such design ideas is that they are
not derived from a process of reasoning or analysis, but are self-
imposed subjective judgements that define and direct the design
process.

The relationship between a set of design ideas and a design project
may take a number of different forms. Lawson’s analysis of the design
process suggest that there are three possibilities (Lawson, 1997). First,
the design ideas may be directly related to some specific aspect of a
project. Second, the design ideas may be related to the type of project,
but not specifically to the one project. Third, the design ideas may not
arise from the project but may originate from the designer’s own personal
design stance.

Design ideas that are not project-specific may be re-used within a
variety of projects. This results in a design process that is similar to
the schema-based design process. Through previous projects or compe-
titions, designers implicitly develop design schemas that consist of sets
of design ideas that may be applied to a range of new projects. The
design schemas may include any combination of the different types of de-
sign ideas described by Rowe (1987): anthropomorphic analogies, literal
analogies, environmental relations, typologies and formal languages.

Existing design schema process

An existing design process can be defined that incorporates both design
preconceptions and design schemas. This process is seen as one that some
designers loosely follow. This design process is shown in figure 6.2 on the
following page. Although the direction of the flow should be understood
to be predominantly top to bottom, most designers do not work in a
linear manner, but move backwards and forwards between stages.

The design process considers two types of environment that were de-
fined in chapter 1. The design environment includes the project specific
constraints and context, while the niche environment is not one specific
environment, but instead encompasses a range of design environments
that are similar to one another. The design process consists of two
phases: in the schema development phase a design schema is created,
while in the design development phase, the design schema is applied to a
specific project and a detailed design proposal is produced.

The schema development phase consists of just one stage:

• During the schema conception stage, a design schema is developed
that consists of a set of design ideas for a niche environment. De-

6.3. KEY REQUIREMENTS 164

Figure 6.2: A design process used by some designers.

signers will usually develop such ideas by working on a series of
similar projects or competitions, and this stage may emerge over a
long period of time. Design preconceptions may be seen as initiat-
ing the process of idea development.

The design development phase consists of two stages:

• During the design exploration stage, an initial design model is de-
veloped by adapting the design schema to the design environment
for a specific project. This design environment will include the
project brief and a particular site. Designers typically explore and
evaluate a range of alternative designs at this stage. This stage
involves analyzing the brief and the site, and applying the design
ideas in an appropriate manner.

• During the detailed design stage, a design proposal is developed
from the design model. At this stage, the role of the design envi-
ronment is less significant. The design model will define the overall
configuration and organization of the design but will not have spec-
ified any details.

Proposed design method

The proposed generative evolutionary design method is a modification of
the existing design process described above. This method was introduced
in section 1.2.2 on page 18 and was further described in section 6.2.1 on
page 148. Figure 1.3 on page 19 shows the four main stages of the design
method, which may be described as follows:

165 CHAPTER 6. DESIGN METHOD

• The schema conception stage is similar to the equivalent stage in
the existing design process. In the existing process, design schemas
are usually implicitly defined. The proposed method requires the
design schema to explicitly defined.

• The schema encoding stages is an additional stage. This involves
defining a set of evolutionary rules and representations for the evo-
lutionary system.

• The design evolution stage replaces the design exploration stage in
the existing design process. Rather than explore a small number of
alternatives manually, this stage allows a vast variety of alternative
designs to be evolved.

• The detailed design stage is the same as the equivalent stage in the
existing design process. The design model that is generated in the
evolutionary system needs to be further developed to the required
level of detail.

The proposed generative evolutionary design method can be seen to
share many features with the existing design processes described above.
Although designers do not explicitly use design schemas, developing a
variety of designs from an abstract set of architectural concepts and ideas
is often implicitly part of existing design process.

6.3.2 A synergetic method

The second requirement for the proposed design method is that it should
be synergetic. As discussed in chapter 1 (see section 1.2.1 on page 16),
this is achieved by making use of the contrasting abilities of the design
team and the computational system in a way that is mutually reinforcing.
In particular, the design method specifies a process where the design team
can focus on those tasks that are predominantly creative and subjective,
and where the computational system can be applied to those tasks that
are predominantly repetitive and objective.

Designing as a social activity

The creation of a synergetic design method is based on the idea that
computers may play an important role in the creative design process.
This synergy focuses on the designers encoding the design schema as a
set of rules and representations that can then be used by computational
systems to evolve designs.

The role of computers was discussed in chapter 2 (see section 2.3.2 on
page 40). To recap, computers may either be used as mere tools for
tasks such as drafting or as a design support medium that is an essential
counterpart in the creative design process of human designers. In the
latter case, the computer is not required to be an intelligent system, but

6.3. KEY REQUIREMENTS 166

should have certain knowledge and capabilities in the area of interest.
Mitchell (1994) identifies three distinct paradigms that describe how the
role of the computer has been changing: the designing as problem-solving
paradigm emerged in the 1960’s; the designing as a knowledge-based ac-
tivity emerged in the 1980’s; and most recently, the designing as social
activity has emerged.

In each of the paradigms identified by Mitchell, researchers have at-
tempted to create computer systems that have gone beyond mere tools,
striving to create systems with knowledge and capabilities that support
the design process. In each case the approach has been different. The
proposed design method and computational architecture follow Mitchell’s
third paradigm and view design as a social activity.

Encoding design schemas

The proposed method allows a variety of designs to be created that em-
body the same design ideas. The design ideas have been described as
preconceptions that are personal and idiosyncratic to the designers in-
volved.

This approach differs fundamentally from the problem-solving paradigm
from the 1960’s. In this paradigm, preconceptions were regarded as sub-
jective elements that had to be eradicated. The reasoning was that such
preconceptions would impede rational thinking, and were likely to ex-
clude certain design possibilities that might actually be of higher quality.

This approach was often described in terms of search spaces and fit-
ness landscapes: preconceptions would limit the search process to certain
areas of the search space and could thereby exclude the optimal solution
for the problem. One of the main goals of early design methods was there-
fore to develop an objective search methodology that would eliminate all
preconceptions.

A fundamental flaw in this line of reasoning is that the search process
itself requires various preparatory steps to be taken where preconceived
ideas are still required. The search process requires four preparatory
steps to be taken prior to the actual searching of the space. First the
problem must be clearly specified. Second, the search space must be
meaningfully structured so that solutions are related to each other in
some meaningful way. Third, a fitness function must be defined so that
solutions can be compared. Finally, a search procedure must be defined
to search the space. The first three steps all require the designer to make
various decisions that involve preconceptions.

Since the 1960’s, it has become clear that objective design processes
can only be used for solving highly constrained and simplified problems.
Any design task of even moderate complexity cannot be ‘solved’ in this
way. Instead, a much more complex process mediates between the design
task and the eventual design. Design preconceptions are essential and
necessary ingredient in this process.

167 CHAPTER 6. DESIGN METHOD

Choice of preconceptions

The problem-solving paradigm is rejected. However, this paradigm em-
bodied an aversion to preconceptions that may nevertheless have some
validity. Preconceptions are often thought to lead to designs that are pre-
dictable and conventional, and generally of low quality. In contrast, high
quality designs are generally considered to be the result of an innovative
mind that rejects the conventional in favour of the new and radical.

To a certain extent, this argument must be accepted. In some cases,
the designer has to drop certain preconceptions in order to create a rad-
ically new design. This allows a whole new set of possibilities to be
explored. However, preconceptions are a necessary part of the design
process. Two types of preconceptions may be considered. Some precon-
ceptions are limiting in that they seem to restrict the freedom of the
designer, while others are enabling in that they give the designer greater
freedom.

An example of an enabling preconception may be the Modulor, Le
Corbusier’s dimensioning system based on the proportions of the human
body (Corbusier, 1982). Such a system limits the dimensions that can
be used but Le Corbusier argues that this actually gives the designer
greater freedom. Limits provide a framework within which the designer
can experiment. Le Corbusier compares his division of space to the way
that the continuous phenomenon of sound had been divided “in accor-
dance with a rule accepted to all, but above all efficient, that is flexible,
adaptable, allowing for a wealth of nuances and yet simple, manageable
and easy to understand”.

Designers should aim to discard limiting preconceptions but keep en-
abling preconceptions. However, identifying which are limiting and which
are enabling is not straightforward. Preconceptions not only affect the
way a design is created, but also affect the perceived quality of a de-
sign. Preconceptions will affect the choice of objectives, the importance
assigned to each objective, and the way that each objective is evaluated.

In addition, a preconception that was previously enabling may gradu-
ally become limiting. Evans (1995), in discussing the Modulor, similarly
describes a conflict between design freedom and design rules: “Any rule
carries with it the eventual prospect of reduced liberty, but new rules
can be surprisingly unruly, cleaning away customs and habits that have
stood in the way for ages. Thus, for a time, perhaps quite a long time,
new rules can offer a way round the obvious.”

Choosing preconceptions is therefore seen as being highly subjective
and should be left to the designers. Humans perform better than com-
putational systems in these kinds of tasks. By creating the evolutionary
rules and representations, the design team can have full control over the
preconceptions.

Once the rules and representations are defined, large numbers of de-
sign alternatives must be explored, and for each design a detailed evalu-
ation step must be performed, involving the assessment of multiple and

6.4. SUMMARY 168

conflicting objectives. In these type of tasks, computational systems ex-
cel, while humans perform poorly.

6.4 Summary

This chapter has described and discussed the proposed design method.
The main points are as follows:

• The design method is argued to be conservative based on its similar-
ity with a conventional design process. This conventional process,
although not universal, is commonly used by many designers. As
a result, such designers will easily be able to integrate and appro-
priate the proposed design method in their own working practices.

• The design method is argued to be synergetic based on the way that
the inherent talents of the design team and the computational sys-
tem are exploited. The main tasks for the design team are translat-
ing their design preconceptions into a set of design ideas, and then
encoding these design ideas in a computer readable form. For the
computational system, the main tasks are generating large numbers
of design alternatives and then analyzing and simulating each alter-
native. The abilities of the design team and of the computational
system are used in a way that is mutually reinforcing.

• For the design team, the schema development phase is the critical
phase during which a design schema is conceived and encoded. In
the conception stage, the design schema must be developed based
on a family of designs. The family of designs that is most relevant
to the design team consists of designs that they have produced
or will produce in the future. This family must have three key
features: the designs must all share an essential and identifiable
character, the designs must vary significantly in overall organization
and configuration, and the designs must all be adapted to the same
niche environment.

• In the encoding stage, the design team must encode the design
schema as a set of rules and representations. The level of knowledge
embedded in these rules and representations will affect the perfor-
mance and the re-usability of the generative evolutionary design
system. A trade-off exists between performance and re-usability:
for reasonable level of performance, knowledge-rich rules and repre-
sentation based on a set of design preconceptions must be used; for
a reasonable level of re-usability, knowledge-lean rules and repre-
sentations must be used that are highly generic. A way of resolving
this conflict is proposed, whereby the evolutionary system is split
into a generic core and a set of specialised components.

Chapter 7

Computational architecture

Contents

7.1 Introduction 169

7.2 Key requirements 170

7.2.1 A scalable system 170

7.2.2 A customisable system 174

7.3 Overview of architecture 179

7.3.1 Individuals 179

7.3.2 Specialised components 182

7.3.3 Generic core 184

7.3.4 Interactions between components 190

7.4 Implementation strategies 193

7.4.1 Language and technologies for the generic core 193

7.4.2 Language and technologies for representing in-
dividuals . 195

7.4.3 Language and technologies for specialised com-
ponents . 197

7.5 Summary . 200

7.1 Introduction

This chapter describes the computational architecture of the proposed
generative evolutionary design framework. It consists of three main sec-
tions:

• In section 7.2, the requirements for the computational architecture
identified in chapter 1 are discussed. The existing evolutionary de-
sign systems introduced in chapter 5 are analysed with respect to

169

7.2. KEY REQUIREMENTS 170

these requirements. Based on this analysis, an alternative archi-
tecture is proposed. First, the requirement that the architecture
should be scalable is discussed; and second, the requirement that
the architecture should be customisable is discussed.

• In section 7.3, an overview of the main components and their inter-
actions is described. First, the representation of individuals in the
population is described; second, the specialised components are de-
scribed; and third, the generic core is described. Lastly, the various
interactions are described.

• In section 7.4, languages and technologies for implementing the dif-
ferent parts, components and interactions described in the previous
section are suggested.

7.2 Key requirements

In chapter 1, two key requirements for the proposed architecture were
identified: scalability and customizability.

7.2.1 A scalable system

As stated in chapter 1 (see section 1.2.1 on page 16), scalability is fulfilled
in two ways: first, the execution time for the overall evolutionary pro-
cess is minimised by using an asynchronous parallel evolutionary process.
Second, the flexibility and robustness of the architecture is maximised by
using a decentralised control structure in combination with a client-server
model.

Reduction in execution time

A parallel architecture is proposed that is similar to the asynchronous
global parallel architecture developed by Rasheed and Davison (1999) for
GADO. GADO was described in chapter 5 (see section 5.2 on page 113),
and the general asynchronous architecture implemented by GADO is
shown in figure 4.5 on page 90. To recap, the GADO architecture uses
an asynchronous steady-state evolution mode and uses a master-slave
parallel model, with the evaluation step being performed by multiple
slaves.

One drawback of the GADO architecture is the lack of a developmen-
tal step. This drawback is considered minor since such a step can easily
be included. Furthermore, this step may be parallelised in the same way
that the evaluation step is parallelised: each time an individual needs
to be developed, the master processor can send the individual to a slave
processor.

As discussed in chapter 4 (see section 4.4 on page 86), the speed up
that can be achieved by parallelising any of the evolution steps is depen-
dent on the computation cost and communication cost of the steps. To

171 CHAPTER 7. COMPUTATIONAL ARCHITECTURE

achieve a maximum speed up, the communication cost should not out-
weigh the computation cost. The developmental and evaluation steps are
good candidates for parallelization: they both have low communication
costs because they require only a single individual from the population;
the computation costs tend to be high due to the complexity of typical
developmental and evaluation processes.

The GADO architecture is seen to be particularly appropriate in do-
mains such as design where the developmental and evaluation processes
may be complex and computationally expensive. The parallel approach
has been tested using up to 100 slave computers and the performance has
been shown to be good. In addition, the steady-state evolution mode has
also been shown to significantly reduce the execution time of the evolu-
tionary process.

The centralised master-slave model used by GADO has a number
of weaknesses with regard to the flexibility and the robustness of the
evolutionary process. The architecture uses a master-slave model where
the master controls the evolutionary process. This results in two weak-
nesses: first, slaves cannot be easily added and removed without stopping
the evolutionary process and reconfiguring the system; and second, the
failure of one or more of the slaves may leave the master processor in an
unstable state, and may cause the system to fail. In the case of generative
evolutionary design, these are both important weaknesses.

• Since the execution time for the evolutionary process may stretch
for a number of days (even when using a parallel implementation),
it is essential that the architecture allows computers to be added
and removed from the evolutionary process with the minimum of
reconfiguration. Systems in research labs and offices are typically
idle for long periods of time but may be intermittently required for
other purposes. A typical scenario is a lab or office where comput-
ing resources are used during the day but not at night. Computing
resources may include globally networked systems connected via
the Internet and allow evolutionary systems to make use of com-
puting resources in different time-zones. The systems connected to
such networks will typically vary in terms of hardware and soft-
ware. Such computing resources are described as heterogeneous
computing resources.

• It is also important that the architecture is able to cope with the
failure of systems participating in the evolutionary process in a
graceful manner. With generative evolutionary design, the process
of developing and evaluating designs can be complex and the failure
of one of these processes becomes more likely. The chance of such
failure is further increased when the long execution time of the
overall evolutionary process is taken into account.

For the above reasons, the centralised master-slave model used by
GADO is replaced by a decentralised control structure using a client-
server model. With GADO’s master-slave model, the master processor

7.2. KEY REQUIREMENTS 172

maintains the population and controls all the evolution steps. With the
proposed architecture, the server manages the population but has no
direct control over the evolution steps. The developmental and evaluation
steps are parallelised, with multiple clients performing developmental and
evaluation steps in parallel. This allows the architecture to be both more
flexible and more robust.

Flexible and robust architecture

With the proposed architecture, the core evolutionary module — referred
to as the population module — maintains the population. This module is
executed on the central server, but does not control the evolution steps.
Instead, it passively waits to be contacted by the evolution steps, thereby
allowing the evolution steps to act independently from the population
module and from one another.

Each of the evolution steps are conceptualised as modular software
components that perform transformations: each step requires a num-
ber of individuals, processes these individuals, and produces some result.
The result is usually a new or updated set of individuals, or — in the
case of the survival step — one or more individuals to be deleted. The
evolutionary process consists of evolution steps contacting the popula-
tion module to request a set of individuals, processing these individuals,
contacting the population module once more to send the results back
again.

This decentralised control structure results in a population where in-
dividuals are in various different states : some only have a genotype, oth-
ers have been processed by the developmental step and have a phenotype,
while others also have evaluation scores.

Each of the evolution steps requires individuals in a particular state.
It is the responsibility of the population module to ensure that each
step is sent individuals in an appropriate state. The individuals in an
appropriate state are referred to as candidates. When the population
module receives a request from one of the evolution steps, it will first
identify all possible candidates in the population and will randomly select
the required number of individuals from these candidates.

Four evolution steps are used: reproduction, development, evaluation
and survival. (The selection step is no longer defined as a separate step
but is seen as part of the reproduction step.) Figure 7.1 on the facing
page shows the main components of the general asynchronous decen-
tralised evolutionary architecture. This architecture is proposed as an
alternative to the two existing general architectures discussed in chapter
4: the general synchronous architecture and the general asynchronous
architecture.

The four evolution steps are described as follows:

• The reproduction step requests a small pool of parent individuals
that have been fully evaluated. These parent individuals are used
to create new offspring which are added to the population.

173 CHAPTER 7. COMPUTATIONAL ARCHITECTURE

Figure 7.1: General decentralised evolutionary architecture.

• The developmental step requests a single individual that has not yet
been developed. This step creates a phenotype for the individual
then returns it to the population.

• The evaluation step requests a single individual that has been de-
veloped but not yet evaluated. This step evaluates the individual
with respect to a predefined objective then returns it to the popu-
lation. If more than one objective needs to be evaluated, multiple
evaluation steps will be used, with each step focusing on one ob-
jective.

• The survival step requests a small pool of individuals that have been
fully evaluated. The evaluation scores are used to select individuals
from the pool, and these selected individuals are deleted from the
population.

Figure 7.1 also shows an initialization step and a termination step.
The initialization step allows a new initial population of individuals to
be created, while the termination step allows termination conditions for
the evolutionary process to be specified.

Within evolutionary design systems, a visualization step may also
be included that allows users to manually select individuals from the
population and to visualise their design models. Such a step would not
be significant outside the design domain and it is not incorporated in
the general architecture shown in figure 7.1. In evolutionary design, the
visualization processes may be complex, especially if the phenotype is
represented using a non-standard format that requires translation. For
evolutionary design systems, it is included as a step in its own right (see
figure 1.4 on page 21). This step is similar to the evolution steps in that it
also requests an individual from the population for processing. However,

7.2. KEY REQUIREMENTS 174

it has no effect on the individuals that it processes and therefore no
results are sent back to the population module.

Due to the high computation costs and low communication costs, the
developmental and evaluation steps are seen to be good candidates for
parallelization. In contrast, with the reproduction and survival steps,
the communication costs are much higher due to the fact that multi-
ple individuals are required, and the computation costs are much lower.
These steps are therefore not good candidates for parallelization. The
visualization step may also benefit from parallelization, but for different
reasons. In this case, parallelization would not affect execution time, but
would allow more than one designer to interrogate the design models in
the population from any networked location.

The architecture parallelises the development, visualization and eval-
uation step, which can be performed by client computers, while a server
computer can host the population module and perform the reproduction
and survival steps. Development, visualization and evaluation clients
will contact the population module via the network, while the reproduc-
tion and survival steps residing on the server can contact the population
module directly.

The proposed architecture is both flexible and robust:

• The decentralised control structure means that developmental and
evaluation clients can be added to or removed from the evolutionary
process without any reconfiguration the central population mod-
ule running on the server. The population module will not even
be aware of the number of clients. Furthermore, the client-server
model only requires computer systems to use compatible commu-
nication protocols, but does not require systems to be running the
same operating system or software. This approach results in a
highly flexible architecture that can make maximum use of hetero-
geneous computing resources.

• With the proposed architecture, the two most complex steps —
the developmental and evaluation steps — are performed by client
computers only loosely linked to the evolutionary system. Assum-
ing that multiple clients have been assigned to both these steps, the
failure of one of the clients will result in the evolutionary process
slowing down, but will not cause the whole system to fail. Further-
more, once the failure has been detected, the client computer can
simply be restarted.

7.2.2 A customisable system

The majority of evolutionary systems are provided to users either as
source-code libraries or as programming toolkits (Alba and Troya, 1999).
As discussed in chapter 4 (see section 4.3.1 on page 91), they are rarely
implemented as ready-made menu-driven systems. The proposed archi-
tecture follows this trend and specifies a system that falls into the cate-

175 CHAPTER 7. COMPUTATIONAL ARCHITECTURE

Figure 7.2: Conceptual diagram showing the division between the generic
core and the specialised components.

gory of programming toolkit. The users of the architecture are envisaged
to be researchers experimenting with the generative evolutionary design
approach. The users of the evolutionary system implemented based on
this architecture are envisaged to be design teams.

The proposed architecture uses an approach that is a generalised ver-
sion of the concept-seeding approach (see section 6.2.3 on page 160).
In particular, the architecture divides the evolutionary system into two
parts: a generic core and a set of specialised components. The generic
core provides the main infrastructure for creating an evolutionary design
system. The specialised components, on the other hand, must be defined
by the design team and will include a set of rules and representations that
define the transformations performed by the evolution steps. Figure 7.2
shows the relationship between the generic core and the specialised com-
ponents. During the evolutionary process, the generic core will invoke
the specialised components, which may in turn invoke other specialised
components.

As stated in chapter 1 (see section 1.2.1 on page 16), three different
types of specialised components can be created: first, a set of routines
routines can be created that capture a set of design ideas; second, envi-
ronmental data-files can be created that capture information about the
design constraints and the design context; and third, existing software
applications can be used to support the developmental, visualization and
evaluation routines.

Routines

The first and most important level of customization is the creation of a set
of routines that encode the design schema. Routines, unlike data-files and
applications, are not optional and must be defined for the evolutionary
process to be able to run.

In chapter 4, a variety of rules and representations for the evolution

7.2. KEY REQUIREMENTS 176

steps were described. Researchers have experimented with a wide vari-
ety of rules and representations. This experimental approach is necessary
because there is little theory to guide the researcher regarding what the
most appropriate rules and representations are in a specific situation. As
a result, researchers must rely on intuition and trial-and-error experi-
mentation.

A number of representations for genotypes were discussed, includ-
ing string based representations such as binary strings and real-valued
vectors, and more complex types of representations such as tree struc-
tures. For selection rules, rank based selection, tournament selection
and Boltzman selection were discussed. Reproduction operators were
also discussed, including versions for both binary strings and real-valued
vectors. For complex representations such as those used in genetic pro-
gramming, specialised operators are required. For calculating the fitness
of an individual, various scaling and multi-objective scalarization tech-
niques were introduced. In chapter 4, various strategies for creating rules
and representations for the developmental step were discussed. Some of
these strategies were used in the systems described in chapter 5.

By keeping the routines separate from the generic core, the architec-
ture allows the design team to use any of these rules and representations.
The design team can embed their rules and representations within the
routines, which will then be executed by the generic core. The four evolu-
tion steps each have their own routines. In addition to this, there is also
an initialization routine, a termination routine and a visualization rou-
tine. (These routines will be described in more detail below.) Together,
these routines constitute the encoded schema.

The proposed design method described in chapter 6 discusses the pro-
cess of capturing and codifying the design schema as a set of task-specific
routines. The routines can be used by the evolutionary system to evolve
design. This approach allows the conflict between the style problem and
the variability problem (discussed in chapter 6, section 6.2.3 on page 159)
to be resolved. To recap: on the one hand, if task-specific rules and rep-
resentations are employed, the system’s re-usability will be limited to a
small group of designers. On the other hand, if task-specific rules and
representations are not employed, the performance of the system will be
poor. Dividing the evolutionary system into a generic core and a set
of specialised components allows task-specific rules and representations
to be employed while at the same time ensuring a reasonable level of
re-usability.

Data-files

The second level of customization involves the creation of environmental
data-files that describe significant aspects of the design constraints and
design context. The developmental, visualization and evaluation steps
may all make use of environmental information when processing individ-
uals.

177 CHAPTER 7. COMPUTATIONAL ARCHITECTURE

The constraints may include the budget, the number of spaces, spa-
tial requirements, and performance targets. The context will include
information about the building site and may also include large-scale con-
ditions such as weather data. The constraints and context are encoded
in a data-file that is available to the routines. This environmental infor-
mation may be used as follows:

• For the developmental routine, the design team may specify an
epigenetic generative processes that creates a design in response
to both genetic information and environmental information. The
architecture incorporates the approach explored by Frazer (1974);
Frazer and Connor (1979); Frazer (1995b), whereby designs are gen-
erated in response to the environment (see section 5.6 on page 134).

• For the visualization routine, the design team may create visual-
izations that take into account environmental information. For ex-
ample, neighbouring buildings, site dimensions, and other physical
conditions may be visualised. The latitude may also allow realistic
rendering of the design at different times of the year and day.

• For the evaluation routine(s), the design team may require informa-
tion about the environment to perform the necessary evaluations.
In addition to the environment data-file, some information may also
specified in the simulation applications, to be discussed in the next
section. For example, energy-related simulation applications use
weather files that describe yearly weather patterns for a particular
location.

The architecture allows the environment data-files to be modified and
replaced independently from the routines.

Applications

The third level of customization allows for the use of existing software
applications by the developmental, visualization and evaluation routines.
Integrating such applications is likely to save time and lead to more
accurate results.

• The developmental routine uses a generative process that may re-
quire various modelling functions. Basic geometric functions and
representations, such as points, lines, planes and the interactions
between them are likely to be required. In addition much more
complex functions such as surface and solid modelling functions
may also be required depending on the generative process.

• The visualization routine must provide an interactive interface that
allows a three-dimensional model of a building to be interrogated
by the user. In order to help the user understand the design, such
an interface should allow models to be rotated, rendered, sectioned,

7.2. KEY REQUIREMENTS 178

and printed. Many such interfaces exist already and may be used:
some have been developed as stand-alone visualization programs
for standard file formats, some are integrated in CAD applications,
while others exist as plug-ins for Internet browsers.

• The evaluation routine evaluates the design models with respect
to a set of objectives. For many objectives, existing applications
already exist. For example, the website for the U.S. Department
of Energy1 lists nearly 300 different software tools for the analysis
and simulation of energy and light in buildings. Any existing ap-
plication that can be automatically executed by another program,
and whose inputs and outputs are text based, may be used.

Rather than integrating existing applications, some researchers have
have attempted to implement the required functionality from scratch.
This is the approach used by Bentley (1996) in GADES. Bentley pro-
poses developing a library of custom-written evaluation routines that are
capable of evaluating any forms, even highly chaotic ones. The weakness
in this approach has been highlighted by Bentley himself. He admits that
such simplified custom-written routines are incapable of evaluating a de-
sign to the desired level of accuracy (Bentley, 1999b, p. 42). On the one
hand, many of the processes required by these steps are difficult to im-
plement from scratch, and on the other hand advanced implementations
are readily available in existing applications.

The integration of an evolutionary system with existing analysis and
simulation applications has been explored by Caldas (2001) and imple-
mented in GS, the parametric evolutionary design system developed by
her. To recap, GS evolves three-dimensional design models (represented
using the BDL language) that are evaluated with regard to thermal per-
formance and lighting performance. The evaluation step invokes a DOE-
2 simulation application to perform an hourly simulation of the designs.
The results of the simulation are returned to the evolutionary system
and used to calculate a fitness for each design. However, GS is only ca-
pable of using the DOE-2 program. As Caldas herself suggests, it should
be possible to also integrate other applications. Most building designs
need to be evaluated for multiple objectives, and as a result these eval-
uations may need to invoke different analysis and simulation programs.
The architecture allows for the possibility of integrating more than one
application.

The integration of CAD modelling applications for both generating
forms and visualising forms has been explored by Frazer (1995b) and his
students in a variety of different systems. The main applications used
have been AutoCAD2 c© and MicroStation3 c©. Evolutionary systems
were developed that were fully integrated in the CAD application. For

1http://www.eere.energy.gov /buildings/tools directory/
2http://www.autodesk.com
3http://www.bentley.com

179 CHAPTER 7. COMPUTATIONAL ARCHITECTURE

example, the Interactivator (see section 5.6.2 on page 136) was developed
using a programming language embedded in AutoCAD4, thereby allow-
ing the generative process to make direct use of the AutoCAD modelling
functions. In addition, AutoCAD was also used for visualization, with
all feedback from the evolutionary process being displayed in the Au-
toCAD window. The evolutionary system developed by Sun (2001) (see
section 5.5.2 on page 132) was similarly integrated with MicroStation. As
with the Interactivator, both the developmental step and the visualiza-
tion step made extensive use of modelling and visualization functionality
available in MicroStation.

Two key obstacles to creating such an architecture may be identified:
first, analysis and simulation applications are computationally expensive
and if multiple applications are used, the evolutionary process may come
to a virtual standstill. Second, the various applications often have con-
flicting requirements in terms of operating systems and hardware require-
ments, and cannot be run on the same computer. Both these obstacles
are resolved by using the parallel architecture discussed above.

7.3 Overview of architecture

The proposed architecture was broadly described in chapter 1, and fig-
ure 1.4 on page 21 shows the overall structure. This structure can be
further broken down into a more detailed set of interacting and com-
municating program components. Figure 7.3 on the next page shows a
more detailed view of the proposed architecture. This section describes
the main features of the architecture, some of which have already been
discussed in section 7.2 above.

The architecture divides the evolutionary system into two parts: a
generic core and specialised components. The generic core does not need
to be modified or recompiled by the design team and has a high level
of re-usability: it is applicable to a wide range of design tasks. The
specialised components must be defined by the design team and are spe-
cific to a particular design schema. The generic core and the specialised
components must manipulate and exchange the same set of individuals.

7.3.1 Individuals

The parts of an individual

Each individual in the population is broken down into a generic part and
a specialised part. The generic part includes two representations: a set
of possible flags and a unique ID.

• Flags are boolean values used to store information about the in-
dividual. The phenotype flag is true if the individual has been

4AutoLisp, a dialect of the LISP language, was used. Programs written in Au-
toLisp can directly call modelling and visualization functions in the AutoCAD system.

7.3. OVERVIEW OF ARCHITECTURE 180

Figure 7.3: The main components of the proposed architecture.

developed, and one or more evaluation flags are set depending on
which evaluations have been performed. By default, these flags are
all set to false. In addition, the checked out flag is used to indicate
that the individual is being processed by one of the evolution steps.

• The ID is an integer value that is unique in the history of the evolu-
tionary process. The first individual to be added to the population
is assigned an ID of 0, and thereafter the ID is incremented for
each new individual added. The ID indicates the relative age of
the individual. (This age may be of use to some of the evolution
routines. For example, the survival routine may choose to delete
the oldest individuals.)

The specialised part of an individual consists of three representations:
a genotype, a phenotype and a set of evaluation scores.

• The genotype may have any type of representation. For example,
the genotype may be a fixed length binary or real-valued string, a
variable length string, or some other more complex type of data-
structure.

181 CHAPTER 7. COMPUTATIONAL ARCHITECTURE

Figure 7.4: The structure of an individual in the population, and the
four states an individual may be in.

• The phenotype may also have any type of representation. For ex-
ample, the phenotype may use some standard format for describing
three-dimensional form, or it may use a customised schema-specific
data format.

• The evaluations consist of a list of one or more representations.
Each individual representation may also be of any type, but will
often simply consist of a real number. When an evaluation is per-
formed, the resulting representation is stored in the list.

The state of an individual

An individual in the population may be in a number of states, depending
on whether the individual has been or is in the process of being developed
and/or evaluated. The state of an individual can be deduced from its
flags.

Individuals may be described using a number of terms, which relate
to the state of the individual. Figure 7.4 shows four commonly used
terms, and how these terms relate to the state of an individual.

• An undeveloped individual has a genotype, but no phenotype and
no evaluation scores.

• An unevaluated individual has a genotype and a phenotype, but no
evaluation scores.

• A partially evaluated individual has a genotype, a phenotype and
some, but not all, evaluations have been performed. (In this case,
it must be a multiple-objective evolutionary process.)

• A fully evaluated individual has a genotype, a phenotype and all
evaluation scores.

7.3. OVERVIEW OF ARCHITECTURE 182

Figure 7.5: Sub-representations of a partially evaluated individual.

An example individual

Figure 7.5 shows an example of a possible individual being evolved for
three objectives, labelled A, B, and C.

• The flags show that the individual a phenotype and that two of
the objectives — objective A and C — have been evaluated. The
flags also show that the individual is currently ‘checked-out’, which
means that one of the evolution steps is processing the individual;
this must be the evaluation step for objective ‘B’.

• The ID shows that this was the 768th individual to be added to the
population. This gives some indication of the age of the individual.

• The diagram of the genotype suggests some kind of hierarchical
representations.

• The diagram of the phenotype suggests some kind of orthogonal
design that may be represented in a number of ways, including
standardised file formats.

• The evaluation scores show that out of three scores, the first and
the last have values while the second is blank. This corresponds to
the flags.

7.3.2 Specialised components

Types of specialised components

The architecture defines three type of specialised components: routines,
data-files, and applications.

183 CHAPTER 7. COMPUTATIONAL ARCHITECTURE

• Routines are small user-defined programs that encapsulate the rules
and representations used by the evolutionary system. Routines are
executed by the generic core.

• Data-files consist of encoded information that describe the design
environment, including both the design constraints and the design
context. Data-files are accessed by routines.

• Applications are third party software applications that may be in-
tegrated into the evolutionary system to perform certain tasks. Ap-
plications are invoked by routines.

Types of routines

Routines are created by the design team and encapsulate the rules and
representations that define the design schema. These routines are modi-
fied and replaced depending on the design schema that is being used. In
total there are seven routines: two population routines executed by the
population module, four evolution routines executed by the four evolu-
tionary modules, and one visualization routine executed by the visual-
ization module.

• The two population routines are the initialization routine and the
termination routine. The initialization routine is used to create a
population of new individuals and specifies the size of the popu-
lation. In most cases, genotypes will be created randomly. The
termination routine specifies a set of termination conditions such
as the maximum number of reproductions or a set of evaluation
targets.

• Evolution routines all specify a single transformation that trans-
forms a set of one or more input individuals into a set of one or
more output individuals. The routine has no direct connection with
the population module.

• The visualization routine converts the design model into a data
format that can be visualised by an existing application. For ex-
ample, the visualization routine may convert the design model into
a VRML model that can be viewed in a web browser with a VRML
plug-in.

These routines, together with the associated representations, consti-
tute the encoded schema as shown in figure 6.1 on page 162.

Manipulation of individuals

The routines directly manipulate the representations in the specialised
part of an individual: the genotype, phenotype and evaluation scores.
The routines should not change the generic parts: the flags and the ID.

7.3. OVERVIEW OF ARCHITECTURE 184

• The reproduction routine will use the evaluation scores to select
parents, and will the use parent genotype to construct new geno-
types for the offspring.

• The developmental step will use the genotype representation to
create a new phenotype representation.

• The visualization step will use the phenotype representation to vi-
sualise the design model, but will not actually change any of the
representations.

• The evaluation step will use the phenotype representation to create
a new evaluation score.

• The survival step will use the evaluation scores to select individuals
for deletion.

Table 7.6 on the next page shows the type and number of input in-
dividuals and the type and number of output individuals. The first and
second columns shows the type and number of individuals that the evo-
lution module must ask for from the population module. The third and
fourth columns show the type and number of individuals that an evolu-
tion module must send to the population module.

The developmental, visualization and evaluation routines may make
use of either design environment data-files or of other existing software
applications. The applications most likely to be employed are CAD mod-
elling applications for the developmental step, three-dimensional visual-
ization applications for the visualization step, and analysis and simula-
tion applications for the evaluation step. The applications are invoked
and controlled by the corresponding routines, which in turn are controlled
and invoked by the corresponding module components.

7.3.3 Generic core

Generic components

The generic core is broken down into a set of modules, which are the main
program components that define the overall structure of the architecture.
In total, there are six modules: a population module, four evolution
modules that perform the evolution steps and a visualization module.

These modules interact using an asynchronous evolution mode, a de-
centralised control structure, and a global parallel client-server model.
The server hosts the population and executes the reproduction and sur-
vival modules, while multiple clients execute the developmental and eval-
uation modules. Clients may be duplicated to the point where commu-
nication costs start to outweigh computation costs.

The visualization module allows designers to view design models in
the population. This module does not affect the evolutionary process in
any way. A user interface for selecting individuals in the population may
be provided.

185 CHAPTER 7. COMPUTATIONAL ARCHITECTURE

Figure 7.6: Input and output of individuals for evolution routines.

Evolution modules

The evolution modules perform the evolution steps that process indi-
viduals in the population. In total, there are four evolution modules:
reproduction, development, evaluation and survival.

These modules will repeatedly perform three actions: they make re-
quests to the population module for one or more individuals, they process
these individuals, make requests to the population module to send back
the results of the processing. An evolution module sends two types of
requests: get-requests and post-requests. A get-request asks the popula-
tion module to get a certain number of individuals from the population.
A post-request has a set of individuals appended to it, and the request
asks the population module to perform some action with the appended
individuals. The type of action performed depends on the type of module
sending the request.

Figure 7.7 on the following page shows the main actions performed
by the evolution modules.

• The evolution module will send a get-request to the population
module asking for new individuals. If the population module can-
not provide the required individuals, for whatever reason,a wait
instruction will be sent to the evolution module. In such a case,
the evolution module will simply wait for a short time, and then
repeat the request.

• Assuming that the population module was able to provide the re-
quired individuals, the evolution module will now execute its cor-
responding evolution routine. The individuals from the population

7.3. OVERVIEW OF ARCHITECTURE 186

Figure 7.7: Flow diagram of the main actions performed by the evolution
modules.

will be provided to the routine as an input. The output will always
consist of another set of individuals.

• The evolution module will send a post-request to the population
module. The results from previous execution of the evolution rou-
tine will be appended to this request.

Population module

The population module is the central module that all other modules must
communicate with. This module performs three actions: it initialises the
population; it responds to get- and post-requests; and it verifies if the
termination conditions have been met.

The main loop performed by the population module is shown in fig-
ure 7.8 on the next page. After initialization, the evolutionary process
can be started. The population module repeatedly performs three main
actions.

• The population module first checks if the termination conditions
have been met. The termination conditions may either be empty,
in which case the process will continue until it is terminated by the
user, or it may specify a condition such as the maximum number of
reproductions or the fulfilment of a particular evaluation objective.

• The population module passively waits for requests from the evo-
lution modules. Request may arrive at any time and in any order.
Requests will be dealt with one at a time in the order that they
arrive.

187 CHAPTER 7. COMPUTATIONAL ARCHITECTURE

Figure 7.8: Flow diagram showing the main loop for the population
module.

• If the population module receives a request, it processes the re-
quests in the appropriate manner depending on whether it is a get-
or a post-request.

The way that the population module processes get and post-requests
is discussed in more detail below. Figure 7.9 on the following page shows
how a get-request is processed, and figure 7.10 on page 190 shows how a
post-request is processed.

Response to a get-request

When the population module receives a get-request from one of the evolu-
tion modules, it must attempt to send the requesting module the required
individuals. Each evolution module requires individuals in a particular
state and the population will consist of individuals in different states:
some individuals will be undeveloped, some will be unevaluated, some
will be partially evaluated and some will be fully evaluated. It is up to
the population module to attempt to find individuals in the population
in an appropriate state. It will scan the population and identify all ap-
propriate individuals, referred to as the possible candidates. If there are
enough candidates in the population to fulfil the get-request, the popula-
tion module will randomly select the required number of individuals from

7.3. OVERVIEW OF ARCHITECTURE 188

Figure 7.9: Flow diagram showing the response of the population module
to a get-request.

the candidates and send copies to the requesting module. The originals
in the population are flagged as being ‘checked out’.

Figure 7.9 shows the main actions performed by the population mod-
ule when it processes a get-request.

• The population module receives a get-request, which will specify
the number and state of individuals that are required. The re-
quired state depends on the type of module making the request,
and the required number of individuals is specified as an initializa-
tion parameter.

• The population module will search the population for possible can-
didates. It will disregard any individuals flagged as ‘checked out’.
If the population contains too few candidates, it will send a wait
instruction back to the requesting module, and then terminate.

• Assuming that sufficient candidates were found in the population,

189 CHAPTER 7. COMPUTATIONAL ARCHITECTURE

the population module randomly selects the required number of
individuals from the candidates. Copies of the selected individuals
are made and sent to the requesting module.

• If the requesting module is a developmental or evaluation module,
the selected individuals in the population also need to be flagged
as being checked out. Flagging the individuals avoids them being
developed or evaluated multiple times.

Response to a post-request

When the population module receives a post-request, one or more indi-
viduals will be appended to the request. The population module will
respond differently depending on the type of evolution module that is
sending the request. When the population module receives a put request
from the reproduction module, it will add the appended individuals to
the population, creating new IDs in the process. When the population
module receives a put request from either the developmental or evalu-
ation module, it will use the ID of the appended individual to find the
matching individual in the population and replace it. When the pop-
ulation module receives a put request from the survival module, it will
delete the existing individuals in the population with IDs that match the
appended individuals.

Figure 7.10 on the next page shows the main actions performed by
the population module when processing a post-request. (See figure 7.8 on
page 187 for a view of the overall behaviour of the population module.)
It performs six actions.

• The population module receives a post-request with a set of indi-
viduals appended to the request.

• If the requesting module is the reproduction module, new unique
IDs can be created for each appended individual, and the individ-
uals can be added to the population.

• If the requesting module is not the reproduction module, the ap-
pended individuals will have matching individuals in the popula-
tion. The population module finds the matching individuals by
searching for their IDs in the population.

• If the requesting module is the survival module, the individuals
found in the population must be deleted.

• Otherwise, the requesting module must either be a developmental
or evaluation module, and only a single individual will be appended
to the request. The flags for this individual must be updated to
reflect its new state.

7.3. OVERVIEW OF ARCHITECTURE 190

Figure 7.10: Flow diagram showing the response of the population mod-
ule to a post-request.

• Finally, the appended individual will replace the individual found
in the population. This will also automatically remove the flag
indicating that the individual was checked out.

7.3.4 Interactions between components

Four evolution steps

Each of the four evolution steps includes a generic module and a spe-
cialised routine. The evolution modules repeatedly contact the popu-
lation module for one or more individuals, process these individuals by
executing the routine, and contact the population module again to send
back the new or updated individuals. Once an evolution module has
completed this process, it will immediately contact the population mod-
ule again and repeat the process. If all individuals in the population
have already been processed, the population module will ask the evolu-
tion module to wait for a short time. The time period for this waiting
instruction can be adjusted by the population module and is the only

191 CHAPTER 7. COMPUTATIONAL ARCHITECTURE

control that it has over these modules.
The four evolution steps were briefly discussed in section 7.2.1 on

page 172, and will be described here in more detail.

• The reproduction module requests a pool of fully evaluated parents,
which the population module will randomly select from all suitable
candidates. One or more new individuals are produced by executing
the reproduction routine. The size of the pool is specified as an
initialization parameter. If two parents reproduce to create one
child, the reproduction routine may ask for a pool of ten parents
and create five children. Alternatively, the reproduction routine
may be designed to impose some selective pressure by choosing the
fittest two parents from the pool, and creating just one child.

• Each developmental module requests a single undeveloped individ-
ual, which the population module randomly selects from all suitable
candidates, and flags as checked-out. The individual is then devel-
oped by executing the developmental routine.

• Each evaluation module requests one individual that has not been
evaluated for the objective, which the population module randomly
selects from all suitable candidates, and flags as being checked-out.
The individual is evaluated by executing the evaluation routine.
Such an evaluation is an attempt to predict the performance of the
design model, should the design be implemented.

• The survival module requests a pool of fully evaluated individuals,
which the population module randomly selects from all suitable
candidates. One or more individuals are selected for deletion by
executing the survival routine. The size of the pool is specified by
the survival routine. For example, the survival routine may de-
terministically choose the individuals in the pool with the worst
evaluations. (This is tournament selection, with the pool consti-
tuting the tournament.) If multiple objectives are evaluated, the
survival routine will need to use a scalarization technique to rank
the individuals in the pool.

Size of pool

The asynchronous evolution mode allows individuals in the population
to be added one at a time. The evolutionary process does not need to
wait for the whole population to be developed and evaluated. As soon
as an individual has been evaluated, the evolutionary process can start
to either discard or incorporate its genetic information.

For both the reproduction step and the survival step, the size of the
pool may be specified in advance as one of the initialization parameters.
However, defining an appropriate pool sizes is complicated by the fact
that these sizes will affect both the asynchronous evolution mode and
the selection pressure:

7.3. OVERVIEW OF ARCHITECTURE 192

• The larger the pool, the more likely it is that requests for individu-
als will be rejected due to there being too few suitable individuals
in the population at that point in time. As the size of the pool ap-
proaches the population size, such rejections will become more com-
mon. The evolution mode will become similar to the synchronous
evolution mode.

• The smaller the pool, the lower the selection pressure will be, with
the evolutionary process becoming more exploratory. As the pool
size approaches one, the evolutionary process will become similar
to random search.

A balance must be found between these conflicting requirements. One
solution is to allow this size to vary dynamically, and to be equal to the
number of candidate individuals in the population at the time. This
would ensure that the largest possible pool of individuals would be used
without requiring the evolutionary process to stall.

Evaluation of multiple objectives

If multiple objectives are being evaluated, at least one evaluation module
per objective must be defined. Each evaluation module will be associated
with a different evaluation routine, and each evaluation routine may make
use of a different analysis or simulation application.

For example, a design schema may include three main objectives:
minimization of the building’s construction cost, minimization of build-
ing’s energy consumption and maximization of interior daylight levels.
Three routines would need to be defined: a cost analysis routine, an en-
ergy simulation routine, and a daylight simulation routine. Each routine
would be controlled by its own module. For example, the cost analysis
routine would be controlled by its own module that would specifically
request individuals from the population that had not yet had their cost
evaluated. Similarly, the energy and daylight simulation routines would
each be controlled by their own modules.

Different objectives are evaluated independently from one another.
An individual in the population may have multiple evaluations performed
in any order. For example, the cost module will request any developed
individual that has not had its cost evaluated. Whether or not the in-
dividual has had daylight levels or energy consumption simulated makes
no difference.

In an ideal situation, each objective will have one or more clients
assigned to it. However, the number of clients used will in practice depend
on the computing resources available. If such resources are limited, it is
possible for a client to be assigned to more than one type of evaluation, or
to be assigned to perform both the evaluation step and the developmental
steps. It is even possible to run the whole system on a single computer,
acting as both client and server.

193 CHAPTER 7. COMPUTATIONAL ARCHITECTURE

Controlling the size of the population

One consequence of using a decentralised approach is that the population
size will naturally tend to vary over time. The variance in the population
size will depend on the rate at which the reproduction module adds
new individuals to the population and the rate at which the survival
module deletes individuals. If some form of control were not applied,
the population size would be unlikely to remain stable. The population
module must control the size of the population by issuing appropriate
waiting instructions to the reproduction and survival modules.

Before the evolutionary process starts, the population size is prede-
fined. The population module attempts to maintain the population at
this size. If the population is greater than the population size, the repro-
duction module will be instructed to wait. If the population is smaller
than the population size, the survival module will be instructed to wait.

7.4 Implementation strategies

In order to implement an evolutionary system based on the proposed
architecture, various decisions need to be made concerning the languages
and technologies used. Languages and technologies for three key areas
would need to be decided upon: the generic core, the individuals, and the
specialised components. Each of these areas have different requirements.

7.4.1 Language and technologies for the generic core

Key requirements

The generic core consists of six different modules distributed between one
server and a set of clients. The server hosts the population module and
two evolution modules. The other three modules — the developmen-
tal, visualization and evaluation modules — reside on client computer
systems that communicate via the network with the population module.
One of the key requirements for the generic core is a language that has
good networking capabilities. The other requirement is that the mod-
ules residing on the client computers remain platform independent. This
allows clients to use the operating systems required by existing applica-
tions.

Java is suggested as an ideal language because it has built in support
of standard networking technologies, and is platform independent. There
are a number of Java-based technologies that may be used to implement
the communication between the modules. Two possible approaches that
exploit existing technologies are identified: an implementation using Java
Servlets technology and an implementation using JavaSpaces technology.

7.4. IMPLEMENTATION STRATEGIES 194

Implementation using Java Servlets

Java Servlets is a technology that facilitates building server based web
applications. Servlets are Java programs that reside on a server and
are managed and executed by a server software — called a servlet con-
tainer — that provides network services for communication between the
server and its clients. Clients interact with the servlet container using
the request-response model and will typically use the Hypertext Transfer
Protocol (HTTP).

A program on the client will send a HTTP request to the server. The
container will receive the request and, depending on the type of request,
will pass the request onto a servlet. After the request, the servlet will
perform some kind of processing, possibly accessing resources stored in
a database, and will produce a HTTP response. The container will pass
the response back to the client.

In many cases, the program running on the client will be a web
browser, and the request will be for a web page which the servlet gen-
erates dynamically. However, the servlet programming paradigm is flex-
ible and powerful, and is not limited to generating web content. The
paradigm has also been used to develop a wide variety of distributed
applications.

For the proposed architecture, this approach may be used to imple-
ment the interaction between modules. The population module could
be implemented as a servlet. The servlet would store the population in
a database and would read and write individuals to the database each
time a request was received. The other modules would be implemented
as client programs that communicate with the servlet using the HTTP
protocol. The HTTP protocol allows for various types of requests to be
sent, including GET requests and POST requests. These may be used to
either ask for or send individuals to the population module.

The advantage of using this approach is that many aspects relating
to communication, persistence, and scalability are taken care of by the
servlet container. Containers implement the Java Servlet specification
developed by Sun, and Tomcat5 c©is a freely available servlet container
that is used in the official Reference Implementation. Many other servlet
containers have been developed, and are usually a component of web
and application servers6. Such servlet containers also typically provide
web based user interfaces that allow web applications and servlets to be
managed remotely.

Implementation using JavaSpaces

JavaSpaces is a technology that facilitates building distributed applica-
tions in networked environments. Building distributed applications with

5http://jakarta.apache.org/tomcat/
6For example, commonly used web and application servers include BEA WebLogic

Application Server, IBM WebSphere, Sun Java System Web Server, Sun Java System
Application Server

195 CHAPTER 7. COMPUTATIONAL ARCHITECTURE

conventional network tools usually entails passing messages between pro-
cesses or invoking methods on remote objects. With the JavaSpaces
framework, in contrast, processes do not communicate directly, but in-
stead coordinate their activities by exchanging objects in an area of
shared memory, called a space. A client can write new objects into a
space, take objects from a space, or read objects in a space. When tak-
ing or reading objects, processes use simple matching, based on the values
of fields, to find the objects that matter to them. If a matching object is
not found immediately, a process can wait until one arrives.

For the proposed architecture, the population module could be imple-
mented as a space, with individuals in the population existing as objects
in the space. The other modules in the generic core would be imple-
mented as clients that write, take and read objects from the space. The
use of JavaSpaces technology for implementing an evolutionary system
was first proposed by Setzkorn and Paton (2004).

Objects in spaces are identified using a matching process that is sim-
ilar to the matching process performed by the population module. With
the population module, when one of the other modules makes a request
for one or more individuals, it needs to find individuals in the population
in an appropriate state. By specifying a template that contains values for
a set of fields, the matching process can be performed by the JavaSpaces
framework. If the values for the fields correspond to the required state
of the individual, any objects returned will be individuals in the correct
state.

As with the Java Servlet approach, the advantages of this approach
is that communication, persistence, and scalability are all taken care of
by the JavaSpaces framework. In addition, the communication costs of
this approach are likely to be lower than the Java Servlet approach.

7.4.2 Language and technologies for representing
individuals

Key requirements

The generic part of an individual consists of simple types of representa-
tions with fixed data-structures. The flags may simply consist of a vari-
able length list (depending on the number of objectives) of boolean val-
ues, and the ID is a single integer value. The specialised representations,
however, may be much more complex. Furthermore, the data-structures
for these representations cannot be specified in advance because differ-
ent design teams are likely to want to experiment with different types of
data-structures.

A flexible type of representation is required that allows design teams
to experiment. The most complex representation is likely to be the phe-
notype representation. This representation must go beyond the types of
geometry-based representations used in CAD modelling applications. As
well as geometrical information, the design model must also incorporate

7.4. IMPLEMENTATION STRATEGIES 196

Figure 7.11: Individual represented using a single tree structure with
various sub-trees.

information required by analysis and simulation applications. Such ap-
plications typically require three type of information: component-based
information (e.g. cost estimation), space-based information (e.g. thermal
simulation), and networked based information (e.g. structural analysis)
(Mahdavi, 1998).

Implementation using XML

An appropriate language for creating such representations is eXtensible
Markup Language (XML), a flexible text based data format for structured
data. XML may be thought of as a meta language which allows data
representation languages to be defined. XML is also an open standard, is
human-readable, and is widely supported by most common programming
languages including Java.

XML data is defined as a set of nodes structured as a hierarchical
inverted-tree. Each node may have a set of attributes and one or more
sub-nodes. (Non-hierarchical references between nodes allows most types
of commonly used data-structures — such as lists and graphs — to be
easily represented.) If XML is used to represent an individual, each
individual would be represented by a single tree structure. A possible
structure for this tree is shown in figure 7.11. The top node is the indi-
vidual node which has an ID attribute and a number of flag attributes.
This node has three sub-nodes called genotype, phenotype and evalua-
tions. The genotype and phenotype nodes would have sub-trees (shown
in the figure as triangles) containing the genotype and phenotype data.
The evaluations node has one or more evaluation nodes that each have
sub-trees that contain the results from each evaluation.

197 CHAPTER 7. COMPUTATIONAL ARCHITECTURE

For representing design models, XML may be used to define a custom
representation incorporating all the information required by the analysis
and simulation applications. In the AEC/FM industry, the development
of comprehensive building representations that can be used by a wide va-
riety of software applications, referred to as interoperability, has become
an important research area.

Interoperability between software is based on the idea of a Build-
ing Information Model (BIM) (sometimes described as a virtual building
model or building product model). A BIM is a term used to describe a
type of representation developed specifically for describing objects and re-
lationships specific to buildings. The Industry Foundation Classes (IFC)
by the International Alliance on Interoperability (IAI) represents the lat-
est effort, jointly by research organizations and commercial vendors, to
develop a BIM (Eastman, 1999). The analysis and simulation applica-
tions now capable of importing the IFC BIM include thermal comfort
applications, energy simulation applications, airflow simulation, struc-
tural analysis applications, and so forth. Furthermore, the IFC BIM
is also supported by a number of key modelling applications, including
Autodesk, Bentley, Graphisoft, and Nemetschek.

The IAI have also developed a version of IFC that uses XML, called
ifcXML. This type of representation may be appropriate for use as a rep-
resentation for the design model. The key advantage of using a standard
representation such as ifcXML is that it would make the integration of
analysis and simulation applications easier. Using a standardised rep-
resentation that is compatible with these applications would avoid the
need for conversion routines that translate one representation into an-
other representation. This also applies to the visualization of design
models.

7.4.3 Language and technologies for specialised com-
ponents

Key requirements

Routines encode all the evolutionary rules and representations and must
be defined as small programs that can be executed by one of the Java
modules. When executed, the routines must process one or more in-
dividuals, which are defined using XML. In addition, routines must be
able to read data stored in the environmental data-files, and they must
be able to execute or interact with existing applications. As with the
modules, routines must also be platform independent, thereby ensuring
that clients are not limited to using only one operating system.

The links between the Java modules and the routines need to be im-
plemented in a way that does not require the modules to be re-compiled
every time the routines are modified or replaced. The links should be
specified in a flexible manner. This could be achieved by using a con-
figuration file that specifies the routines to be executed and that is read

7.4. IMPLEMENTATION STRATEGIES 198

by the Java module at the time of execution. However, in addition to
executing the routine, the Java module also needs to pass the XML data
of the individuals to the routine for processing, and subsequently needs
to retrieve the results from the processing, which will also be a set of
XML data.

Two key implementation issues need to be decided: first, the lan-
guages and techniques used for implementing the link between the mod-
ules and the routines; and second, the language used to define routines.
For creating the link between the modules and routines, a language is
proposed — called the Extensible Stylesheet Language: Transformations
(XSLT) — that allows rules to be defined for manipulating and trans-
forming XML data. Java is again proposed as the most suitable language
for routine. There are a number of other languages that may be used,
these are described below.

Links using XSLT

XSLT is a language that can be used to specify a set of rules that trans-
form one XML tree, called the source tree into another XML tree, called
the result tree. In order to perform the transformation, a program called
an XSLT processor is required. Such a processor will, when provided
with an XML source tree and a set of XSLT transformation rules, gen-
erate an XML result tree. Many processors have been developed that
can easily be embedded in another program. The Apache Xalan-Java
processor is a Java implementation of such a rule processor.

The XSLT language allows a set of transformation rules to be defined,
each consisting of a template and a pattern. An iterative matching process
is used that attempts to match the templates to structures in the source
tree, and if a match is found the pattern of the matching rule is added to
the result tree. The structure of the result tree can be completely different
from the structure of the source tree. In constructing the result tree,
nodes from the source tree can be filtered and reordered, and arbitrary
structure can be added.

Within the proposed architecture, the evolution modules may each
incorporate an XSLT processor and use this processor to transform a
source tree that represents one or more individuals. Since XSLT cannot
process more than one tree, multiple individuals need to be aggregated
into a single tree. For each get-request, the population module will cre-
ate single a source tree that contains one or more individuals. These
individuals may, for example, have been requested by the reproduction
module as parents to be used to create new offspring. This source tree is
sent to the requesting module, and this module applies the rules specified
in the XSLT file to the tree structure, thereby generating a result tree.
The population module receives the tree structure, disaggregates it into
separate trees for each individual, and then performs the appropriate
actions.

Although the XSLT language is powerful, it is not suitable for the

199 CHAPTER 7. COMPUTATIONAL ARCHITECTURE

performing complex types of processing typically required in the devel-
opmental and evaluation steps. For such transformations, functions can
be called to perform the required processing. The XSLT language in-
cludes a set of functions that can be used in rules to perform various
functions. In addition to the standard function provided, users may also
define their own functions — called extension functions — and call these
functions from within their XSLT rules. When a function is called, the
function can be passed to any part of the XML source tree for processing,
and the result of the processing can be placed in the result tree.

The routines for the evolution steps can be implemented as a set of
functions. The link between the module and the routine can be specified
in a file that contains a set of XSLT rules that call the required functions.

Each of the modules could be implemented in a similar way: each
module would read a file and extract a set of XSLT transformation rules
that include calls to functions defined as separate routines. The popula-
tion module would also be implemented in a similar way with respect to
initialization and termination routines. The XSLT transformation rules
could be defined as a set of files created by the design team. The generic
core would not have to be changed in any way. Another advantage of
using XSLT is that it is a standard developed by the World Wide Web
Consortium. This means that proprietary languages do not have to be
learnt.

Language for routines

Extension functions for XSLT may be written in Java and in a variety
of scripting languages. The website for the Apache Xalan-Java processor
lists the following scripting languages: Javascript7, Python8, Tcl9, Ne-
tRexx10, VBScript11, PerlScript12, Groovy13, and ObjectScript14. The
possibility of using powerful scripting languages rather than full-blown
programming languages may be a useful feature because it considerably
reduces the knowledge threshold for design teams interested in develop-
ing and encoding design schemas. However, it is unclear whether these
types of languages are capable of invoking and interacting with third-part
applications. Java is therefore seen as a good compromise.

7http://www.mozilla.org/rhino
8http://www.jpython.org/
9http://www.scriptics.com/java

10http://www2.hursley.ibm.com/netrexx
11http://msdn.microsoft.com/scripting
12http://www.activestate.com/
13http://groovy.codehaus.org/
14http://objectscript.sourceforge.net/

7.5. SUMMARY 200

7.5 Summary

This chapter has described and discussed the proposed computational
architecture. The main points are as follows:

• The architecture is highly scalable. This is achieved by using an
asynchronous parallel model in combination with a decentralised
control structure. The asynchronous parallel model is similar to
that used by the GADO system, and allows the execution time to
be significantly reduced. The master-slave control structure used
by GADO is replaced with a decentralised control structure using
a client-server model. This control structure results in an architec-
ture that is both more flexible and more robust.

• The architecture is highly customisable. This is achieved by di-
viding the evolutionary system into a non-customisable generic
core and a highly customisable set of specialised components. The
generic core incorporates no schema-specific knowledge, thereby en-
suring that it can be used by any design team. The specialised
components incorporate schema-specific knowledge. Three types
of specialised components are defined: routines that encapsulate
the evolutionary rules and representations; environmental data-files
that list information relating to the design constraints and design
context; and, existing applications that can be used to perform
modelling, visualization and evaluation functions.

• The generic core consists of six generic modules: a population mod-
ule that manages the population, four evolution modules that au-
tonomously perform the four evolution steps, and a visualization
module that allows users to visualise design models. The evolution
modules extract individuals from the population and then process
these individuals by invoking the corresponding evolution routine.
The representation of an individual consists of a generic part and
a specific part. The generic module can manipulate and modify
the generic part, while the specialised routines can manipulate and
modify the specialised part.

• In order to implement a system based on the proposed architec-
ture, appropriate programming languages and associated technolo-
gies must be identified. Three different areas of the architecture
must be considered: the representation of individuals in the popu-
lation, the development of the generic core and the development of
the specialised components.

Chapter 8

Demonstration

Contents

8.1 Introduction 201

8.2 Overview . 202

8.2.1 Schema conception stage 202

8.2.2 Schema encoding stage 204

8.3 Developmental routine 206

8.3.1 Overview . 206

8.3.2 Generative steps 209

8.4 Implementation 216

8.4.1 Overview . 216

8.4.2 Other routines not implemented 218

8.4.3 Results . 220

8.5 Summary . 222

8.1 Introduction

This chapter demonstrates the process of encoding a design schema. The
proposed design method was discussed in chapter 6, and started with the
schema development phase. During this phase the design team conceives
of a design schema that captures the character of a family of designs,
then encodes this schema as a set of evolution routines. This chapter in-
troduces a design schema for a particular family of designs and describes
a set of evolution rules and representations for this schema. The initial-
ization, developmental and visualization routines have been implemented
and designs have been generated and visualised.

The chapter consists of three main sections:

• In section 8.2, the design schema that is to be encoded is described,
and then the process of encoding this schema is discussed.

201

8.2. OVERVIEW 202

• In section 8.3, a generative process is described that may be used
by the developmental step to generate designs.

• In section 8.4, the evolution routines implemented for the demon-
stration are described, and generated designs are then discussed.

8.2 Overview

8.2.1 Schema conception stage

A design schema

A basic design schema has been developed to demonstrate how it might
be encoded. This schema is for a family of multi-story buildings con-
structed using standard concrete frame construction. The site is assumed
to be flat and open, with no structures adjoining the site. The site is
also assumed to be substantially larger than the building.

Character of design schema

The character of the design schema may best be understood by consider-
ing a set of examples. Figure 8.1 shows a range of designs created using
the generative process that will be described in the next section. The
main feature of these designs is their variability in terms of the overall
building form, the organization of spaces, and the treatments of facades.
Some additional complications such as sloping walls have been included,
but not curved walls.

The designs will have the following characteristics:

• The design will have about three or four levels. On each level, there
may be about five to ten spaces.

• The geometry of the design consists entirely of flat planar faces.
There are no curved walls or roofs. Windows may be of a number
of different types. The windows in the wall of a particular space
must all be of the same type.

• The design is confined to a non-orthogonal oblong volume defined
by six faces: a floor face, four vertical faces and a roof face. The
floor face is assumed to always be level with the ground. The
vertical faces may be rotated and inclined to the ground plane.
The roof plane may slope in any direction.

• The design defines a set of floors and walls that divide the volume
into a set of smaller spaces. These floors and walls are arranged in
an orthogonal manner.

• Within this volume, the design has an open and airy massing. The
design does not completely fill the volume, and includes many exte-
rior spaces ‘carved out’ of this volume. These exterior spaces may

203 CHAPTER 8. DEMONSTRATION

Figure 8.1: A set of generated designs.

8.2. OVERVIEW 204

be anywhere in the building, provided that they are in contact with
the open air. If spaces are carved out at the lower levels, this may
result in columns being required to support the upper levels.

• The spaces of the buildings generally have a simple geometry. Spaces
are mostly quadrilateral in plan, and some may also be L-shaped.
Spaces may also be double height (or more), and may be L-shaped
in section. This allows spaces to interlock in both plan and section.
Spaces may not have mezzanine levels since this would complicate
vertical circulation.

8.2.2 Schema encoding stage

Specialised components

The design schema must be encoded as a set of evolution routines. In
addition, environmental data-files and existing applications may also be
used.

Routines

For the design team, the most challenging part of encoding a design
schema will probably be the rules and representations related to the
developmental routine. This routine must define a generative process ca-
pable of transforming a genotype into a phenotype, which in this case is
a three-dimensional model of a design. Creating this generative process
also requires the genotype and phenotype representations to be defined.
Once these representations are defined, it also becomes possible to create
the initialization routine and the visualization routine. Both these rou-
tines are helpful when creating the developmental routine. The former
allows the developmental routine to be tested, while the latter allows the
output from the generative routine to be visually inspected.

These three routines — development, initialization and visualization
— are highly interrelated and must be developed in parallel. They are
demonstrated and implemented in this chapter. Figure 8.2 on the next
page identifies these routines. The focus of the demonstration is on the
generative process of the developmental routine.

The reproduction, evaluation and survival routines are also discussed.
However, they are not implemented as standard rules and representations
can be used.

Data-files

The environmental data-files can be used to specify the design constraints
and the design context. This information may be used by the develop-
mental, visualization and evaluation routines.

In the case of the developmental routine, the generative process may
be sensitive to both the design context (which allows for epigenetic

205 CHAPTER 8. DEMONSTRATION

Figure 8.2: The parts of the encoded schema that have been implemented
and demonstrated.

growth processes) and the design constraints. For example, if the con-
straints specify the number of spaces that are required, the generative
process may ensure that the designs all have the correct number of spaces.

In this demonstration, the environment data-file is used to specify the
site boundary and a number of constraints. The constraints include the
number of floors for the building, the number of spaces that are required,
minimum dimensions for spaces, and various other parameters that affect
the types of spaces that can be created.

The site boundary is used by the generative process to ensure that
the design never extends beyond this boundary. The constraints are used
to generate designs that fulfil these constraints. For example, all designs
will have the correct number of spaces.

Applications

Existing applications may be used in the developmental, visualization,
and evaluation routines. In this demonstration, the developmental rou-
tine does not use applications. It is implemented as a stand-alone routine
that does not require other applications or libraries.

The visualization routine makes use of a application called Ecotect1

c©, which is an environmental analysis and simulation application. For
the visualization routine, the analysis and simulation functionality is not
used. Instead, the application is used as a way of quickly visualising
three-dimensional models of designs. Ecotect provides a number of ren-
dering and sectioning tools that make the process of interrogating models

1http://www.squ1.com

8.3. DEVELOPMENTAL ROUTINE 206

easy. In order for the design to be visualised in Ecotect, it is translated
into a compatible format.

The evaluation routine is not implemented in this demonstration.
Ecotect is suggested as an application that may be used in this routine.
It is capable of performing fast solar, lighting and thermal analysis using
various simplified methods. It is also capable of performing highly ac-
curate simulations by integrating with and executing other applications
such as Radiance, EnergyPlus and ESP-r.

8.3 Developmental routine

8.3.1 Overview

Controlled variability

In chapter 1, various problems associated with unrestricted variability
were identified. With the proposed design method, the design team must
create a developmental routine that is capable of producing controlled
variability. To recap, controlled variability involves finding a balance
between over-restricted variability that results in the generation of pre-
dictable designs, and under-restricted variability that results in a system
with poor performance. In order to achieve controlled variability, a gen-
erative process needs to be defined that consists of a carefully crafted set
of rules and representations.

Generative techniques

In chapter 3, a number of techniques were described for generating three-
dimensional forms. Three main approaches were identified: the paramet-
ric approach, the combinatorial approach and the substitution approach.
For this demonstration, a generative process has been created that in-
cludes techniques from both the parametric approach and the combina-
torial approach. The substitution approach is not used in this case.

The overall generative process is based on the gradual modification
of an orthogonal three-dimensional grid. The grid consists of a set of
cuboid cells, the dimension of which are predefined as part of the schema
and are set at 3.0 meters. The length, width and height of the grid, in
numbers of cells, are specified in the environment data-file.

An eight step generative process is defined that transforms the grid
into a building design. These steps are shown in figure 8.3 on the facing
page. In two of the steps, the model is shown in section to show internal
modifications: creating that staircase, and inserting doors.

In figure 8.4 on page 208, the starting and ending conditions of the
transformation are shown in plan view: starting with the featureless grid
on the left, and ending with an example of a floor of one of the designs
on the right. The eight generative steps that transform the grid will be
described using this example plan.

207 CHAPTER 8. DEMONSTRATION

Figure 8.3: The eight generative steps used to generate the design models.

Grid terminology

In order to help explain the generative process, certain terms relating to
the grid need to be defined. The grid consists of three main types of
entities: grid-faces, cells, and spaces. Figure 8.5 on the following page
shows a two-dimensional plan view of these three types of entities within
the grid. Cells may be further broken down into cell-faces, and spaces
into space-faces.

• Grid-faces are a set of intersecting quadrilateral surfaces that define
the grid. Initially, they are perpendicular to the Euclidean x, y, and
z axes.

• Cells are spatial units within the grid. Each cell has six cell-faces.
These faces are parallel to and offset from the grid-faces.

• Spaces are larger spatial units that consist of one or more cells.
If the space is oblong shaped, then the space will also be defined
by six space-faces. However, spaces may also have more complex
shapes which will result in more space-faces. The space-faces are
coplanar with the cell-faces, and each space-face will consist of one
or more cell-faces.

Each grid-face is thought of as having a front that faces the positive
direction of the axis to which it is perpendicular, and a back that faces

8.3. DEVELOPMENTAL ROUTINE 208

Figure 8.4: The transformation of the grid into a design.

Figure 8.5: Terminology used to describe entities within the grid.

the negative direction. Grid-faces that are parallel to the ground are
referred to as horizontal grid-faces, with the top grid-face being the roof
grid-face, and the bottom one being the floor grid-face. Grid-faces that
are not horizontal are referred to as vertical grid-faces, even when they
are inclined and not strictly vertical. A distinction is also made between
inner grid-faces that have adjacent grid-faces on either side and outer
grid-faces that only have one adjacent grid-face.

Constraints

The generative process must modify the grid without violating five key
constraints related to the geometry of the grid:

• First, adjacent grid-faces cannot touch or intersect.

• Second, the order of the grid-faces must remain the same. One
grid-face cannot be translated beyond another grid-face.

• Third, the horizontal and vertical dimensions of the cells within the
grid must remain greater than the minimum distances specified in
the environment data-file.

• Fourth, the outer grid-faces must stay within the boundary of the
site, as defined in the environment data-file.

209 CHAPTER 8. DEMONSTRATION

• Fifth, the floor grid-face must remain level with the ground.

In addition to these grid constraints, there are three key space con-
straints:

• First, all spaces must be accessible from the staircase, either di-
rectly or indirectly via another space.

• Second, spaces must have only one floor face, and mezzanines are
not allowed.

• Third, simple types of spaces such as oblong shaped spaces or L-
shaped spaces are preferred.

8.3.2 Generative steps

Eight steps

The generative process consists of a sequence of eight generative steps:
positioning of the grid, translation of the grid-faces, inclination of outer
grid-faces, insertion of the staircase, creation of spaces, selection of out-
side spaces, insertion of doors, and insertion of windows.

Most steps require a set of parameters encoded within the genotype.
These parameters are always encoded as real values in the range 0.0 to
1.0. The encoded value may be mapped by the generative step to a value
within a different continuous range as required. Some steps may also
require certain parameters or data encoded in the environment data-file.

The eight generative steps are shown in figure 8.6 on the next page
and each step is described in more detail below.

Step 1: Positioning of the grid

The first step involves positioning the grid within the site. The grid is
first placed in the centre of the site. The first three parameters in the
genotype then encode a rotation followed by a translation.

The first parameter defines a rotation of the whole grid around the
vertical axis. In order to define a rotation, the parameter, which is in the
range 0.0 to 1.0, is mapped to the range 0.0 to 360.0 and interpreted as
an angle of rotation.

The other two parameters encode a translation of the whole grid from
the centre of the site to some new location. The translation is encoded as
an angle and a displacement. The angle is encoded in the same way as for
the rotation parameter and specifies the direction in which the grid will
be displaced. The maximum displacement in this direction that keeps
the grid within the site boundary is then calculated. The displacement
distance is then calculated by multiplying the maximum displacement by
the displacement parameter encoded in the genotype. The grid is then
moved to its new location.

8.3. DEVELOPMENTAL ROUTINE 210

Figure 8.6: Eight generative steps.

Figure 8.7 on the facing page shows the process of positioning of the
grid within the site. The numbers indicate the order of the operations
and the order of the parameters within the genotype.

Step 2: Translation of grid-faces

The grid-faces that define the grid are translated in directions orthogonal
to the grid-faces. This stretches or compresses the cells in the grid. The
translation distance for each grid-face is calculated using a parameter
encoded in the genotype. The genotype contains a separate translation
parameter for each grid-plane.

Each grid-face is selected in turn. The selected grid-face then remains
stationary and a set of grid-faces parallel to it — either the grid-faces in-
front or those behind — are translated. The parameter in the genotype
is mapped to a real value in the range -3.0 and +3.0, which is interpreted
as scale factor of the existing distance between grid-faces.

For inner grid-faces, a positive value indicates that all the grid-faces
in front are translated, while a negative value indicates that all the grid-
faces behind are translated. For example, a value of 0.5 would indicate

211 CHAPTER 8. DEMONSTRATION

Figure 8.7: Positioning of the grid within the site boundary.

that all the grid-faces in-front should be translated backward. The dis-
tance of translation would be equal to half the distance from the grid-face
to the next grid-face in front.

For outer grid-faces, the process is similar. Since outer grid-faces
only have one adjacent grid-face, an additional grid-face is temporarily
added to turn the outer grid-face into an inner grid-face. This additional
grid-face is always offset 3.0 meters from the grid.

Step 3: Inclination of outer grid-faces

All outer grid-faces except the floor grid-face may then be inclined. A
grid-face is inclined by rotating it around two axes that are not parallel
to one another. In order to specify the inclination, the genotype needs
to encode two parameters for each grid face. Since five grid faces may be
inclined, ten parameters are required.

The grid-faces are first rotated around a one axis and then around
a second axis that is not parallel to the first. The two axes of rotation
are created by defining lines that bisect opposite edges of the grid-face.
As with the rotation step, the maximum angle of rotation that does not
violate the grid constraints is first calculated, and the parameter in the
genotype then specifies a fraction of this angle.

Step 4: Insertion of the staircase

The staircase is now created and inserted into the building. The key
decision is the positioning of the staircase within the grid. The genotype
does not contain any parameters for defining this position. Instead, the
staircase position is defined based on the geometry of the grid.

A simple type of dog-leg staircase is used, which consists of opposing
flights of steps that connect the main landings to the half landings. The
staircase must have a minimum of two flights of steps in opposing direc-
tions, with each flight having the same number of steps. In such a case,
two landings will be required which will be level with the floors, and one
half landing will be required. More than two flights may be used if the
floor-to-floor height is large. In general, the maximum number of flights
is used that does not violate the minimum head-room for people walking
up the staircase. (This ensures that the plan dimensions of the stair are

8.3. DEVELOPMENTAL ROUTINE 212

minimised.) In order to ensure that the landing is always on the same
side, even numbers of flights are always used.

The dimensions of the staircase, such as the minimum width, the riser
height and the tread depth, are predefined as part of the schema. In order
for the landings to be level with the floors, all floor-to-floor heights must
be adjusted so that they are multiples of double the riser height.

A vertical space — or stairwell — must be created into which the
staircase can be inserted. The stairwell will run the full height of the
building and will take up two adjacent columns of cells. One column of
cells is used for the landings, and the other column is used for the flights
of steps and the half landings.

In order to define the position of the stairwell, two adjacent columns
of cells must be identified. These two columns are chosen based on three
stair constraints. First, the stairwell is constrained to not have any outer
grid-faces. This rules out any of the outer columns of cells. The second
constraint requires that the stair, whose minimum dimensions are defined
in the environment data-file, will actually fit. The third constraint re-
quires that the area of the stairwell (in plan) be as small as possible. All
the possible positions are analyzed and for each position, if the staircase
will fit, the area is calculated. The position that results in the stairwell
with the smallest area is then chosen. In figure 8.8, the fourth position
is to narrow for the staircase. Of the three other positions, the second
has the smallest area and this one would be chosen.

If the geometry of the grid is such that no suitable position for the
staircase can be found, then the generative process may be aborted. In
this case, no building model will be generated and the genotype will be
assigned a minimum fitness.

Step 5: Creation of spaces

Next, the spaces within the building are created. Spaces consist of one
or more cells that are merged together. For each cell in the grid, the
genotype encodes a value that is referred to as the pressure within that
cell. This pressure value is used to decide which cells should be merged
to create a space.

The number of spaces that are required is defined in the environment
data-file. This number should be substantially smaller than the total
number of cells in the grid. Initially, one space is created for each cell in
the grid except the stairwell cells. The stairwell is treated as a special
space that cannot be merged with any other spaces. Spaces are defined
by their interior surfaces, which are offset from the grid-face by half the
wall, floor or roof thickness depending on the surface in question. The
walls, floors and roof are all centred on the grid-faces. The value for the
wall thickness is predefined as part of the schema.

Pairs of spaces are then repeatedly merged together until the number
of spaces has been reduced to the required number. The pressure in a
space that contains more than one cell is equal to the average of the

213 CHAPTER 8. DEMONSTRATION

Figure 8.8: Possible positions for the stairwell.

pressures of all the cells in the space. In order to choose a pair of spaces
to merge, the difference in pressure between all possible pairs of adjacent
spaces is calculated. The pair with the highest pressure differential is
then chosen.

The merging of spaces must take into account the space constraints
discussed above. In order to fulfil the accessibility constraint and the
mezzanine constraint, the merging of any spaces that violate these con-
straints are disallowed. Each time a merge is disallowed, then the pair
of spaces with the next highest pressure differential is considered.

The third constraint — the preference for simple spaces — is more
complex. In order to fulfil this constraint, the merging process is split
into three different phases. In the first phase, spaces will only be merged
if the result is an oblong shaped space (not necessarily orthogonal). As
with the other constraints, if the merge is not going to result in an oblong
space, then the pair of spaces with the next highest pressure differential
is considered. This phase may run out of spaces that can be merged, in

8.3. DEVELOPMENTAL ROUTINE 214

which case the second phase will be started. In this phase, spaces can
be merged if the result is an L-shaped space, either in section or in plan.
If this phase also does not manage to sufficiently reduce the number of
spaces, then the third phase is started in which any kind of merge is
allowed.

Step 6: Selection of outside spaces

The next step involves selecting the spaces that are actually exterior
spaces, and which need to be removed from the building volume. The
total number of exterior spaces is specified in environment data-file. This
step uses the same pressure values as the previous space creation step.
Once again, the staircase space is treated as a special space that cannot
be deleted.

For each space that has an exterior wall, the pressure difference be-
tween the space and the outside is considered. As in the previous step,
the pressure in each space is calculated by taking the average of the pres-
sure of all the cells in the space. The pressure for the outside of the
building is calculated as the average of the pressure of all the spaces in
the building. The space with the highest pressure differential is then
deleted.

In this case, only one of the space constraints — the accessibility
constraint — needs to be considered. If deleting a space would result
in another space becoming inaccessible, then the deletion of this space
is disallowed. In such a case, the space with the next highest pressure
differential will be considered. Each time a space is deleted, the spaces
behind the deleted space may become exposed and may then also be
considered for the next deletion.

Once the required number of spaces have been deleted, the exterior
surface of the building must be generated. As with the interior surfaces,
this exterior surface is offset from grid-face by half the wall, floor or roof
thickness depending on the surface in question.

Finally, columns are also inserted during this step. Columns are in-
serted under any part of the building that is not directly supported. The
insertion process places columns of fixed dimensions on each grid position
below the unsupported part of the design.

Step 7: Insertion of doors

Doors are then inserted to allow access between spaces. For this demon-
stration doors are simple inserted between all possible spaces. There are
no parameters in the genotype that directly affect the insertion of doors.
The position of a door in a wall is defined so that the door is not in the
middle of the wall, but is close to corners in both spaces.

It would be possible to specify a required set of adjacencies between
spaces within the environment data-file. This would allow doors to be
inserted only where required.

215 CHAPTER 8. DEMONSTRATION

Figure 8.9: Interior elevation of four possible window types.

Step 8: Insertion of windows

Finally, the last step involves inserting windows in the exterior walls. The
genotypes encodes values that specify either no window or a window type.
Three window types have been specified within this schema: fully glazed
window, square window, and horizontal strip window. The possibility
of no window is actually treated as another window type, and there
are four possible types. These window types are shown in figure 8.9.
The geometry and position of the window is calculated relative to the
geometry of the wall.

One way to encode the window type parameters in the genotype is to
encode a separate parameter for each cell-face. However, most cell-faces
will not be exterior walls. Encoding window parameters for all cell-faces
would be wasteful and make evolution more difficult. A method needs
to be found for reducing the number of window parameters.

One way of achieving this is to associate the parameters with the
spaces rather than the cell-faces. This is the approach taken here. Spaces
in the building are first listed from largest to smallest. The genotype then
encodes one window parameter per space in the list.

Spaces are considered to have four types of vertical faces that are
orientated in different directions. (These directions may be thought of
as north, south, east and west.) If the space is oblong in shape, then
there will be one face for each direction. For L-shaped spaces and other
more complex types of spaces, each direction may consist of more than
one face. Space-faces that are orientated in the same direction will all be
assigned the same window type. The genotype then needs to encode four
window types for each space. The window insertion step will then decode
these parameters and for each exterior space-face, insert the window type
specified by the parameter. If the space-face is not an exterior face, then
it is ignored, along with any window parameters assigned to it.

For each space, the four directions may be assigned one of four window
types. This results in (44) 256 possibilities. The genotype encodes these
possibilities as a real value between 0.0 and 1.0, which is mapped to the

8.4. IMPLEMENTATION 216

range -0.5 to +255.5 and is then rounded off to the closes integer value.
The integer value is then converted to base 4, which results in a number
with digits in the range 0 to 3. There will be a maximum of four digits,
which represent the window types for each orientation.

8.4 Implementation

8.4.1 Overview

In order to verify the character and variability of the designs that would
be produced by the generative steps described above, the initialization,
developmental and visualization routines have been implemented.

Representation of an individual

An individual is represented using XML, as discussed in the previous
chapter (see section 7.4.2 on page 196). To recap, the XML tree has one
top level node called individual. This node has a number of attributes,
including an ID, and three sub-nodes called genotype, phenotype and
evaluations.

The genotype node contains a long string of comma separated real
numbers that are the parameters values for the generative process. If the
individual has been developed, then the phenotype contains the represen-
tation of the model, encoded using an XML representation. Finally, the
evaluations node will contain one or more evaluation score nodes, each of
which encodes the result of analyzing one objective. Since the evaluation
routines were not implemented in this demonstration, this part was not
used.

Genotype representation

Each individual must have a genotype that will be used to create the
phenotype. The genotype representation consists of a fixed-length list
of real numbers (a real-valued vector), with all values in the rage of 0.0
to 1.0. This uniformity simplifies the creation of crossover and mutation
parameters.

• Three values encode the position of the grid within the site.

• A set of values encode translation parameters. A translation pa-
rameter is required for each grid-face except the floor grid-face.

• Ten values encode inclination parameters for the roof grid-face and
the four outer vertical grid-faces.

• A set of values encode pressure parameters that are used for cre-
ating spaces and selecting outside spaces. A pressure parameter is
required for each cell in the grid.

217 CHAPTER 8. DEMONSTRATION

• A set of values encode the window type parameters. A window
type parameter is required for each space in the grid.

The length of the genotype depends on the side of the grid and the
number of spaces. The length of the genotype can be calculated using
the following formula:

gl = x + y + z(xy + 1) + s + 15

where gl is the genotype length, and x, y and z are the number of cells
in the direction of the x, y and z axes respectively, and s is the number
of internal spaces in the building. For example, for x = y = z = 4, and
s = 15, the genotype length will be 106; for x = y = z = 5, and s = 30,
the genotype length will be 185.

Phenotype representation

The phenotype representation of an individual is the representation used
to define and store design models. This representation uses the latest
Industry Foundation Classes (IFC) specification2 published by the Inter-
national Alliance on Interoperability (IAI).

The advantage of using IFC is that it allows for the representation
of the different types of information required by simulation and analysis
applications, including physical components such as doors and walls, and
abstract concepts such as spaces. The IFC classes describe an abstract
structure that may be encoded in a number of way. In this case, the IFC
data is encoded using ifcXML3.

Initialization routine

The initialization routine is used to generate a population of individuals
with randomly generated genotypes, but with no phenotypes or evalua-
tion scores. This routine calculates the length of the required genotype
using the formula specified above, and creates a random value for each
parameter. The input to this routine is the required number of individ-
uals. Figure 8.10 on the next page shows the inputs and outputs for this
routine.

Developmental routine

The developmental routine is used to create phenotypes for each indi-
vidual. The generative process used by this routine has already been
described above in section 8.3 on page 206. The inputs and outputs
to this routine, shown in figure 8.11 on the next page, are both XML

2http://www.iai-international.org
/iai international/Technical Documents/R2x2 final/index.htm

3http://www.iai-international.org
/iai international/Technical Documents/IfcXML.htm

8.4. IMPLEMENTATION 218

Figure 8.10: Inputs and outputs for the initialization routine.

Figure 8.11: Inputs and outputs for the developmental routine.

trees. The input tree is an individual with an empty phenotype node,
while the output individual is the same individual but with the ifcXML
representation of the design model added to the phenotype node.

The developmental routine also requires various parameters and data
stored in the environment data-file. These include the grid size, the
number of internal spaces, the number of external spaces, and the site
boundary.

Visualization routine

A visualization routine has been created that uses Ecotect to visualise the
design models that are generated. This routine extracts the phenotype
from each individual, translates the ifcXML representation to the model
representation used by Ecotect, and then allows the user to visualise the
design using the Ecotect interface. Figure 8.12 on the facing page shows
the inputs and outputs for this routine.

8.4.2 Other routines not implemented

Other routines

Issues relating to the implementation of the reproduction, evaluation and
survival routines routines is briefly discussed below.

219 CHAPTER 8. DEMONSTRATION

Figure 8.12: Inputs and outputs for the visualization routine.

Reproduction routine

The reproduction routine needs to extract a pool of parent individu-
als from the population and creates new offspring. Due to the simple
structure of the genotype representation, the reproduction routine could
use standard crossover and mutation operators for real-value vectors, as
described in chapter 4 (see section 4.4.3 on page 105). For example,
uniform mutation and simple crossover could be used. The size of the
reproduction pool could be just two individuals.

Evaluation routine

The evaluation routine calculates an evaluation score for the phenotype of
an individual with respect to a particular design objective. The designs
are likely to be evaluated for multiple objectives. Multiple evaluation
routines would need to be created, one for each objective.

Ecotect could be used to analyse daylight, artificial lighting and ther-
mal performance. Design models would need to be translated into a
format that can be read by Ecotect. In addition, the data required for
Ecotect to perform the required analyses and simulations would need
to be included in the phenotype and conserved through this translation
process.

Ecotect can import various formats such as DXF and 3DS. However,
these formats only describe geometry and do not describe critical infor-
mation about spaces within the building. A more appropriate format
is a format specifically developed for Ecotect, called the model format.
This format is encoded using a human-readable ASCII and the ifcXML
representation can easily be translated into this format. Although the
evaluation routine has not been implemented, this translation process
has been successfully implemented and tested.

Survival routine

The survival routine needs to extract a pool of individuals from the pop-
ulation and select individuals to be deleted. As discussed in the previous
chapter, the greater the pool size, the greater the selection pressure. One

8.4. IMPLEMENTATION 220

approach would be to specify that the pool should contain all fully eval-
uated individuals currently in the population. The selection routine then
needs to rank individuals in the pool using a scalarization technique, as
discussed in chapter 4 (see section 4.4.3 on page 107). Since objectives
such as light-levels and energy consumption are non-commensurate, a
Pareto-based scalarization technique may be used.

8.4.3 Results

Generation and visualization of designs

The three routines were used to generate and visualise a population of
individuals. The individuals all have random genotypes and have not
yet been evolved. The designs are therefore not expected to be of high
quality with respect to any set of objectives. The main aim of generating
and visualising these designs is to verify the character of design and the
variability that can be achieved.

Examples

Figures on the next page, on page 222 and on page 222 show three
examples of design models that were generated. In this case the grid size
was set to 5 cells by 6 cells in plan, and 4 cells high. The number of
internal spaces was set to 12, and the number of external spaces was set
to 8. This produces a genotype length of 162.

Creating a grid four cells high results in all designs having 4 floors.
Spaces will have an average of six cells per space, and half the grid volume
is likely to consist of exterior spaces.

In the first design example, a building with a courtyard has been
generated. Another interesting feature of this example is that there are
no spaces on the top floor. Only double height spaces from the floor
below rise up to the top floor. The staircase would however provide
access to the roof.

In the second example, a building with a number of large spaces has
been generated. On the top two floors, a long corridor has been used to
provide access to various spaces from the staircase.

In the third example, a complex exterior space has been created that
penetrates the roof and reappears on the facade. Some of the spaces have
a fairly complex geometry. A number of tall and narrow spaces have also
been created. On the top floor, there is only one space.

Controlled variability

One of the important requirements of the designs generated by any de-
velopmental routine is controlled variability. The designs that are gener-
ated must all share the same character and must also vary significantly in
overall organization and configuration, thereby allowing surprising and
challenging designs to be generated.

221 CHAPTER 8. DEMONSTRATION

Figure 8.13: First design example.

However, if designs vary in highly unrestricted ways, then the per-
formance of the evolutionary system will deteriorate. In chapter 1 (see
section 1.1.2 on page 12), key problems associated with unrestricted vari-
ability have been identified — the problem of interpreting chaotic forms,
the problem of ranking designs that differ fundamentally from one an-
other, and the problem of the semantic level of the representations of
designs.

The generative process must fulfil four key conditions if controlled
variability is to be achieved: first, it should be capable of generating
designs with the required level of complexity; second, it should generate
designs that all share a certain essential and identifiable character; third,
it should generate designs that differ significantly in terms of their overall
organization and configuration; fourth, it should not generate chaotic
forms that are not directly and straightforwardly interpretable as designs.

The developmental routine implemented in this demonstration fulfils
all four conditions by carefully controlling the variability of the design
models.

8.5. SUMMARY 222

Figure 8.14: Second design example.

• First, the design includes the typical kinds of constructs that char-
acterise buildings, such as spaces, walls, floors, windows and doors.

• Second, the designs all share the same design character that is
described by the schema introduced above.

• Third, the designs vary significantly in terms of the overall form,
the organization of spaces, and the treatment of the facades.

• Fourth, all designs are represented using high-level semantic con-
structs that are constrained so as to ensure that only valid building
designs can be created.

8.5 Summary

This chapter has demonstrated the process of encoding a design schema.
The aim of this demonstration is to support the proposed generative

223 CHAPTER 8. DEMONSTRATION

Figure 8.15: Third design example.

evolutionary design framework described in the previous two chapters.
The main points are as follows:

• An example design schema has been created for a family of multi-
story buildings. The overall building form, the organization of
spaces, and the treatments of facades may all vary significantly.
Some additional complications such as sloping walls have been in-
cluded, but not curved walls.

• A generative process has been described for generating design mod-
els in the example schema. This process consists of a series of
transformations that gradually transform a three-dimensional or-
thogonal grid structure into a design for a building.

• A developmental routine, an initialization routine and a visual-
ization routine have been implemented for the example schema.
These routines have been used to generate and visualise a variety
of design models. The designs that are generated have four key

8.5. SUMMARY 224

characteristics: first, they are of a complexity typical of buildings;
second, they all share the same design character; third, they vary
significantly from one another; fourth, they are all directly and
straightforwardly interpretable as designs.

The demonstration has shown that it is possible to create a generative
process that can produce three-dimensional models of design that are
neither over-restricted nor under-restricted. Controlled variability has
been achieved.

Part IV

Conclusions

225

227

Part three consists of a concluding chapter that identifies the contri-
butions made by this research and briefly discusses possible directions
for future work in both the short and the long term.

228

Chapter 9

Conclusions and future work

Contents

9.1 Contributions 229

9.1.1 Summary of objectives 229

9.1.2 Variability problem 230

9.1.3 Design method 231

9.1.4 General architecture 234

9.1.5 Detailed architecture 236

9.1.6 Controlled variability 238

9.1.7 Summary of main contributions 238

9.2 Future work . 239

9.2.1 Short term 239

9.2.2 Long term . 240

9.3 Conclusions . 241

9.1 Contributions

9.1.1 Summary of objectives

Evolutionary systems

This research is concerned with the development of a comprehensive
framework that specifies how a team of designers can use computational
systems to generate and evolve surprising and challenging designs.

The framework consists of a design method and a computational ar-
chitecture. The design method describes a set of main tasks to be per-
formed by the design team, one of which requires a generative evolution-
ary design system. The computational architecture provides an imple-
mentation plan for such a system, and defines how the significant hard-
ware and software components can be structured and organised. This

229

9.1. CONTRIBUTIONS 230

architecture may be used by researchers to build the generative evolu-
tionary design system.

In developing this framework, five main contributions have been made.
First, a key problem related to design variability has been identified. Sec-
ond, a design method for the generative evolutionary approach has been
developed. Third, a general computational architecture for a generative
evolutionary design system has been proposed. Fourth, based on the
general architecture, a detailed architecture has been developed. Finally,
a generative process that is capable of producing controlled variability
has been demonstrated. Each of these contributions is discussed in more
detail below.

9.1.2 Variability problem

Generative evolutionary design

A distinction has been made between parametric evolutionary design and
generative evolutionary design. With parametric evolutionary design, a
parametric model of a design is predefined and an evolutionary system is
used to evolve a set of parameters. With generative evolutionary design,
a growth process that generates alternative design models is defined and
an evolutionary systems is used to evolve a set of parameters or other
modifications associated with this generative growth process.

The key difference between the parametric and the generative ap-
proach is related to design variability. With the parametric approach,
design variability is highly restricted, whereas with the generative ap-
proach, variability may be much more unrestricted.

The variability problem is related to the performance of the evolu-
tionary system. With parametric systems, the restricted variability of
the designs allows for an evolutionary system with good performance
to be achieved. With generative systems, if variability is highly unre-
stricted, the process of evaluating the design models becomes complex.
As a result, the performance of the evolutionary system will degrade
significantly.

If an evolutionary system is to be created that has reasonable perfor-
mance and is also capable of evolving surprising and challenging designs,
design variability must be carefully controlled. In order to control the
variability, the evolution steps — in particular, the developmental step —
need to be defined to control the types of designs that can be generated
and evolved.

Controlling design variability

Controlling design variability involves deciding which designs should be
included in the restricted variability, and which should be excluded. A
set of characteristics shared by all included designs may be identified, and
these characteristics can be used to define the rules and representations
for the evolution steps. The rules and representations must be crafted to

231 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

ensure that the included designs will be generated and evolved, and —
more importantly — that the excluded designs (and chaotic forms) will
not be generated and evolved.

Two main approaches regarding which designs should be included
have been discussed. A highly generic approach can be taken whereby
a significant portion of all possible designs are included (Bentley, 1996).
Alternatively a more focused approach can be taken whereby only a rel-
atively small family of designs that are related in some way are included
(Frazer, 1974; Frazer and Connor, 1979).

The problem with the first approach is that designs for buildings tend
to vary widely and highly generic shared characteristics do not exist. It
becomes difficult to create evolution steps that prohibit the generation
and evolution of excluded designs and other chaotic forms.

The design schema approach

The second approach should therefore be taken. A much smaller family
of designs must be identified that share certain characteristics. For the
design team, the most relevant family of designs is their own body of
work. Such a family of designs will tend to have a strong unity and will
reflect the preconceptions of the design team, including philosophical
beliefs, cultural values and design ideas.

The design team has to be involved in creating the evolutionary rules
and representations. The essential and identifiable character of the fam-
ily of designs has to be captured as an abstract conceptualization called
a design schema. This schema must be encoded as rules and representa-
tions, which are used by an evolutionary system to generate and evolve
designs that embody the character of the design schema.

9.1.3 Design method

Three design methods

Two existing design methods for generative evolutionary design have
been identified, and an alternative design method has been proposed.
The existing methods are the general generative evolutionary method and
the evolutionary concept-seeding method. The proposed method is the
schema-based evolutionary method.

• The general method (see figure 1.2 on page 12) is a generic method
that is often not explicitly described. The method consists of two
stages: first, based on various generative concepts, a set of rules
and representations are defined and encoded; second, these rules
and representations are incorporated into an evolutionary system
that can be used to evolve alternative designs. The first stage usu-
ally focuses on creating a generative process for the developmental
step, and a set of evaluation routines (or fitness functions) for the
evaluation step. Alternative designs can be generated by making

9.1. CONTRIBUTIONS 232

small modifications to the generative process. In the second stage,
the evolutionary system generates alternative design by encoding
the generative modifications in the genotype. The system evaluates
each design using the evaluation routines and information about the
design environment.

• The concept-seeding method (see figure 5.7 on page 129) (Frazer,
1974; Frazer and Connor, 1979) consists of three stages. The first
stage is similar to the previous method, and involves defining a gen-
erative process for the developmental step, and a set of evaluation
routines for the evaluation step. In this case, the generative process
requires a starting condition — referred to as a concept-seed — to
be defined. This seed encapsulates certain design ideas and the
generative process generates designs by progressively manipulating
and modifying this seed. The second stage of this method consists
of creating this concept-seed based on a set of design ideas. In the
third stage, the rules and representations from the first step and
the concept-seed from the second step are used to generate and
evolve designs. In this case, genotypes may encode modifications
to either the generative process or the concept-seed.

• The schema-based method (see figure 1.3 on page 19) is similar to
the concept-seeding method, in that a set of design ideas are en-
coded in a format that can be used by the evolutionary system.
But this method also differs in various ways. Most importantly,
the generative concepts and the design ideas are combined into one
entity, which is the design schema. This schema is encoded by cre-
ating the rules and representations for all the evolution steps. Two
additional stages have also been added to the beginning and the
end of the method. Overall, the method consist of four stages: first,
design ideas are developed and a design schema is defined; second,
this schema is encoded as a set of evolutionary rules and represen-
tations; third, designs are generated and evolved; and fourth, one
design is selected and further developed into a detailed design. One
other important difference between this method and the concept-
seeding method is the concept of a niche environment. This concept
describes a type of design environment that includes both design
constraints and design context. This concept also allows the design
method to be split into a schema development phase and a design
development phase. In the first phase, design ideas are developed
and encoded for an environmental niche, while in the second phase,
designs are evolved for a specific design environment.

Advantages of the proposed method

These three design methods may be analysed with regard to the two
requirements identified in chapter 1: conservativeness and synergy. A
conservative design method minimises the changes in working procedures

233 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

that are required by the design team. A synergetic design method max-
imises the potential of the design team working with the computational
systems.

The general method is considered to be neither conservative nor syn-
ergetic. With regard to conservativeness, it does not explicitly address
how the evolutionary design approach should be incorporated in the over-
all design process. With regard to the synergy between the design team
and the computational system, the role of the design team is not consid-
ered. The relationship between the generative concepts and the types of
design that are generated and evolved is not clearly defined.

The concept-seeding method addresses this issue more explicitly. For
each different type of design, the design team creates a different concept-
seed. The evolutionary system is used to generate and evolve designs that
embody the design ideas encapsulated in the seed. However, the conser-
vativeness and synergy of this method are not examined. With regard to
conservativeness, the method does not consider two key processes: the
process of developing the generative concepts and design ideas; and the
process of further developing the designs that have been evolved. With
regard to synergy, the method does not allow the design team to define
their design ideas in a flexible manner. In particular, the design ideas
are defined separately from the generative process. This is seen as prob-
lematic, because it is often easier to define design ideas in a procedural
manner in the rules and representations of the generative process.

The schema-based method has been specifically developed to fulfil the
requirements of conservativeness and synergy. With regard to conserva-
tiveness, the method is similar to an existing design process commonly
used by many designers in practice. The whole design process is consid-
ered, starting with the preconceptions of the design team and leading to
a detailed design proposal. It only deviates from this existing process
when it is essential to the success of the evolutionary design approach.
The method deviates in two key stages: the schema encoding stage when
a set of evolutionary rules and representations are defined; and the de-
sign evolution stage when alternative design models are generated and
evolved. With regard to synergy, the method maximises the return on
the labour invested by the design team in developing and encoding a
design schema. The design schema is personal and idiosyncratic to the
design team, and the task of developing and encoding such a schema
is highly subjective. On the other hand, evolving and evaluating large
numbers of alternative design is a highly repetitive and objective task.
The design team is assigned the first task, and the computational system
is assigned the second task. A key advantage of this method is that once
encoded, the schema can be used to evolve designs for a large number of
projects.

9.1. CONTRIBUTIONS 234

9.1.4 General architecture

Three general architectures

Two existing computational architectures have been identified, and an
alternative architecture has been proposed. The existing architectures
are the general synchronous evolutionary architecture and the general
asynchronous evolutionary architecture. The proposed architecture is
the general decentralised evolutionary architecture. Each of these three
architectures may be parallelised using global parallelism, whereby a sin-
gle population (possibly split into different parts) is maintained and one
or more evolution steps are performed in parallel.

These architectures are described according to their evolution mode
and control structure. The evolution mode refers to the order in which
the evolution steps are applied, with the two possible modes being the
synchronous mode and the asynchronous mode. The control structure
refers to the way in which the evolution steps are controlled, with the
two possible control structures being centralised control and decentralised
control.

• The synchronous architecture (see figure 4.1 on page 81) (Holland,
1975) uses a synchronous evolution mode in combination with a
centralised control structure. The populations of individuals is split
into two parts — a main population and an intermediate population
— which are manipulated by five evolution steps: survival, repro-
duction, development, evaluation and selection. A cyclical process
is created whereby the main population is repeatedly replaced by a
the intermediate population. For the synchronous evolution mode,
three more specific sub-modes are commonly used that differ in the
number of individuals allowed to survive from one population to
the next: the generational mode does not allow for any survival;
the elitist mode allows a small number of the best individuals to
survive; and the steady-state mode allows all individuals except
a small number of the worst to survive. This architecture may
be parallelised using the global master-slave parallel model (see
figure 4.4 on page 86). The master controls the evolutionary pro-
cess and delegates certain steps — usually the evaluation step —
to be performed by multiple slaves. In this case, the parallel im-
plementation reduces the execution time but does not change the
fundamental behaviour of the algorithm. As with the non-parallel
version, the evolutionary process must wait for all individuals to
be processed by one step before proceeding onto the next step.

• The asynchronous architecture (see figure 4.5 on page 90) (Cantu-
Paz, 1998; Rasheed and Davison, 1999) uses an asynchronous evo-
lution mode in combination with a centralised control structure. A
single population is manipulated by five evolution steps: selection,
reproduction, development, evaluation, and survival. An iterative

235 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

process is created whereby individuals in the population are se-
lected and used to create new individuals, which are inserted back
into the population by replacing existing individuals. Individuals
are usually added to the population one at a time, with the popu-
lation remaining dynamically stable. The asynchronous mode used
by this architecture may also be described as a steady-state evo-
lution mode. This architecture is commonly parallelised using the
global master-slave model (see figure 4.6 on page 91). In this case,
as well as reducing the execution time, the parallel implementation
also changes the fundamental behaviour of the algorithm. The or-
der in which individuals are created does not necessarily need to
be the same as the order in which they are reinserted back into
the population. This means that the evolutionary process does not
have to wait for all individuals to be processed.

• The decentralised architecture (see figure 7.1 on page 173) uses an
asynchronous evolution mode in combination with a decentralised
control structure. A single population is manipulated by four au-
tonomous evolution steps: reproduction (which includes a selec-
tion mechanism), development, evaluation and survival. These four
steps are defined as independent iterative processes that extract in-
dividuals from the population, process them, and either insert the
resulting individuals back into the population, or — in the case
of the survival step — delete individuals in the population. The
population is managed by a separate process that ensures that the
size of the population remains dynamically stable. This architec-
ture may be parallelised using the global client-server model (see
figure 1.4 on page 21). The server manages the population and per-
forms the reproduction and survival steps, while clients perform the
developmental and evaluation steps.

Advantages of the proposed general architecture

These three computational architectures can be analysed with regard to
their scalability. The requirement for scalability was the first of the re-
quirements identified in chapter 1, the second being customizability. Cus-
tomizability will be considered in the next section with a more detailed
description of the architecture. In chapter 7, two aspects of scalability
were discussed: the reduction in execution time, and the improvement in
flexibility and robustness.

For all three architectures, parallel versions have been discussed that
can significantly reduce the execution of the evolutionary process. With
the asynchronous and decentralised architectures, the execution time is
further reduced by using an asynchronous steady-state evolution mode.
This mode has been shown to result in close to linear speed-up in situa-
tions where the evaluation step is complex and expensive (Rasheed and
Davison, 1999). The advantage of this mode over the synchronous mode
is that the evolutionary process does not need to wait for all individuals

9.1. CONTRIBUTIONS 236

to be processed before proceeding to the next evolutionary step. The evo-
lutionary process can start to incorporate or reject the genetic material
of the individual, as soon as an individual has been fully evaluated.

The main advantage of the decentralised architecture over the asyn-
chronous architecture is the improvement in flexibility and robustness
due to the decentralised control structure. Flexibility is improved be-
cause client computers may be added and removed while evolution is
in progress without requiring any reconfiguration on the server. This
allows computing resources available in research labs and offices to be
intermittently used for other purposes and re-assigned to the evolution-
ary process. Robustness is improved because the failure of any one of
the clients will not significantly affect the evolutionary process (providing
there are other clients available to perform the same task). Furthermore,
the failed client can simply be restarted and re-assigned to the evolution-
ary process.

The decentralised architecture also allows for a collaborative process
between members of the design team in different locations. The client
computers may be globally distributed, thereby allowing the different
evolution steps to be executed in locations where the required expertise
exists. This would be most relevant for the evaluation step. Evalua-
tion may use complex simulation and analysis software applications for
which expert knowledge is required. For example, the client computer
performing complex lighting simulations may be located in the office of
the environmental engineers.

9.1.5 Detailed architecture

Style problem

The style problem (Bentley, 1999b) is related to the re-usability of the
evolutionary system. In general, re-usability decreases as the rules and
representations embedded in the system become more knowledge-rich.
In the extreme case, if the rules and representations are based on a de-
sign style or character that is specific to one designer, the re-usability of
the evolutionary system becomes limited to one person. The variability
problem and the style problem lead to opposite conclusions.

The variability problem illustrates that knowledge-rich rules and rep-
resentations must be used to achieve reasonable performance. The design
schema consists of knowledge about the design character of a family of
design. This knowledge is used by the design team to create a set of rules
and representations that control design variability.

The style problem illustrates that knowledge-lean rules and represen-
tations must be used to achieve reasonable re-usability. Since the design
schema is specific to a design team, an evolutionary system created us-
ing the schema-based approach will have limited re-usability. (Even for a
single designer, the design schema for one project may not be applicable
to another project.) As a result, a new evolutionary system would have

237 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

to be created, which is an impractical approach.

Summary of detailed architecture

A detailed computational architecture (see figure 7.3 on page 180) has
been developed based on the parallel version of the general decentralised
evolutionary architecture described above. The evolutionary process con-
sists of an asynchronous steady-state evolution mode in combination with
a decentralised control structure.

The conflict between the variability problem and the style problem is
resolved by creating an evolutionary system that consists of a generic core
that is highly re-usable and a set of specialised components that can in-
corporate the knowledge-rich rules and representations (see figure 7.2 on
page 175). The generic core may be re-used by any design team for any
design task. Each design team must develop their own design schemas,
and based on these schemas, develop a set of knowledge-rich rules and
representations.

Customizability is achieved by decoupling the evolutionary process
from the rules and representations used by that process. This results in
each evolution step being split into a generic module and a specialised
routine. The generic core of the architecture consists of the evolution
modules and a module that manages the population. This generic core
defines the overall evolutionary process by specifying the interactions
between the evolution modules and the population module.

However, the generic modules do not include any of the rules and
representations required for processing individuals. These rules and rep-
resentations are encapsulated in the routines. Each time an evolution
module needs to process an individual, it will invoke the specialised rou-
tine. The rules and representations used by the evolutionary system can
easily be changed by replacing the routines. The routines are indepen-
dent executable programs without any restrictions as to what types of
rules and representations may be incorporated.

For certain evolution steps — including the development and eval-
uation steps — the routines may invoke two other types of specialised
components: environment data-files and existing applications. These
specialised components allow for a further level of customization. En-
vironment data-files allow for the routines to make use of information
relating to the design constraints and design context. (For example, an
epigenetic generative routine may be defined.) Existing applications —
such as CAD systems, visualization programs and analysis and simu-
lation systems — may be invoked by the routines for their specialised
functionality.

9.1. CONTRIBUTIONS 238

9.1.6 Controlled variability

Encoding the design schema

A key task in the proposed design method involves the design team de-
veloping a generative process that produces controlled variability. This
is part of the schema encoding stage, which entails defining the rules and
representations for the evolution steps. The generative process consists
of a set of generative rules used by the developmental step to create a
variety of three-dimensional design models.

In order achieve controlled variability, the generative process needs
to fulfil four key objectives. First, it should be capable of generating
the required level of complexity. Second, it should generate designs that
all share a certain essential and identifiable character. Third, it should
generate designs that differ significantly in terms of their overall organi-
zation and configuration. Finally, it should not generate chaotic forms
that are not directly and straightforwardly interpretable as designs.

Demonstration of controlled variability

In order to verify the feasibility of creating such a generative process, an
example schema has been defined and a generative process has been cre-
ated. Genotype and phenotype representations have been defined and a
developmental routine, an initialization routine and a visualization rou-
tines that manipulate these representations have been implemented.

The initialization routine has been used to create a population of
individuals with random genotypes, and for each individual the develop-
mental routine was used to generate a design model. The visualization
routine was used to inspect these design models. This inspection showed
that the four objectives identified above were fulfilled, thereby demon-
strating that controlled variability can be achieved.

9.1.7 Summary of main contributions

Main contributions

The main contributions are summarised as follows:

• The variability problem has been identified as the key factor in the
performance of the evolutionary system.

• A design method has been developed that is more conservative and
more synergetic than other generative evolutionary methods.

• A general computational architecture has been proposed that is
more scalable than other general architectures.

• A detailed computational architecture has been developed that is
highly customisable.

239 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

• A generative process has been demonstrated that is capable of pro-
ducing controlled variability.

Communities of users

As discussed in chapter 1, the design method and the computational
architecture are targeted at different communities of users. The design
method is targeted at a community whose primary goal is to create de-
signs for buildings, referred to as designers ; the architecture is targeted
at a community whose primary goal is the development of a computa-
tional design system, referred to as researchers. The labels ‘designer’
and ‘researcher’ should not be understood in a stereotypical sense: the
design team may include computer experts and programmers, just as the
research team may include architects. (In some cases, the design team
and the research team may be the same set of people.)

Although the architecture is targeted at researchers, a system based
on this architecture would be used by designers. If a research team
implements the system, this system will be transferred to the design
community, to be used by design teams for designing buildings. When
developing the architecture, it was necessary to take both these commu-
nities into account: researchers being immediate target community, and
designers the eventual target community.

9.2 Future work

9.2.1 Short term

Five stages

In chapter 1, a research process was described that consisted of five stages
(Nunamaker et al., 1991): constructing a conceptual framework; develop-
ing a system architecture; analyzing and designing the system; building
the (prototype) system; and observing and evaluating the system (see
figure 1.5 on page 29).

This research consists of the first three stages. For the first stage, the
design method has been developed that defines how the system would be
used. For the second stage, the computational architecture has been de-
veloped that identifies the significant hardware and software components
and their interactions. Finally for the third stage, the components of the
architecture have been analysed in detail and possible implementation
strategies have been considered.

Build the (prototype) system

The next stage will involve building a prototype system based on the ar-
chitecture developed in this research. A more comprehensive specification
can be created that defines how the system should be built. This pro-
cess will highlight problems that may exist in the proposed architecture

9.2. FUTURE WORK 240

and result in the architecture being further refined. Once a prototype
system has been completed, the next stage — involving observation and
evaluation of the system in use — can be commenced.

Observe and evaluate the system

For initial evaluation, the encoded schema developed in the demonstra-
tion can be used as a first test case. A design environment and a set of
design objectives will need to be defined (possibly based on a real design
task). The environment will include both a set of design constraints and
a description of the design context. The system may be used to start
evolving a population of designs. One way to measure evolutionary pro-
cess is to track the performance of the individuals in the population with
respect to the design objectives. The progress of this population as a
whole can be monitored and analysed.

In order to further evaluate the system, a set of design schemas need
to be defined with varying levels of complexity. These schemas can be
encoded and used to test the system. Such a process may need to con-
sider additional factors when measuring the success of the system. (For
example, should the measure of success include the perceptions of the
designer using the system?)

9.2.2 Long term

Cyclical research process

The five stage research process described above is cyclical. The last stage
of observation and evaluation will result in new theories and models of
how the computational system and the design method could be improved.
It is envisaged that, in the long term, such a generative evolutionary de-
sign framework would itself evolve. One potential area of future research
is providing support for the schema encoding stage.

Support for schema encoding

The schema encoding process is complex and time consuming. This
process may be supported in three main ways: first, a set of interfaces
to commonly used applications could be created; second, a library of
commonly used functions and procedures could be developed; and third,
a visual programming environment could be created.

• Design teams are likely to want to use many of the same appli-
cations for the developmental, visualization and evaluation steps.
In many cases, they are also likely to use standard representations
for describing design models. This will allow a library of interfaces
to be developed for linking to these applications. These interfaces
could incorporate file format translations and other configurational
issues.

241 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

• Design teams are also likely to require many similar functions and
procedures. The process of encoding a range of different schemas
is likely to result in certain patterns emerging. Some of the func-
tions and procedures used to encode these schemas may start to
repeat themselves. Such patterns will allow a library of functions
and procedures to be defined. For example, the transformable-grid
construct in the demonstration could be used in many other types
of schemas.

• Software may be developed that would allow design teams to create
encoded schemas in a visual graphical environment, rather than
by programming. This approach is described as visual end-user
programming. End-user programming software uses graphical el-
ements to enable users to create complex programming logic by
drawing two-dimensional diagrams (Aish, 2000). Appropriate new
metaphors are required that will allow schemas to be developed and
encoded with just a minimum understanding of basic programming
concepts.

9.3 Conclusions

The research presented in this thesis attempts to create a comprehen-
sive generative evolutionary design framework. This framework considers
both broad theoretical issues related to the design process and specific
computational issues related to the implementation of a design system.
The framework is based on previous design methods and computational
architectures, and includes new features.

The goal of developing such a framework is to contribute to the de-
velopment of a practical generative evolutionary design approach. It is
hoped that this framework will provide a basis for other researchers to
implement evolutionary design systems.

9.3. CONCLUSIONS 242

Glossary

Computational architecture: An implementation plan of how signif-
icant software and hardware components of a computer system
are structured and organised. This includes the functions and
interactions of different components. Communication protocols
and data formats may also be defined.

Control structure: The way in which evolution steps are controlled.
Two main control structures are centralised control and the de-
centralised control. With centralised control, a cyclical process in-
vokes and applies evolution steps to individuals in the population.
With decentralised control, the evolution steps are autonomous
processes that manipulate individuals in the population.

Design environment: The constraints and context for a particular de-
sign. The constraints describe the requirements that the building
must fulfil and may include factors such as budget, spatial re-
quirements, and performance targets. The context describes the
building site and may include site conditions, neighbouring con-
ditions and weather conditions. The design environment covers
all those conditions that influence the success or failure of the
design, but that are not part of the design itself.

Design method: A semi-formalised design process that explicitly pre-
scribes a way of designing a type of product. The process is
structured as a set of tasks to be carried out by the designer or
design team, possibly in some specific order. A design method is
a conjecture of a potentially useful design process. It is useful to
the extent that its application will lead to products that embody
certain design qualities that are seen to be beneficial or desirable.

Design schema: A design conceptualization that captures the essen-
tial and identifiable character of a varied family of designs by
one designer or design team. It encompasses those character-
istics common to all members of the family, possibly including
issues of aesthetics, space, structure, materials and construction.
Although members of the family of designs share these charac-
teristics, they may differ considerably from one another in overall
organization and configuration. Design schemas are seen as for-
mative design generators; their intention is synthetic rather than

243

9.3. CONCLUSIONS 244

analytic.

Evolution mode: The way in which the evolution steps process indi-
viduals in the population. The two main evolution modes are the
synchronous mode and the asynchronous mode. With the syn-
chronous mode, the evolutionary process stops and waits for the
processing of all individuals by one evolution step to be completed
- before proceeding onto the next evolution step. With the asyn-
chronous evolution mode, evolution steps process individuals or
small groups in the population as soon as they become available.

Evolutionary algorithm: An algorithm loosely based on the neo-Darwinian
model of evolution through natural selection. A population of in-
dividuals is maintained and an iterative process applies a number
of evolution steps that create, transform, and delete individuals
in the population. Individuals are rated for their effectiveness,
and on the basis of these evaluations, new individuals are created
using ‘genetic operators’ such as crossover and mutation. The
process is continued through a number of generations with the
aim of improving the population as a whole.

Evolutionary design: A design approach that relies on evolutionary
software systems to aid in the process of designing. Such a system
employs evolutionary algorithms to evolve whole populations of
design alternatives. The software may be used to evolve complete
designs or parts of designs.

Generative evolutionary design: A design approach that uses an evo-
lutionary system to evolve surprising or challenging design al-
ternatives, for ill-defined design tasks that embody multiple and
conflicting objectives. Some kind of growth process is used to gen-
erate design alternatives that vary significantly from one another.
The system then relies on either human judgement or evaluation
algorithms to evolve a population of design alternatives.

Niche environment: A type or category of design environment, en-
compassing a range of possible constraints and a range of pos-
sible contexts. If a specific design environment falls in such a
environmental niche set, this design environment is described as
matching or falling within the environmental niche.

Parametric evolutionary design: A design approach that uses an evo-
lutionary system to search for optimal or satisficing design so-
lutions to well defined design problems. The overall design is
predefined and those parts thought to require improvement are
parameterised. This results in a parametric model into which
values for parameters can be inserted to create alternative design
solutions. The evolutionary system uses a set of fitness functions

245 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

or objective functions to evolve an optimal or satisficing set of
parameters.

9.3. CONCLUSIONS 246

Bibliography

Abelson, H., Sussman, G. J., and Sussman, J. (1985). Structure and
Interpretation of Computer Programs. MIT Press, Cambride, MA.

Agabani, F. A. (1980). Cognitive Aspects in Architectural Design Problem
Solving. Doctoral dissertation, University of Sheffield.

Aish, R. (1977). Prospects for design participation. Design Methods and
Theories, 11(1).

Aish, R. (2000). Custom objects: a model-oriented end-user program-
ming environment. In Materials of the Workshop on Visual Languages
for End-User and Domain-Specific Programming.

Alba, E. and Troya, J. M. (1999). A survey of parallel distributed genetic
algorithms. COMPLEXITY, 4(4):31–51.

Alba, E. and Troya, J. M. (2001). Analyzing synchronous and asyn-
chronous parallel distributed genetic algorithms. Future Generation
Comput. Systems, 17(4):451–465.

Alexander, C. (1971). The state of the art in design methodology (replies
to questions by M. Jacobson). DMG Newsletter, pages 3–7.

Alexander, C., Ishikawa, S., Silverstein, B., and Others (1977). A Pattern
Language. Oxford University Press, New York, NY.

Alexander, C., Ishikawa, S., Silverstein, B., and Others (1979). The
Timeless Way of Building. Oxford University Press, New York, NY.

Angeline, P. J. (1995). Morphogenic evolutionary computations: Intro-
duction, issues and examples. In McDonnell, J., Reynolds, B., and
Fogel, D., editors, Evolutionary Programming IV: The Fifth Annual
Conference on Evolutionary Programming, pages 387–401. MIT Press.

Angeline, P. J. and Pollack, J. B. (1994). Coevolving high-level represen-
tations. In Langton, C. G., editor, Proceedings of Artificial Life III,
pages 55–71, Reading, MA. Addison-Wesley.

Archer, B. (1979). The three Rs. Design Studies, 1(1):18–20.

247

BIBLIOGRAPHY 248

Arenas, M. G., Collet, P., Eiben, A. E., Jelasity, M., Merelo, J. J.,
Paechter, B., Preuß, M., and Schoenauer, M. (2002). A framework
for distributed evolutionary algorithms. In Merelo Guervós, J. J.,
Adamidis, P., Beyer, H.-G., Fernández-Villacañas, J.-L., and Schwe-
fel, H.-P., editors, Parallel Problem Solving from Nature - PPSN VII,
volume 2439 of Lecture Notes in Computer Science, pages 665–675.
Springer-Verlag.

Bäck, T. (1993). Optimal mutation rates in genetic search. In Forrest,
S., editor, Proceedings in the 5th International Conference on Genetic
Algorithms, pages 2–8, San Mateo, CA. Morgan Kaufmann.

Bäck, T. (1994). Selective pressure in evolutionary algorithms: A char-
acterization of selection mechanisms. In Proceedings of the First IEEE
Conference on Evolutionary Computation, pages 57–62, Piscataway,
NJ. IEEE Press.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford
University Press, New York, NY.

Bäck, T. (2000). Introduction to evolutionary algorithms. In Bäck et al.
(2000b), chapter 7, pages 59–63.

Bäck, T., B., D., Whitley, D., and Angeline, P. J. (2000a). Mutation
operators. In Bäck et al. (2000b), chapter 32, pages 237–255.

Bäck, T., Fogel, D. B., and Michalewicz, T., editors (2000b). Evolu-
tionary Computation 1: Basic Algorithms and Operators. Institute of
Physics Publishing, Bristol and Philadelphia, 1st edition.

Back, T., Hammel, U., and Schwefel, H.-P. (1997). Evolutionary compu-
tation: comments on the history and current state. IEEE Transactions
on Evolutionary Computation, 1(1):3–17.

Bäck, T. and Schwefel, H.-P. (1996). Evolutionary computation: An
overview. In Proceedings of the Third IEEE Conference on Evolution-
ary Computation, pages 20–29, Piscataway, NJ. IEEE Press.

Baker, J. (1985). Adaptive selection methods for genetic algorithms. In
Grefenstette, J., editor, Proceedings of the First International Confer-
ence on Genetic Algorithms, pages 101–111. Lawrence Erlbaum Asso-
ciates.

Baron, P., Fisher, R., Mill, F., Sherlock, A., and Tuson, A. (1997). A
voxel-based representation for the evolutionary shape optimisation of
a simplified beam: A case-study of a problem-centred approach to
genetic operator design. In 2nd On-line World Conference on Soft
Computing in Engineering Design and Manufacturing (WSC2).

249 BIBLIOGRAPHY

Baron, P., Fisher, R., Tuson, A., and Mill, F. (1999). A voxel-based
representation for evolutionary shape optimization. AI EDAM Special
Issue: Evolutionary Design, 13(3):145–156.

Bazjanac, V. and Crawley, D. B. (1997). The implementation of industry
foundation classes in simulation tools for the building industry. In
Proceedings of Building Simulation ’97 Conference, pages 203–210.

Beasley, D. (2000). Possible applications of evolutionary computation.
In Bäck et al. (2000b), chapter 2, pages 4–19.

Bell, A. D. (1986). The simulation of branching patterns in modular
organisms. Philosophical Transactions of the Royal Society of London,
SeriesB: Biological Sciences, 313:143–159.

Bemis, A. F. (1936). The Evolving House. MIT Press, Cambridge, MA.

Bentley, P. (1999a). From coffee tables to hospitals: Generic evolutionary
design. In Bentley (1999d), chapter 18, pages 405–423.

Bentley, P. (1999b). An introduction to evolutionary design by comput-
ers. In Bentley (1999d), chapter 1, pages 1–73.

Bentley, P. (1999c). Special issue: Evolutionaey design. Artifi-
cial Intelligence for Engineering Design, Analysis and Manufacturing
(AIEDAM), 13(3):143.

Bentley, P. (2000a). Exploring component-based representations - the
secret of creativity by evolution? In Proceedings of The Fourth Inter-
national Conference on Adaptive Computing in Design and Manfacture
(ACDM 2000), page unpaginated, University of Plymouth, UK.

Bentley, P. (2000b). Special section: Evolutionary design. Artifi-
cial Intelligence for Engineering Design, Analysis and Manufacturing
(AIEDAM), 14(1):1.

Bentley, P. J. (1996). Generic Evolutionary Design of Solid Objects us-
ing a Genetic Algorithm. Doctoral dissertation, Division of Computing
and Control Systems, Department of Engineering, University of Hud-
dersfield.

Bentley, P. J., editor (1999d). Evolutionary Design by Computers. Mor-
gan Kaufmann Publishers, San Francisco, CA.

Bentley, P. J. and Corne, D. W., editors (2002). Creative Evolutionary
Systems. Academic Press, London, UK.

Bentley, P. J. and Kumar, S. (1999). Three ways to grow designs: A com-
parison of embryogenies for an evolutionary design problem. In Genetic
and Evolutionary Computation Conference (GECCO ’99), pages 35–
43, Orlando, Florida, USA.

BIBLIOGRAPHY 250

Booker, L. B., Fogel, D. B., Whitley, D., Angeline, P. J., and Eiben,
A. E. (2000). Recombination. In Bäck et al. (2000b), chapter 33,
pages 256–307.

Botsford, G. (1995). Solar logic. Unpublished research proposal devel-
oped in Diploma Unit 11 at the Architectural Association, under the
direction of John Frazer.

Broadbent, G. (1981). The morality of designing. In Jacques and Powell
(1981), pages 309–328.

Broadbent, G. (1988). Design in Architecture: Architecture and the Hu-
man Sciences. David Fulton Publishers, London, UK.

Bruggen, C. v. (1997). Frank O. Gehry: Guggenheim Museum Bilbao.
Harry N. Abrams, New York, NY.

Caldas, L. (2001). An Evolution-Based Generative Design System: Us-
ing Adaptation to Shape Architectural Form. Doctoral dissertation,
Massachusetts Institute of Technology.

Caldas, L. (2002). Evolving three-dimensional architectural form: An
application to low-energy design. In Gero, J. S., editor, Proceedings
of the Seventh International Conference on Artificial Intelligence in
Design (AID’02), pages 351–370, Cambridge, UK. Kulwer Academic
Publishers.

Caldas, L. and Norford, L. (2001). Architectural constraints in a genera-
tive design system: Interpreting energy consumption levels. In Proceed-
ings of the Seventh International IBPSA Conference, pages 1397–1404,
Rio de Janeiro, Brazil.

Caldas, L., Norford, L., and ao Rocha, J. (2003). An evolutionary
model for sustainable design. Management of Environmental Quality,
14(2/3):383–397.

Caldas, L. G. and Norford, L. K. (2004). Shape generation using pareto
genetic algorithms: Integrating conflicting design objectives in low-
energy architecture. International Journal of Architectural Computing,
1(4):503–515.

Cantu-Paz, E. (1997). A survey of parallel genetic algorithms. Calcula-
teurs Paralleles, Reseaux et Systems Repartis, 10(2):141–171.

Cantu-Paz, E. (1998). Designing efficient master-slave parallel genetic
algorithms. In Koza, J., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo,
M., Fogel, D., Goldberg, M. G. D. E., Iba, H., and Riolo, R., editors,
Genetic Programming: Proceeding of the Third Annual Conference,
San Fransisco, CA. Morgan Kaufmann.

251 BIBLIOGRAPHY

Cantu-Paz, E. and Goldberg, D. E. (1999). On the scalability of parallel
genetic algorithms. Evolutionary Computation, 7(4):429–449.

Chien, S.-F., Donia, M., Synder, J. D., and Tsai, W.-J. (1998). SG-
CLIPS: A system to support the automatic generation of designs from
grammars. In Proceedings of The Third Conference On Computer
Aided Architectural Design Research in Asia (CAADRIA ’98), pages
445–454.

Chomsky, N. (1956). Three models for the description of language. IRE
Trans. Info. Theory, 1:113–124.

Chong, F. S. and Langdon, W. B. (1999). Java based distributed genetic
programming on the internet. In Banzhaf, W., Daida, J., Eiben, A. E.,
Garzon, M. H., Honavar, V., Jakiela, M., and Smith, R. E., editors,
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’99), page 1229, Orlando, Florida, USA. Morgan Kaufmann.

Churchman, C. W. (1967). Wicked problems. Management Science,
14(4):(B–141) – (B–142).

Coates, P., Broughton, T., and Jackson, H. (1999). Exploring three-
dimensional design worlds using lindenmayer systems and genetic pro-
gramming. In Bentley (1999d), pages 323–341.

Corbusier, L. (1982). Modulor ii. In de Francia, P. and Bostock, A.,
editors, Modulor I and II. Cambridge University Press, Cambridge,
MA. Modular II was first published in 1955.

Coyne, R. D., Rosenman, M. A., Radford, A. D., Balachandran, M., and
Gero, J. S. (1990). Knowledge-Based Design Systems. Addison-Wesley,
Reading, MA.

Cross, N. (1993). A history of design methodology. In de Vries, M. J.,
Cross, N., and Grant, D. P., editors, Design Methodology and Rela-
tionships with Science, pages 15–27. Dordrecht, Netherlands: Kluwer
Academic Publishers.

Cross, N. (1999). Natural intelligence in design. Design Studies, 20(1):25–
39.

Cross, N. (2000). Design as a discipline. In Durling, D. and Friedman,
K., editors, Proceedings of the Conference Doctoral Education in De-
sign: Foundations for the Future, pages 93–100, La Clusaz, France.
Staffordshire, UK: Staffordshire University Press.

Cross, N. (2001). Designerly ways of knowing: Design discipline versus
design science. Design Issues, 17(3):49–55.

Darwin, C. (1968). The Origin Of Species. Penguin Books. (First pub-
lished by John Murray, 1859).

BIBLIOGRAPHY 252

Dasgupta, D. and Michalewicz, Z., editors (1997). Evolutionary Algo-
rithms In Engineering Applications. Springer-Verlag.

Davis, G. B. (2000). Information systems conceptual foundations: Look-
ing backward and forward. In Baskerville, R., Stage, J., and DeGross,
J. I., editors, Organizational and Social Perspectives on Information
Technology, pages 61–82, Massachusetts, MA. IFIP TC8 WG 8.2,
Kluwer Academic Publishers.

Davis, S. (1987). Future Perfect. Addison-Wesley, Reading.

Dawkins, R. (1983). Universal Darwinism. In Bendall, D. S., editor, Evo-
lution from Molecules to Men, chapter 20, pages 403–425. Cambridge
University Press, Cambridge, UK.

Dawkins, R. (1986). The Blind Watchmaker. Norton, New York, NY.

de la Maza, M. and Tidor, B. (1993). An analysis of selection procedures
with particular attention paid to proportional and bolzmann selection.
In Forrest, S., editor, Proceedings of the Fifth International Confer-
ence on Genetic Algorithms, pages 124–131, San Mateo, CA. Morgan
Kaufmann Publishers.

Drake, J. (1979). The primary generator and the design process. Design
Studies, 1(1):36–44.

Eastman, C. (1999). Building Product Models: Computer Environments
Supporting Design and Construction. CRC Press, Boca Raton, FL.

Eastman, C. M. (1970). On the analysis of the intuitive design process. In
Emerging Methods in Environmental Design and Planning. MIT Press,
Cambridge, MA.

Eshelman, L. J. and Schaffer, J. D. (1993). Real-coded genetic algorithms
and interval-schemata. In Whitley (1993), pages 187–202.

Evans, R. (1995). The Projective Cast: Architecture and its Three Ge-
ometries. MIT Press, Massachusetts, MA.

Flake, G. W. (1998). The Computational Beauty of Nature: Computer
Explorations of Fractals, Chaos, Complex Systems, and Adaptation.
MIT Press, Cambridge, MA.

Fogel, D. B. (1995). Evolutionary computation: Towards a new philoso-
phy of machine intelligence. IEEE Press.

Fogel, L. J. (1963). Biotechnology: Concepts and Applications. Prentice
Hall, Englewood Cliffs, NJ.

Frazer, J. (1991). Can computers be just a tool? Systemica: Mutual
Uses of Cybernetics and Science, 9:27–36.

253 BIBLIOGRAPHY

Frazer, J. H. (1974). Reptiles. Architectural Design, 4:231–239.

Frazer, J. H. (1982). Use of simplified three-dimensional computer input
devices to encourage public participation in design’. In Proceedings
of the Computer Aided Design 82 Conference, pages 143–151. Butter-
worth Scientific.

Frazer, J. H. (1990). A genetic approach to design - towards an intelligent
teacup. In Proceedings of the Many Faces of Design Conference.

Frazer, J. H. (1992). Data structures for rule-based and genetic design.
In Proceedings of the 10th International Conference of the Computer
Graphics Society on Visual Computing : integrating computer graphics
with computer vision, pages 731–744, New York, NY. Springer-Verlag.

Frazer, J. H. (1995a). Architectural experiments in cyberspace. Archi-
tectural Design - Architects in Cyberspace, pages 78–79.

Frazer, J. H. (1995b). An Evolutionary Architecture. AA Publications,
London, UK.

Frazer, J. H. (1995c). The interactivator. AA Files, 72–73.

Frazer, J. H. (2002). Creative design and the generative evolutionary
paradigm. In Bentley and Corne (2002), pages 253–274.

Frazer, J. H. and Connor, J. (1979). A conceptual seeding technique for
architectural design. In Proceedings of International Conference on the
Application of Computers in Architectural Design and Urban Planning
(PArC79), pages 425–434, Berlin. AMK.

Frazer, J. H., Frazer, J. M., and Frazer, P. A. (1980). Intelligent physical
three-dimensional modelling systems. In Proceedings of the Computer
Graphics 80 Conference, pages 359–370. Online Publications.

Frazer, J. H. and Rastogi, M. (1998). The new canvas. Architectural
Design: Architects in Cyberspace II, 68(11/12):8–11.

Frazer, J. H., Rastogi, M., and Graham, P. (1995a). Biodiversity in design
via the Internet. In Digital Creativity: A Conference on Computers in
Art & Design Education (CADE 95), pages 97–106.

Frazer, J. H., Rastogi, M., and Graham, P. (1995b). The interactivator.
Architectural Design - Architects in Cyberspace, pages 80–81.

Frazer, J. H., Sun, J., and Tang, M. (2000). Research on applications
of genetic algorithms to computer aided product design - case studies
on three approaches. In Proceedings of the 3rd International Confer-
ence Computer Aided Industrial Design and Conceptual Design (CAID
& CD ’2000), pages 223–228, Beijing, PRC. International Academic
Publishers,.

BIBLIOGRAPHY 254

Frazer, J. H., Tang, M., and Sun, J. (1999). Towards a generative
system for intelligent design support. In Proceedings of the Fourth
Conference on Computer Aided Architectural Design Research in Asia
(CAADRIA’99), pages 285–294. Shanghai Scientific and Technological
Publishing House.

Funes, P. and Pollack, J. (1999). Computer evolution of buildable objects.
In Bentley (1999d), pages 387–403.

Gardner, M. (1970). Mathematical Games: The fantastic combina-
tions of John Conway’s new solitaire game ‘life’. Scientific American,
223(4):120–123.

Gardner, M. (1971). Mathematical Games: On cellular automata, self-
reproduction, the Garden of Eden and the game of ‘life’. Scientific
American, 224(2):112–117.

Garis, H. D. (1994). Growing an artificial brain: The genetic program-
ming of million-neural-net-module artificial brains with trillion cell cel-
lular automata machines. In Sebald, A. V. and Fogel, L. J., editors,
Proceedings of the Third Annual Conference on Evolutionary Porgram-
ming, pages 335–343, London. World Scientific.

Ghosh, A. and Tsutsui, S., editors (2003). Advances in evolutionary
computing: theory and applications. Springer-Verlag, New York, NY.

Gips, J. (1975). Shape Grammars and Their Uses: Artificial Perception,
Shape Generation and Computer Aesthetics. Birkhäuser, Basel.

Gips, J. (1999). Computer implementation of shape grammars. Report,
NSF/MIT Workshop on Shape Computation, Department of Architec-
ture, School of Architecture and Planning, Massachusetts Institute of
Technology.

Glanville, R. (1998). Researching design and designing research. In
Strandman, P., editor, No Guru, No Method? Discussion on Art and
Design Research, B 55. Publication series of the University of Art and
Design Helsinki UIAH.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, Reading, MA.

Goldberg, D. E. (1990). A note on boltzmann tournament selection
for genetic algorithms and population-oriented simulated annealing.
Complex Systems, 4:445–460.

Goldberg, D. E. and Deb, K. (1991). A comparative analysis of selection
schemes used in genetic algorithms. In Rawlins, G., editor, Founda-
tions of Genetic Algorithms, pages 69–93, San Mateo, CA. Morgan
Kaufmann.

255 BIBLIOGRAPHY

Gould, S. J. (2000). Wonderful Life: The Burgess Shale and the Nature
of History. Vintage, London.

Graham, P. C., Frazer, J. H., and Hull, M. C. (1993). The application
of genetic algorithms to design problems with ill-defined or conflicting
criteria. In Glanville, R. and de Zeeuw, G., editors, Proceedings of
Conference on Values and, (In) Variants, pages 61–75.

Grefenstette, J. (1981). Parallel adaptive algorithms for function opti-
mization. Technical Report CS-81-19, Vanderbilt University, Nashville,
TN.

Gropius, W. (1962). The Scope of Total Architecture. Collier Books, New
York, NY.

Gruau, F. (1992). Genetic synthesis of boolean neural networks with a
cell rewriting developmental process. In Schaffer, J. D. and Whitley,
D., editors, Proceedings of the Workshop on Combinations of Genetic
Algorithms and Neural Networks (COGANN-92), pages 55–74. The
IEEE Computer Society Press, Los Alamitos, CA.

Haeckel, E. (1874). Anthropogenie oder Entwickelungsgeschichte des
Menschen. Engelmann, Leipzig.

Hancock, P. J. B. (1995). Selection methods for evolutionary algorithms.
In Chambers, L., editor, Practical handbook of genetic algorithms: new
frontiers, pages 67–92. CRC Press.

Harp, S. A. and Samad, T. (1991). Genetic synthesis of neural network
architecture. In Davis, L., editor, Handbook of Genetic Algorithms.
Von Nostrand Reinhold, New York, NY.

Hensen, J. L. M. (2002). Simulation for performance based building and
systems design: some issues and solution directions. In Proceedings 6th
International Conference on Design and Decision Support Systems in
Architecture and Urban Planning.

Hirschheim, R. (1985). Information systems epistemology: An histori-
cal perspective. In Mumford, E., Hirschheim, R., Fitzgerald, G., and
Wood-Harper, A., editors, Research Methods in Information Systems,
Amsterdam, NL. IFIP TC8 WG 8.2, Elsevier Science Publishers. (Col-
loquium entitled Information Systems Research - a doubtful science?).

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor.

Hu, J., Seo, K., Li, S., Fan, Z., Rosenberg, R. C., and Goodman, E. D.
(2002). Structure fitness sharing (SFS) for evolutionary design by
genetic programming. In Langdon, W. B., Cantú-Paz, E., Mathias,
K. E., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V.,
Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C.,

BIBLIOGRAPHY 256

Miller, J. F., Burke, E., and Jonoska, N., editors, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2002),
pages 780–787, New York, NY. Morgan Kaufmann Publishers.

Iivari, J. (1987). A methodology for IS development as an orgainsational
change: A pragmatic contingency approach. In Klein, H. and Kumar,
K., editors, Information Systems Development for Human Progress in
Organisations. North Holland, Amsterdam, NL.

Iivari, J. (1991). A paradigmatic analysis of contemporary schools of is
development. European Journal of Information Systems, 1(4):249–272.

Iivari, J., Hirschheim, R., and Klein, H. K. (1998). A paradigmatic anal-
ysis contrasting information systems approaches and methodologies.
Information Systems Research, 9(2):164–193.

Jaanusson, V. (1981). Functional thresholds in evolutionary progress.
Lethaia, 14:251–260.

Jackson, H. (2002). Toward a symbiotic coevolutionary approach to ar-
chitecture. In Bentley and Corne (2002).

Jacques, R. (1981). Introduction. In Jacques and Powell (1981), pages
ix–xii.

Jacques, R. and Powell, J., editors (1981). Design : Science : Method.
Proceedings of the 1980 Design Research Society Conference. Westbury
House, Guildford, UK.

Janikow, C. and Michalewicz, Z. (1991). An experimental comparison
of binary and floating point representations in genetic algorithms. In
Belew, R. and Booker, L., editors, Proceedings of the Fourth Interna-
tional Conference on Genetic Algorithms, pages 31–36.

Järvinen, P. (1996). The new classification of research approaches. In Ze-
manek, H., editor, 36 years of IFIP. IFIP Secretariat, Laxenburg, Aus-
tria. (Internet location: http://www.ifip.or.at/36years/36years.html).

Järvinen, P. (1999). On Research Methods. n.p., Opinpaja, Tampere.

Järvinen, P. (2000). On a variety of research output types. In Svensson,
L., Snis, U., Srensen, C., Fägerlind, H., Lindroth, T., Magnusson, M.,
and Östlund, C., editors, Proceedings of the IRIS 23. Laboratorium for
Interaction Technology, Sweden. University of Trollhättan Uddevalla.

Jones, J. C. (1970). Design Methods: Seeds of Human Futures. Wiley,
London, UK, 1st edition.

Jong, K. A. D. (1975). An Analysis of the Behaviour of a Class of Ge-
netic Adaptive Systems. Doctoral dissertation, University of Michigan.
(Dissertation Abstract International, 36(10), 5140B.).

257 BIBLIOGRAPHY

Jong, K. A. D. (1993). Genetic algorithms are not function optimizers.
In Whitley (1993), pages 5–17.

Kanal, L. and Cumar, V., editors (1988). Search in Artificial Intelligence.
Springer-Verlag.

Kargupta, H. (2003). Gene expression and scalable genetic serach. In
Ghosh and Tsutsui (2003), pages 293–319.

Kauffman, S. A. (1993). The Origins of Order: Self Organisation and
Selection In Evolution. Oxford University Press, New York, NY.

Keen, P. G. W. (1987). MIS research: current status, trends and needs.
In Buckingham, R. A., Hirschheim, R. A., Land, F. F., and Tully,
C. J., editors, Information systems education. Recommendations and
implementation, chapter 1, pages 1–13. Cambridge University Press,
Cambridge, UK.

Kitano, H. (1990). Designing neural networks using genetic algorithms
with graph generation system. Complex Systems, 4:461–476.

Knight, T. (1994). Transformations in Design: A formal approach to
stylistic change and innovation in the visual arts. Cambridge Univer-
sity Press, Cambridge, UK.

Knight, T. (1999). Applications in architectural design, and education
and practice. Report, NSF/MIT Workshop on Shape Computation,
Department of Architecture, School of Architecture and Planning,
Massachusetts Institute of Technology.

Koza, J. R. (1990). Genetic programming: A paradigm for genetically
breeding populations of computer programs to solve problems. Tech-
nical Report STAN-CS-90-1314, Stanford University.

Koza, J. R. (1992). Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of
Reusable Programs. MIT Press, Cambridge, MA.

Kumar, S. and Bentley, P. J. (2003). Computational embryology: Past,
present and future. In Ghosh and Tsutsui (2003), pages 461–477.

Lawson, B. (1994). Design in Mind. Butterworth-Heinemann, Jordan
Hill, Oxford, UK.

Lawson, B. (1997). How Designers Think: The Design Process Demysti-
fied. Architectural Press, Oxford, UK, 3rd edition.

Lawson, B. R. (1972). Problem Solving in Architectural Design. Doctoral
dissertation, University of Aston, Birmingham.

BIBLIOGRAPHY 258

Lindenmayer, A. (1968). Mathematical models of cellular interactions in
development, I & II. Journal of Theoretical Biology, 18:280–315.

Lindenmayer, A. (1982). Developmental algorithms: Lineage versus in-
teractive control mechanisms. In Subtelny, S. and Green, P. B., editors,
Developmental order: Its origin and regulation, pages 219–245. Alan
R. Liss, New York, NY.

Lintermann, B. and Deussen, O. (1999). Interactive modeling of plants.
IEEE Computer Graphics and Applications, 19(1):2–11.

Luke, S. (1998). Genetic programming produced competitive soccer soft-
bot teams for robocup97. In Koza, J. R., Banzhaf, W., Chellapilla, K.,
Deb, K., Dorigo, M., Fogel, D. B., Garzon, M. H., Goldberg, D. E., Iba,
H., and Riolo, R., editors, Genetic Programming 1998: Proceedings of
the Third Annual Conference, pages 214–222. University of Wisconsin,
Madison, Wisconsin, USA, Morgan Kaufmann.

Mahdavi, A. (1998). A middle way to integration. In Proceedings of the
4th Design and Decision Support Systems in Architecture and Urban
Planning Conference.

Mandelbrot, B. B. (1975). The Fractal Geometry of Nature. W. H.
Freeman, New York, NY.

Manual, U. (1993). DOE-2 Supplement - Version 2.1E. Simulation Re-
search Group, Lawrence Berkeley National Laboratory. LBL-34946.

March, S. T. and Smith, G. F. (1995). Design and natural science research
on information technology. Design Support Systems, 15:251–266.

Maver, T. (2000). A number is worth a thousand words. Automation in
Construction, 9(4):333–336.

Maver, T. and Petric, J. (2003). Sustainability: real and/or virtual?
Automation in Construction, 12(6):641–648.

McLachlan, F. and Coyne, R. (2001). The accidental move: accident and
authority in design discourse. Design Studies, 22:87–99.

Michalewicz, Z. (1993). A hierarchy of evolution programs: An experi-
mental study. Evolutionary Computation, 1(1):51–76.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolu-
tion Programs. Berlin Heidelberg: Springer-Verlag, 3rd edition. (First
edition 1992).

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press,
Cambridge, MA.

Mitchell, M. (1999). An Introduction to Genetic Algorithms. MIT Press,
Cambridge, MA.

259 BIBLIOGRAPHY

Mitchell, W. (1990). The Logic of Architecture: Design, Computation
and Cognition. MIT Press, Cambridge, MA.

Mitchell, W. J. (1977). Computer-Aided Architectural Design. Van Nos-
trand Reinhold, New York, NY.

Mitchell, W. J. (1994). Three paradigms for computer-aided design. In
Carrara, G. and Kalay, Y., editors, Knowledge-Based Computer-Aided
Architectural Design, pages 379–388. Elsevier Science B.V.

Monedero, J. (2000). Parametric design: a review and some experiences.
Automation in Construction, 9:369–377.

Morgan, G. (1980). Paradigms, metaphors and puzzel solving in organi-
zatio theory. Adminestrative Science Quarterly.

Morris, S. C. (1999). The Crucible of Creation: The Burgess Shale and
the Rise of Animals. Oxford University Press, reprint edition edition.

Newell, A., Shaw, J. C., and Simon, H. A. (1967). The process of creative
thinking. In Gruber, H., Terrell, G., and Wertheimer, M., editors, Con-
temporary Approaches to Creative Thinking, pages 63–119. Atherton
Press, New Yory, NY. (Original publication: 1957).

Nowostawski, M. and Poli, R. (1999). Parallel genetic algorithm tax-
onomy. In Jain, L. C., editor, Proceedings of the Third International
Conference on Knowledge-Based Intelligent Information Engineering
Systems (KES’99), pages 88–92, Adelaide. IEEE Press.

Nunamaker, J. F. and Chen, M. (1990). Systems development in infor-
mation systems research. IEEE Press, pages 631–639.

Nunamaker, J. F., Chen, M., and Purdin, T. D. M. (1991). Systems
development in information systems research. Journal of Management
Information Systems, 7(3):89–106.

O’Neill, M. and Ryan, C. (2000). Incorporating gene expression models
into evolutionary algorithms. In Wu, A., editor, Proceedings of GECCO
2000 Workshop on Gene Expression, pages 167–173, San Francisco,
CA. Morgan Kaufman Publishers.

Owen, R. (1843). Lectures on the Comparative Anatomy and Physiology
of the Invertebrate Animals, Delivered at the Royal College of Surgeons.
Longman, Brown, Green, and Longmans, London, UK.

Page, J. K. (1966). Contribution to building for people. In 1965 Confer-
ence Report.

Paul Schwefel, H. (2000). Advantages (and disadvantages) of evolution-
ary computation over other approaches. In Bäck et al. (2000b).

BIBLIOGRAPHY 260

Polkinghorne, D. (1983). Methodology for the Human Sciences: Systems
of Inquiry. State University of New York Press, Albany, NY.

Prusinkiewicz, P. (1995). Visual models of morphogenesis. In Langton,
C. G., editor, Artificial life: an overview. MIT Press.

Prusinkiewicz, P. and Lindenmayer, A. (1990). The algorithmic beauty
of plants. Springer-Verlag, New York, NY.

Radcliffe, N. J. (1991). Equivalence class analysis of genetic algorithms.
Complex Systems, 5:183–205.

Rasheed, K. and Davison, B. D. (1999). Effect of global parallelism on the
behavior of a steady state genetic algorithm for design optimization. In
Angeline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X., and Zalzala,
A., editors, Proceedings of the Congress on Evolutionary Computation
(CEC’99), volume 1, pages 534–541. IEEE Press.

Rasheed, K. M. (1998). GADO: A Genetic Algorithm for Continuous
Design Optimization. Doctoral dissertation, Department of Computer
Science, Rutgers University, New Brunswick, NJ. Technical Report
DCS-TR-352.

Rechenberg, I. (1973). Evolutionstrategie: Optimierung Technisher
Systeme nach Prinzipien der Biologischen Evolution. Frommann-
Holzboog Verlag, Stuttgart, Germany.

Richardson, M. K., Hanken, J., Gooneratne, M. J., Pieau, C., Raynaud,
A., Selwood, L., and Wright, G. M. (1997). There is no highly con-
served embryonic stage in the vertebrates: implications for current
theories of evolution and development. Anat. Embryol., 196:91–106.

Rittel, H. (1973). The state of the art in design methods. Design Research
and Methods (Design Methods and Theories), 7(2):143–147.

Rosca, J. P. and Ballard, D. H. (1994). Learning by adapting repre-
sentations in genetic programming. In Proceedings of the First IEEE
Conference on Evolutionary Computation, pages 407–412, Piscataway,
NJ. IEEE Press.

Rosenman, M. A. (1996a). An exploration into evolutionary models for
non-routine design. In AID’96 Workshop on Evolutionary Systems in
Design, pages 33–38.

Rosenman, M. A. (1996b). The generation of form using an evolutionary
apporach. In Gero, J. S. and Sudweeks, F., editors, Proceedings of the
Artificial Intelligence in Design Conference (AID ’96), pages 643–662.

Rosenman, M. A. (2000). Case-based evolutionary design. Artifi-
cial Intelligence for Engineering Design, Analysis and Manufacturing
(AIEDAM), 14:17–29.

261 BIBLIOGRAPHY

Rosenman, M. A. and Gero, J. S. (1999). Evolving designs by generating
useful complex gene structures. In Bentley (1999d), pages 345–364.

Rowe, P. G. (1987). Design Thinking. MIT Press, Cambridge, MA.

Rudolph, G. (2000). Evolution strategies. In Bäck et al. (2000b), chap-
ter 9, pages 81–88.

Runnegar, B. (1987). Rates and modes of evolution in the mollusca. In
Campbell, K. S. W. and Day, M. F., editors, Rates of evolution, pages
39–60. Allen and Unwin, London, UK.

Russell, E. S. (1982). Form and Function: A Contribution to the History
of Animal Morphology. University of Chicago Press. (First edition:
1916, London: Murray.).

Schaffer, J. D. (1987). Some effects of selection procedures on hyper-
plane sampling by genetic algorithms. In Davis, L., editor, Genetic Al-
gorithms and Simulated Annealing, pages 89–103. Morgan Kaufmann
Publishers.

Schaudolph, N. N. and Belew, R. K. (1992). Dynamic parameter encod-
ing for genetic algorithms. Machine Learning, 9:9–22.

Schmitt, G. (1999). Information Architecture: basis of CAAD and its
future. Birkhäuser, Basel, Switzerland. (Original edition ”Information
Architecture. Basi e futuro del CAAD” published in 1998 by Testo &
Immagine, Turin, Italy).

Schwefel, H.-P. (1965). Kybernetische Evolution als Strategie der experi-
mentellen Forschung in der Strömungstechnik. Diplomarbeit, Technis-
che Universität, Berlin.

Setzkorn, C. and Paton, R. C. (2004). Javaspaces - an affordable tech-
nology for the simple implementation of reusable parallel evolutionary
algorithms. Technical Report ULCS-04-011, University of Liverpool,
Department of Computer Science.

Shaefer, C. G. (1987). The ARGOT System: Adaptive representation
genetic optimizing technique. In Grefenstette, J. J., editor, Proceed-
ings of the Second International Conference on Genetic Algorithms,
Hillsdale, NJ. Lawrence Erlbaum.

Shea, K. (1997). Essays of Discrete Structures: Purposeful Design of
Grammatical Structures by Directed Stochastic Search. Doctoral dis-
sertation, Carnegie Mellon University, Pittsburgh, PA.

Shea, K. (2001). An approach to multiobjective optimisation for para-
metric synthesis. In 13th International Conference on Engineering De-
sign (ICED 01) - Design Methods for Performance and Sustainability,
WDK 28, pages 203–210.

BIBLIOGRAPHY 262

Shea, K. (2002). Creating synthesis partners. Architectural Design: Con-
temporary Techniques in Architecture, 72(1):42–45.

Shea, K. (2004). Directed randomness. In Leach, N., Turnbull, D., and
Williams, C., editors, Digital Tectonics, pages 10–23. Academy Press.

Simon, H. (1981). The Sciences of the Artificial. MIT Press, Mas-
sachusetts, MA, 2nd edition. (First edition: The Massachusetts In-
stitute of Technology, 1969).

Sims, K. (1994). Evolving 3D morphology and behaviour by competition.
In Brooks, R. and Maes, P., editors, Proceedings of Artificial Life IV,
pages 28–39, Cambridge, MA. MIT Press.

Slack, J. M. W., Holland, P. W. H., and Graham, C. F. (1993). The
zootype and the phylotypic stage. Nature, 361:490–492.

Soddu, C. (2002). Recognizability of the idea: The evolutionary process
of argenia. In Bentley and Corne (2002), chapter 2, pages 109–127.

Stiny, G. (1975). Pictorial and Formal Aspects of Shape and Shape Gram-
mars: On the Computer Generation of Aesthetic Objects. Birkhäuser,
Basel.

Stiny, G. (1980a). Introduction to shape and shape grammars. Environ-
ment and Planning B, 7:343–351.

Stiny, G. (1980b). Kindergarten Grammars: Designing with Froebel’s
building gifts. Environment and Planning B, 7:409–462.

Stiny, G. (1994). Shape rules: closure, continuity and emergence. Envi-
ronment and Planning B: Planning and Design, 21:49–78.

Stiny, G. and Gips, J. (1972). Shape grammars and the generative spec-
ification of painting and sculpture. Information Processing, 71:1460–
1465.

Suckle, A., editor (1980). By Their Own Design. Whitney, New York,
NY.

Sullivan, L. H. (1967). A system of architectural ornament according with
a philosophy of man’s powers. Eakins Press, New York, NY. (First
published in 1924).

Sun, J. (2001). Application of Genetic Algorithms to Generative Product
Design Support Systems. Doctoral dissertation, Hong Kong Polytech-
nic University.

Sun, J., Frazer, J., and Tang, M.-X. (1999). Application of evolution-
ary techniques in design for manufacturability. In Proceedings of the
Fifth International Conference on Computer-Aided Conceptual Design
(CACD’99).

263 BIBLIOGRAPHY

Sylvan, R. and Bennett, D. (1994). The Greening of Ethics. White Horse
Press, Cambridge, UK.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Pro-
ceedings of the Third International Conference on Genetic Algoithms,
pages 2–9. Morgan-Kaufmann.

Syswerda, G. (1991). A study of reproduction in generational and steady-
state genetic algorithms. In Rawlins, G., editor, Foundations of Ge-
netic Algorithms, pages 94–101. Morgan-Kaufmann.

Szalapaj, P. (2000). CAD Principles of Design, An Analytical Approach
to the Computational Representation of Architectural Form. Architec-
tural Press.

Todd, S. and Latham, W. (1992). Evolutionary Art and Computers.
Academic, London, UK.

Todd, S. and Latham, W. (1999). The mutation and growth of art by
computers. In Bentley (1999d), chapter 9, pages 221–250.

van Treeck, C., Romberg, R., and Rank, E. (2003). Simulation based
on the product model standard ifc. In Proceedings 8th Int. IBPSA
Conference Building Simulation.

von Buelow, P. (2002). Using evolutionary algorithms to aid designers of
architectural structures. In Bentley and Corne (2002), pages 315–336.

Warfield, J. N. (1994). The science of generic design: managing complex-
ity through systems design. Iowa State University Press, 2nd edition.

Watkin, D. (1977). Morality and Architecture. Clarendon Press, Oxford,
UK.

WCED (1990). Our common future (the brundtland report). Technical
report, World Commission on Environment and Development, Mel-
bourne.

Whitey, D. and Kauth, J. (1988). GENITOR : A different genetic algo-
rithm. In Proceedings of the Rocky Mountain Conference On Artificial
Intelligence, pages 118–130, Denver, CO.

Whitley, D. (1989). The GENITOR algorithm and selection pressure:
Why rank-based allocation of reproductive trials is best. In Schaffer,
J. D., editor, Proceedings of the Third International Conference on
Genetic Algorithms, San Mateo, CA. Morgan Kaufman.

Whitley, D., editor (1993). Foundations of Genetic Algorithms 2, San
Mateo, CA. Morgan Kaufmann Publishers.

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Com-
puting, 4:65–85.

BIBLIOGRAPHY 264

Whitley, D., Mathias, K., and Fitzhorn, P. (1991). Delta coding: an
iterative search strategy for genetic algorithms. In Belew, R. K. and
Booker, L. B., editors, Proceedings of the Fourth International Con-
ference on Genetic Algorithms, pages 77–84, San Mateo, CA. Morgan
Kaufmann.

Wilson, S. W. (1989). The genetic algorithm and simulated evolution.
In Langton, C., editor, Artificial Life: Proceedings of an Interdisci-
plinary Workshop on the Synthesis and Simulation of Living Systems,
volume 6, pages 157–166, Reading, MA. Santa Fe Institute Studies in
the Sciences of Complexity, Addison-Wesley.

Wolfram, S. (1983). Cellular automata. Los Almos Science, 9:2–21.

Wolfram, S. (2002). A New Kind of Science. Wolfram Media, Inc.

Wolpert, D. H. and Macready, W. G. (1995). No Free Lunch theorems
for search. Technical Report SFI-TR-95-02-010, Santa Fe Institute,
Santa Fe, NM.

Wolpert, D. H. and Macready, W. G. (1997). No Free Lunch Theorems
for optimization. IEEE Transactions on Evolutionary Computation,
1(1):67–82.

Wright, A. H. (1991). Genetic algorithms for real parameter optimization.
In Rawlins, G. J., editor, Foundations of genetic algorithms, pages 205–
218, San Mateo, CA. Morgan Kaufmann.

Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and
selection in evolution. In Jones, D. F., editor, Proceedings of the Sixth
International Congress on Genetics, volume 1, pages 356–366.

Zwicky, F. (1967). The morphological approach to discovery, invention,
research and construction. In Zwicky, F. and Wilson, A., editors, New
Methods of Thought and Procedure: Contributions to the Symposium
on Methodologies, pages 273–297. Springer, Berlin.

Zwicky, F. (1969). Discovery, Invention, Research - Through the Mor-
phological Approach. The Macmillian Company, Toronto.

